Current Trends in Organic Vegetable Crop Production: Practices and Techniques
Abstract
:1. Introduction
2. Plant Material
3. Organic Crop Nutrition
4. Soil Disinfection
5. Crop Management
5.1. Crop Rotation
5.2. Intercropping
5.3. Cover Crops
5.4. Enhancement of Auxiliary Fauna
6. Pest and Diseases
6.1. Preventive Measure
6.2. Curative Measures
7. Organic Weed Management
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Glossary on Organic Agriculture; FAO: Rome, Italy, 2009. [Google Scholar]
- IFOAM. Organic Agriculture and Its Benefits for Climate and Biodiversity; IFOAM: Brussels, Belgium, 2022; pp. 1–16. [Google Scholar]
- Willer, H.; Lernoud, J. The World of Organic Agriculture. Statistics and Emerging Trends 2017; Willer, H., Lernoud, J., Eds.; Research Institute of Organic Agriculture FiBL and IFOAM-Organics International: Frick, Switzerland; IFOAM Organics International: Bonn, Germany, 2017. [Google Scholar]
- Willer, H.; Trávnícek, J.; Meier, C.; Schlatter, B. The World of Organic Agriculture Statistics and Emerging Trends 2021; FIBL: Frick, Switzerland; IFOAM Organics International: Bonn, Germany, 2021; pp. 1–336. [Google Scholar]
- Risku-Norja, H.; Mäenpää, I. MFA Model to Assess Economic and Environmental Consequences of Food Production and Consumption. Ecol. Econ. 2007, 60, 700–711. [Google Scholar] [CrossRef]
- Mie, A.; Kesse-Guyot, E.; Kahl, J.; Rembiałkowska, E.; Andersen, H.R.; Grandjean, P.; Gunnarsson, S. Human Health Implications of Organic Food and Organic Agriculture. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Rembiałkowska, E.; Średnicka, D.; Bügel, S.; Van De Vijver, L.P.L. Organic Food and Impact on Human Health: Assessing the Status Quo and Prospects of Research. NJAS-Wagening. J. Life Sci. 2021, 58, 103–109. [Google Scholar] [CrossRef]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation of Flavonoids in a Collection of Peppers (Capsicum Sp.) under Organic and Conventional Cultivation: Effect of the Genotype, Ripening Stage and Growing System. J. Sci. Food Agric. 2020, 100, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Dall’Asta, M.; Angelino, D.; Pellegrini, N.; Martini, D. The Nutritional Quality of Organic and Conventional Food Products Sold in Italy: Results from the Food Labelling of Italian Products (FLIP) Study. Nutrients 2020, 12, 1273. [Google Scholar] [CrossRef] [PubMed]
- Baudry, J.; Assmann, K.E.; Touvier, M.; Allès, B.; Seconda, L.; Latino-Martel, P.; Ezzedine, K.; Galan, P.; Hercberg, S.; Lairon, D.; et al. Association of Frequency of Organic Food Consumption With Cancer Risk: Findings from the NutriNet-Santé Prospective Cohort Study. JAMA Intern. Med. 2018, 178, 1597–1606. [Google Scholar] [CrossRef]
- Shubha, K.; Singh, N.R.; Mukherjee, A.; Dubey, A.K.; Ray, R.K. Organic Vegetable Production and Its Impact on Soil, Environment and Society. In Advances in Organic Farming; Vijay Singh, M., Sunita Kumari, M., Amitava, R., Johnson, S., Cherukumalli, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–208. [Google Scholar] [CrossRef]
- Durham, T.C.; Mizik, T. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Saffeullah, P.; Nabi, N.; Liaqat, S.; Anjum, N.A.; Siddiqi, T.O.; Umar, S. Organic Agriculture: Principles, Current Status, and Significance. In Microbiota and Biofertilizers; Springer: Berlin/Heidelberg, Germany, 2021; pp. 17–37. [Google Scholar] [CrossRef]
- Mulvany, P. Sustaining Agricultural Biodiversity and Heterogeneous Seeds. In Rethinking Food and Agriculture: New Ways Forward; Kassam, A., Kassam, L., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 285–321. ISBN 9780128164105. [Google Scholar]
- Peschard, K.; Randeria, S. ‘Keeping Seeds in Our Hands’: The Rise of Seed Activism. J. Peasant Stud. 2020, 47, 613–647. [Google Scholar] [CrossRef]
- Pimbert, M. Introduction: Thinking About Seeds. In Seeds for Diversity and Inclusion; Nishikawa, Y., Pimbert, M., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 1–19. ISBN 978-3-030-89405-4. [Google Scholar]
- van Bruggen, A.H.C.; Gamliel, A.; Finckh, M.R. Plant Disease Management in Organic Farming Systems. Pest Manag. Sci. 2016, 72, 30–44. [Google Scholar] [CrossRef]
- Lammerts Van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The Need to Breed Crop Varieties Suitable for Organic Farming, Using Wheat, Tomato and Broccoli as Examples: A Review. NJAS-Wageningen J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Knapp, S.; van der Heijden, M.G.A. A Global Meta-Analysis of Yield Stability in Organic and Conservation Agriculture. Nat. Commun. 2018, 9, 3632. [Google Scholar] [CrossRef] [PubMed]
- Orsini, S.; Costanzo, A.; Solfanelli, F.; Zanoli, R.; Padel, S.; Messmer, M.M.; Winter, E.; Schaefer, F. Factors Affecting the Use of Organic Seed by Organic Farmers in Europe. Sustainability 2020, 12, 8540. [Google Scholar] [CrossRef]
- Döring, T.F.; Pautasso, M.; Wolfe, M.S.; Finckh, M.R. Pest and Disease Management in Organic Farming: Implications and Inspirations for Plant Breeding. Org. Crop Breed. 2011, 3, 39–59. [Google Scholar] [CrossRef]
- Ponisio, L.C.; M’gonigle, L.K.; Mace, K.C.; Palomino, J.; De Valpine, P.; Kremen, C. Diversification Practices Reduce Organic to Conventional Yield Gap. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141396. [Google Scholar] [CrossRef] [PubMed]
- Lammerts van Bueren, E.T.; Struik, P.C. Diverse Concepts of Breeding for Nitrogen Use Efficiency. A Review. Agron. Sustain. Dev. 2017, 37, 50. [Google Scholar] [CrossRef]
- Li, X.; Siddique, K.H.M. Editors Rediscovering Hidden Treasures of Neglected and Underutilized Species for Zero Hunger in Asia Future Smart Food Executive Summary. Available online: https://www.fao.org/documents/card/en/c/i9136en/ (accessed on 20 September 2022).
- Shelton, A.C.; Tracy, W.F. Participatory Plant Breeding and Organic Agriculture: A Synergistic Model for Organic Variety Development in the United States. Elem. Sci. Anthr. 2016, 4, 143. [Google Scholar] [CrossRef]
- EUCARPIA Section Organic; Low Input Agriculture jointly with LIVESEED, BRESOV, ECOBREED, FLPP projects and ECO-PB. International Conference on Breeding and Seed Sector Innovations for Organic Food Systems; Book of Abstract; Institute of Agricultural Resources and Economic: Riga, Latvia, 2021. [Google Scholar]
- Mukhopadhyay, K.; Bera, R.; Pramanick, S.J.; Debnath, M.; Kundu, M.K.; Dhang, S.; Seal, A.; Dutta, A. Development of Organic Vegetable Seeds for Climate Resilient Agriculture: A Path Breaking Exercise. J. Agric. Eng. Food Technol. 2019, 6, 250–255. [Google Scholar]
- OFRF. Organic Farming Research Foundation Final Grand Report-Seeding a Culture of Innovation in Organics: Farmer-Led Breeding of Peppers, Broccoli and Cucumber; Ecological Farmers Association of Ontario: Guelph, ON, Canada, 2021; Available online: https://grants.ofrf.org/system/files/outcomes/Final_Report_Seeding_a_Culture_of_Innovation_Hargreaves_EFAO_OFRF_2021.pdf (accessed on 20 September 2022).
- Entz, M.H.; Kirk, A.P.; Vaisman, I.; Fox, S.L.; Fetch, J.M.; Hobson, D.; Jensen, H.R.; Rabinowicz, J. Farmer Participation in Plant Breeding for Canadian Organic Crop Production: Implications for Adaptation to Climate Uncertainty. Procedia Environ. Sci. 2015, 29, 238–239. [Google Scholar] [CrossRef]
- Hufford, M.B.; Berny Mier, Y.; Teran, J.C.; Gepts, P. Crop Biodiversity: An Unfinished Magnum Opus of Nature. Annu. Rev. Plant Biol. 2019, 70, 727–751. [Google Scholar] [CrossRef] [Green Version]
- Kawai, A.; Kawai, A. The Diversity of Seed-Saving Governance and Sharing Systems in Contemporary Japan. Seeds Divers. Incl. 2022, 79–90. [Google Scholar] [CrossRef]
- Tomiyoshi, M. Organizations and Functions for Seed Management in East Asia: Korea, Japan and Taiwan. In Seeds for Diversity and Inclusion; Nishikawa, Y., Pimbert, M., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 107–119. ISBN 978-3-030-89405-4. [Google Scholar]
- Renaud, E.N.C.; Van Bueren, E.T.L.; Jiggins, J. The Meta-Governance of Organic Seed Regulation in the USA, European Union and Mexico. Int. J. Agric. Resour. Gov. Ecol. 2016, 12, 262–291. [Google Scholar] [CrossRef]
- Colley, M.R.; Dawson, J.C.; McCluskey, C.; Myers, J.R.; Tracy, W.F.; Lammerts Van Bueren, E.T. Exploring the Emergence of Participatory Plant Breeding in Countries of the Global North–A Review. J. Agric. Sci. 2021, 159, 320–338. [Google Scholar] [CrossRef]
- Campanelli, G.; Acciarri, N.; Campion, B.; Delvecchio, S.; Leteo, F.; Fusari, F.; Angelini, P.; Ceccarelli, S. Participatory Tomato Breeding for Organic Conditions in Italy. Euphytica 2015, 204, 179–197. [Google Scholar] [CrossRef]
- Keijzer, P.; van Bueren, E.T.L.; Engelen, C.J.M.; Hutten, R.C.B. Breeding Late Blight Resistant Potatoes for Organic Farming—A Collaborative Model of Participatory Plant Breeding: The Bioimpuls Project. Potato Res. 2022, 65, 349–377. [Google Scholar] [CrossRef]
- EU REGULATION (EU) 2018/848 of the european parliament and of the council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union. 2018, 150, 1–92.
- EU. Farm to Fork Strategy. For a Fair, Healthy and Environmentally-Friendly Food System; European Union: Brussels, Belgium, 2020. [Google Scholar]
- EUROSTAT. Organic Farming Statistics Statistics Explained; 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Organic_farming_statistics (accessed on 18 June 2022).
- Kobayashi, M. Bhutan’s ‘Middle Way’: Diversification, Mainstreaming, Commodification and Impacts in the Context of Food Security. In Seeds for Diversity and Inclusion; Nishikawa, Y., Pimbert, M., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022; pp. 161–173. ISBN 978-3-030-89405-4. [Google Scholar]
- Østergård, H.; Finckh, M.R.; Fontaine, L.; Goldringer, I.; Hoad, S.P.; Kristensen, K.; Lammerts van Bueren, E.T.; Mascher, F.; Munk, L.; Wolfe, M.S. Time for a Shift in Crop Production: Embracing Complexity through Diversity at All Levels. J. Sci. Food Agric. 2009, 89, 1439–1445. [Google Scholar] [CrossRef]
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Pedersen, T.M.; De Buck, A.; Flamm, C.; Rey, F.; Chable, V.; Messmer, M. Guidelines for Adapted DUS and VCU Testing of Organic Varieties Deliverable Number D2.4 Dissemination Level Public Guidelines for Adapted DUS and VCU Testing of Organic Varieties 2 Document Version. 2021. Available online: https://www.liveseed.eu/wp-content/uploads/2021/02/D2.4-LIVESEED-Guidelines-for-adapted-DUS-and-VCU-testing-of-organic-varietie.pdf (accessed on 20 September 2022).
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current Status of Vegetable Grafting: Diffusion, Grafting Techniques, Automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Cohen, R.; Dombrovsky, A.; Louws, F.J. Grafting as Agrotechnology for Reducing Disease Damage. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CAB International: Oxfordshire, UK, 2017; pp. 155–170. ISBN 9781786390585. [Google Scholar]
- Rouphael, Y.; Venema, J.H.; Edelstein, M.; Savvas, D.; Colla, G.; Ntatsi, G.; Ben-Hur, M.; Kumar, P.; Schwarz, D. Grafting as a tool for tolerance of abiotic stress. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CAB International: Oxfordshire, UK, 2017; pp. 171–215. ISBN 978-1-78639-058-5. [Google Scholar]
- Guan, W.; Zhao, X.; Dickson, D.W.; Mendes, M.L.; Thies, J. Root-Knot Nematode Resistance, Yield, and Fruit Quality of Specialty Melons Grafted onto Cucumis Metulifer. Hortscience 2014, 49, 1046–1051. [Google Scholar] [CrossRef]
- Koren, A.; Klein, E.; Dieleman, J.A.; Janse, J.; Rouphael, Y.; Colla, G.; Mourão, I. Practical Applications and Speciality Crops. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CAB International: Oxfordshire, UK, 2017; pp. 245–270. ISBN 978-1-78639-058-5. [Google Scholar]
- Mourão, I.; Moura, L.; Brito, L.M.; Coutinho, J.; Costa, S.R. Grafting Green Beans for Improved Yield and Fruit Quality. Acta Hortic. 2020, 1286, 141–148. [Google Scholar] [CrossRef]
- Leonardi, C.; Kyriacou, M.C.; Gisbert, C.; Oztekin, G.B.; Mourão, I.; Rouphael, Y. Quality of Grafted Vegetables. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CAB International: Oxfordshire, UK, 2017; pp. 214–245. ISBN 978-1-78639-058-5. [Google Scholar]
- Barrett, C.E.; Zhao, X.; Sims, C.A.; Brecht, J.K.; Dreyer, E.Q.; Gao, Z. Fruit Composition and Sensory Attributes of Organic Heirloom Tomatoes as Affected by Grafting. Horttechnology 2012, 22, 804–809. [Google Scholar] [CrossRef]
- Casals, J.; Rull, A.; Bernal, M.; González, R.; del Castillo, R.R.; Simó, J. Impact of Grafting on Sensory Profile of Tomato Landraces in Conventional and Organic Management Systems. Hortic. Environ. Biotechnol. 2018, 59, 597–606. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Franco-Andreu, L.; Benítez, C.; Parrado, J. Use of Biofertilizers Obtained from Sewage Sludges on Maize Yield. Eur. J. Agron. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Reeve, J.R.; Hoagland, L.A.; Villalba, J.J.; Carr, P.M.; Atucha, A.; Cambardella, C.; Davis, D.R.; Delate, K. Organic Farming, Soil Health, and Food Quality: Considering Possible Links. Adv. Agron. 2016, 137, 319–367. [Google Scholar] [CrossRef]
- Durán-Lara, E.F.; Valderrama, A.; Marican, A. Natural Organic Compounds for Application in Organic Farming. Agriculture 2020, 10, 41. [Google Scholar] [CrossRef]
- Brust, G.E. Management Strategies for Organic Vegetable Fertility. In Safety and Practice for Organic Food; Biswas, B., Micallef, S.A., Eds.; Academic Press: London, UK, 2019; pp. 193–212. ISBN 9780128120606. [Google Scholar]
- Möller, K. Soil Fertility Status and Nutrient Input–Output Flows of Specialised Organic Cropping Systems: A Review. Nutr. Cycl. Agroecosystems 2018, 112, 147–164. [Google Scholar] [CrossRef]
- Garg, V.; Chand, S.; Chhillar, A.; Yadav, A. Growth and Reproduction of Eisenia Foetida in Various Animal Wastes During Vermicomposting. Appl. Ecol. Environ. Res. 2005, 3, 51–59. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Fan, J.; Yang, X.; Yi, Y.; Han, X.; Wang, D.; Zhu, P.; Peng, X. Does Animal Manure Application Improve Soil Aggregation?Insights from Nine Long-Term Fertilization Experiments. Sci. Total Environ. 2019, 660, 1029–1037. [Google Scholar] [CrossRef]
- Pai, S.; Ai, N.; Zheng, J. Decentralized Community Composting Feasibility Analysis for Residential Food Waste: A Chicago Case Study. Sustain. Cities Soc. 2019, 50, 101683. [Google Scholar] [CrossRef]
- Lavado, R.S. Origen Del Compost, Proceso de Compostaje y Potencialidad de Uso. In Compostaje en la Argentina: Experiencias en la Argentina: Experiencias de Producción, Calidad y Uso; Mazzarino, M.J., Satti, P., Eds.; Orientación Gráfica Editora: Buenos Aires, Argentina, 2012; pp. 3–12. ISBN 978-987-9260-93-7. [Google Scholar]
- Orden, L. Evaluación Del Proceso de Compostaje de Residuos Sólidos Orgánicos: Respuesta Agronómica de Su Utilización En Un Cultivo de Cebolla (Allium cepa L.); Universidad Nacional del Sur: Bahía Blanca, Argentina, 2018. [Google Scholar]
- Prono, A.R.; Martín, C.A.; Mazzarino, M.J. Efectos de La Relación C/N y El Contenido de Humedad Sobre La Eficiencia Del Compostaje En Reactores a Escala Banco-Laboratorio. In Proceedings of the Actas XXII Congreso Argentino de la Ciencia del Suelo, Rosario, Argentina, 31 May–4 June 2010. [Google Scholar]
- Tognetti, C.; Mazzarino, M.J.; Laos, F. Improving the Quality of Municipal Organic Waste Compost. Bioresour. Technol. 2007, 98, 1067–1076. [Google Scholar] [CrossRef]
- Bian, B.; Hu, X.; Zhang, S.; Lv, C.; Yang, Z.; Yang, W.; Zhang, L. Pilot-Scale Composting of Typical Multiple Agricultural Wastes: Parameter Optimization and Mechanisms. Bioresour. Technol. 2019, 287, 121482. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The Use of Vermicompost in Organic Farming: Overview, Effects on Soil and Economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, D. Developing Biostimulants from Agro-Food and Industrial by-Products. Front. Plant Sci. 2018, 871, 1567. [Google Scholar] [CrossRef] [PubMed]
- Souri, M.K.; Bakhtiarizade, M. Biostimulation Effects of Rosemary Essential Oil on Growth and Nutrient Uptake of Tomato Seedlings. Sci. Hortic. 2019, 243, 472–476. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Zhu, L. Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures. Environ. Sci. Technol. 2014, 48, 3411–3419. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of Biochar and Poultry Manure on Soil Characteristics and the Yield of Radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-Year Evaluation of Hydraulic Properties of Biochar-Amended Vegetated Soil for Application in Landfill Cover System. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and Mechanisms of Biochar-Microbe Interactions in Soil Improvement and Pollution Remediation: A Review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Chawla, R.; Sadawarti, R.K. Effect of Bio-Fertilizers and Organic Manures on Growth, Yield and Fruit Quality of Fruit Crops. Plant Arch. 2020, 20, 3767–3768. [Google Scholar]
- Santini, G.; Biondi, N.; Rodolfi, L.; Tredici, M.R. Plant Biostimulants from Cyanobacteria: An Emerging Strategy to Improve Yields and Sustainability in Agriculture. Plants 2021, 10, 643. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and during Storage. Front. Plant Sci. 2018, 9, 1342. [Google Scholar] [CrossRef] [PubMed]
- Aloo, B.N.; Makumba, B.A.; Mbega, E.R. Plant Growth Promoting Rhizobacterial Biofertilizers for Sustainable Crop Production: The Past, Present, and Future. Preprints 2020, 2020090650. [Google Scholar] [CrossRef]
- Mutale-joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S.; Zeroual, Y.; Hicham, E.A. Screening of Microalgae Liquid Extracts for Their Bio Stimulant Properties on Plant Growth, Nutrient Uptake and Metabolite Profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820. [Google Scholar] [CrossRef] [PubMed]
- Amatussi, J.O.; Mógor, Á.F.; Mógor, G.; de Lara, G.B. Novel Use of Calcareous Algae as a Plant Biostimulant. J. Appl. Phycol. 2020, 32, 2023–2030. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Microalgae: New Source of Plant Biostimulants. Agronomy 2020, 10, 1240. [Google Scholar] [CrossRef]
- Bulgari, R.; Trivellini, A.; Ferrante, A. Effects of Two Doses of Organic Extract-Based Biostimulant on Greenhouse Lettuce Grown under Increasing NaCl Concentrations. Front. Plant Sci. 2019, 9, 1870. [Google Scholar] [CrossRef]
- Đurić, M.; Mladenović, J.; Bošković-Rakočević, L.; Šekularac, G.; Brković, D.; Pavlović, N. Use of Different Types of Extracts as Biostimulators in Organic Agriculture. Acta Agric. Serbica 2019, 24, 27–39. [Google Scholar] [CrossRef]
- Fayaz, A.; Patil, S.; Swamy, G.; Shankarappa, T.; Premelatha, B. Pummelo (Citrus maxima L.) Seedlings Growth as Influenced by Bio-Fertilizers and Organic Amendments. Int. J. Chem. Stud. 2020, 8, 2317–2320. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, M.K.; Bano, R.; Mahawar, A.K.; Singh, S.P. Comparative Effect of Organic and Inorganic Sources of NPK and Bio-Fertilizer on Growth Attributes and Yield of Sweet Potato Cv. IGSP-14. Chem. Sci. Rev. Lett. 2020, 9, 728–733. [Google Scholar] [CrossRef]
- Jabroot, K.; Scholar, J.M.S.; Deepika, K.J.J. Influence of Organic Manure and Biofertilizers on Horticultural Crops: Review. Pharma Innov. J. 2021, 10, 763–766. [Google Scholar]
- EU. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003 (Text with EEA Relevance); The European Parliament and the Council of the European Union: Brussels, Belgium, 2019; pp. 1–114. [Google Scholar]
- Comezaña, M.M.; Rodríguez, R.A.; Ayastuy, M.E.; Muscolino, C.; Rosetti, F.; Belladonna, D.P. Intercropping of Tomato with Antagonistic Plants in the Treatment of Soil Infested with Meloidogyne spp., under Greenhouse. Hortic. Argentina 2021, 40, 6–19. [Google Scholar]
- Kiehr, M.; Delhey, V.K.; Ayastuy, M.E.; Rodríguez, R.A.; Zappacosta, D.; Delhey, R. Combined Effect of Organic Amendments, Biofumigation and Solarization on Onion Growth and on Pink Root (Setophoma terrestris) Severity. IOSR J. Agric. Vet. Sci. 2021, 14, 13–19. [Google Scholar] [CrossRef]
- Dutta, T.K.; Khan, M.R.; Phani, V. Plant-Parasitic Nematode Management via Biofumigation Using Brassica and Non-Brassica Plants: Current Status and Future Prospects. Curr. Plant Biol. 2019, 17, 17–32. [Google Scholar] [CrossRef]
- Brennan, R.J.B.; Glaze-Corcoran, S.; Wick, R.; Hashemi, M. Biofumigation: An Alternative Strategy for the Control of Plant Parasitic Nematodes. J. Integr. Agric. 2020, 19, 1680–1690. [Google Scholar] [CrossRef]
- dos Santos, C.A.; de Abboud, A.C.S.; Do Carmo, M.G.F. Biofumigation with Species of the Brassicaceae Family: A Review. Ciência Rural 2020, 51, 1–17. [Google Scholar] [CrossRef]
- Aydınlı, G.; Mennan, S. Biofumigation Studies by Using Raphanus sativus and Eruca sativa as a Winter Cycle Crops to Control Root-Knot Nematodes. Braz. Arch. Biol. Technol. 2018, 61, 1–9. [Google Scholar] [CrossRef]
- Mitidieri, M.; Brambilla, V.; Barbieri, M.; Piris, E.; Del Pardo, K.; Ciaponi, M.; Celié, R.; Arpía, E.; Peralta, R. Calidad Del Suelo y Sanidad de Cultivo Después de Quince Años de Biosolarización. Disertación: Manejo de Bajo Impacto Ambiental En Cultivos Intensivos. In Proceedings of the Horticultura Argentina-XL Congreso Argentino de Horticultura, Córdoba, Argentina, 2–5 October 2018; Volume 37, p. 291. [Google Scholar]
- Perniola, O.S.; Chorzempa, S.E.; Staltari, S.; Astiz Gassó, M.M.; Galian, L.R.; Molina, M.C. Biofumigación Con Brassica Juncea L. Czerniak y Sinapis Alba L. Acción Sobre El Crecimiento in Vitro de Trichoderma Spp. y Azospirillum Brasilense Tarrand, Krieg et Döbereiner. Rev. Prot. Veg. 2016, 31, 57–62. [Google Scholar]
- Rokunuzzaman, M.; Hayakawa, A.; Yamane, S.; Tanaka, S.; Ohnishi, K. Effect of Soil Disinfection with Chemical and Biological Methods on Bacterial Communities. Egypt J. Basic Appl. Sci. 2016, 3, 141–148. [Google Scholar] [CrossRef]
- Sennett, L.; Burton, D.L.; Goyer, C.; Zebarth, B.J. Influence of Chemical Fumigation and Biofumigation on Soil Nitrogen Cycling Processes and Nitrifier and Denitrifier Abundance. Soil Biol. Biochem. 2021, 162, 108421. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, D.; Fang, W.; Huang, B.; Wang, X.; Wang, X.; Zhu, J.; Liu, J.; Ouyang, C.; Li, Y.; et al. Chloropicrin Alternated with Biofumigation Increases Crop Yield and Modifies Soil Bacterial and Fungal Communities in Strawberry Production. Sci. Total Environ. 2019, 675, 615–622. [Google Scholar] [CrossRef]
- Nallanchakravarthula, S.; Marupakula, S.; Alström, S.; Finlay, R.D.; Mahmood, S. Changes in the Root Fungal Microbiome of Strawberry Following Application of Residues of the Biofumigant Oilseed Radish. Appl. Soil Ecol. 2021, 168, 104116. [Google Scholar] [CrossRef]
- Zeist, A.R.; de Resende, J.T.V.; Pozzebon, B.C.; Gabriel, A.; da Silva, A.A.; Zeist, R.A. Combination of Solarization, Biofumigation and Grafting Techniques for the Management of Bacterial Wilt in Tomato. Hortic. Bras. 2019, 37, 260–265. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, T.; Jett, L.; Kotcon, J. Biocontrol Agent, Biofumigation, and Grafting with Resistant Rootstock Suppress Soil-Borne Disease and Improve Yield of Tomato in West Virginia. Crop Prot. 2021, 145, 105630. [Google Scholar] [CrossRef]
- Korthals, G.W.; Thoden, T.C.; van den Berg, W.; Visser, J.H.M. Long-Term Effects of Eight Soil Health Treatments to Control Plant-Parasitic Nematodes and Verticillium Dahliae in Agro-Ecosystems. Appl. Soil Ecol. 2014, 76, 112–123. [Google Scholar] [CrossRef]
- De Corato, U. Effect of Value-Added Organic Co-Products from Four Industrial Chains on Functioning of Plant Disease Suppressive Soil and Their Potentiality to Enhance Soil Quality: A Review from the Perspective of a Circular Economy. Appl. Soil Ecol. 2021, 168, 104221. [Google Scholar] [CrossRef]
- Duhamel, M.; Vandenkoornhuyse, P. Sustainable Agriculture: Possible Trajectories from Mutualistic Symbiosis and Plant Neodomestication. Trends Plant Sci. 2013, 18, 597–600. [Google Scholar] [CrossRef]
- UE. The New Organic- RegulationMEMO/17/4686; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Lloret, E.; Waeyenberge, L.; Schrader, S.; Fernández, J.A.; Zornosa, R. Crop Diversification and Soil Biodiversity. In Interactions between Agricultural Management and Soil Biodiversity: An Overview of Current Knowledge; Soro-Gómez, D., Shanskiy, M., Fernández-Calviño, D., Eds.; Universidade de Vigo: Vigo, Spain, 2020; pp. 24–34. ISBN 9788409256327. [Google Scholar]
- Gamliel, A.; van Bruggen, A.H.C. Maintaining Soil Health for Crop Production in Organic Greenhouses. Sci. Hortic. 2016, 208, 120–130. [Google Scholar] [CrossRef]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; Mcdaniel, M.D. Crop Rotational Diversity Enhances Belowground Communities and Functions in an Agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M.; et al. Faba Bean Cultivation–Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Fernández, J.A. A Comparative Greenhouse Gas Emissions Study of Legume and Non-Legume Crops Grown Using Organic and Conventional Fertilizers. Sci. Hortic. 2020, 260, 108902. [Google Scholar] [CrossRef]
- Huth, N.I.; Thorburn, P.J.; Radford, B.J.; Thornton, C.M. Impacts of Fertilisers and Legumes on N2O and CO2 Emissions from Soils in Subtropical Agricultural Systems: A Simulation Study. Agric. Ecosyst. Environ. 2010, 136, 351–357. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Zornoza, R.; Faz, Á.; Fernández, J.A. Comparison of Soil Organic Carbon Pools, Microbial Activity and Crop Yield and Quality in Two Vegetable Multiple Cropping Systems under Mediterranean Conditions. Sci. Hortic. 2020, 261, 109025. [Google Scholar] [CrossRef]
- Ahuja, I.; Rohloff, J.; Bones, A.M. Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management. Sustain. Agric. 2010, 2, 623–670. [Google Scholar] [CrossRef] [Green Version]
- Poveda, J.; Eugui, D.; Velasco, P. Natural Control of Plant Pathogens through Glucosinolates: An Effective Strategy against Fungi and Oomycetes. Phytochem. Rev. 2020, 19, 1045–1059. [Google Scholar] [CrossRef]
- Miranda Rossetto, M.R.; Shiga, T.M.; Vianello, F.; Pereira Lima, G.P. Analysis of Total Glucosinolates and Chromatographically Purified Benzylglucosinolate in Organic and Conventional Vegetables. LWT-Food Sci. Technol. 2013, 50, 247–252. [Google Scholar] [CrossRef]
- Singh, K.; Mishra, A.K.; Singh, B.; Singh, R.P.; Patra, D.D. Tillage Effects on Crop Yield and Physicochemical Properties of Sodic Soils. Land Degrad. Dev. 2016, 27, 223–230. [Google Scholar] [CrossRef]
- Theunissen, J. Application of Intercropping in Organic Agriculture. Biol. Agric. Hortic. 1997, 15, 250–259. [Google Scholar] [CrossRef]
- Roholla Mousavi, S.; Eskandari, H. A General Overview on Intercropping and Its Advantages in Sustainable Agriculture. J. Appl. Environ. Biol. Sci. 2011, 1, 482–486. [Google Scholar]
- Moradi, H.; Noori, M.; Sobhkhizi, A.; Fahramand, M.; Rigi, K. Effect of Intercropping in Agronomy. J. Nov. Appl. Sci. 2014, 3, 315–320. [Google Scholar]
- Yildirim, E.; Guvenc, I. Intercropping Based on Cauliflower: More Productive, Profitable and Highly Sustainable. Eur. J. Agron. 2005, 22, 11–18. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving Intercropping: A Synthesis of Research in Agronomy, Plant Physiology and Ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Tempesta, M.; Gianquinto, G.; Hauser, M.; Tagliavini, M. Optimization of Nitrogen Nutrition of Cauliflower Intercropped with Clover and in Rotation with Lettuce. Sci. Hortic. 2019, 246, 734–740. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Castellini, M.; Giglio, L.; Montemurro, F. Intercropping and Rotation with Leguminous Plants in Organic Vegetables: Crop Performance, Soil Properties and Sustainability Assessment. Biol. Agric. Hortic. 2021, 37, 141–167. [Google Scholar] [CrossRef]
- Sánchez-Navarro, V.; Martínez-Martínez, S.; Acosta, J.A.; Fernández, J.A.; Zornoza, R. Intercropped Melon-Cowpea Organic System Can Improve Melon Yield and Land Equivalent Ratio. In Proceedings of the European Conference on Crop Diversification 2019, Budapest, Hungary, 18–21 September 2019. [Google Scholar] [CrossRef]
- Marcos-Pérez, M.; Sánchez-Navarro, V.; Zornoza, R. Intercropping Fava Bean with Broccoli Can Improve Soil Properties While Maintaining Crop Production under Mediterranean Conditions. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. EGU2020-11058. [Google Scholar] [CrossRef]
- Cuartero, J.; Pascual, J.A.; Vivo, J.M.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Mena, M.M.; Garcia, E.; Ros, M. A First-Year Melon/Cowpea Intercropping System Improves Soil Nutrients and Changes the Soil Microbial Community. Agric. Ecosyst. Environ. 2022, 328, 107856. [Google Scholar] [CrossRef]
- Mao, L.L.; Zhang, L.Z.; Zhang, S.P.; Evers, J.B.; van der Werf, W.; Wang, J.J.; Sun, H.Q.; Su, Z.C.; Spiertz, H. Resource Use Efficiency, Ecological Intensification and Sustainability of Intercropping Systems. J. Integr. Agric. 2015, 14, 1542–1550. [Google Scholar] [CrossRef]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular Mycorrhizal Fungi Act as Biostimulants in Horticultural Crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Silva, E.M.; Moore, V.M. Cover Crops as an Agroecological Practice on Organic Vegetable Farms in Wisconsin, USA. Sustainability 2017, 9, 55. [Google Scholar] [CrossRef]
- Hartwig, N.; Ammon, H. Cover Crops and Living Mulches. Weed Sci. 2002, 50, 688–699. [Google Scholar] [CrossRef]
- Robačer, M.; Canali, S.; Kristensen, H.L.; Bavec, F.; Mlakar, S.G.; Jakop, M.; Bavec, M. Cover Crops in Organic Field Vegetable Production. Sci. Hortic. 2016, 208, 104–110. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Cooper, J.; Scherer, H.W. Marschner’s Nutrition of Higher Plants Nitrogen Fixation. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 389–408. [Google Scholar]
- Fracchiolla, M.; Renna, M.; Durante, M.; Mita, G.; Serio, F.; Cazzato, E. Cover Crops and Manure Combined with Commercial Fertilizers Differently Affect Yield and Quality of Processing Tomato (Solanum lycopersicum L.) Organically Grown in Puglia. Agriculture 2021, 11, 757. [Google Scholar] [CrossRef]
- Thavarajah, D.; Siva, N.; Johnson, N.; McGee, R.; Thavarajah, P. Effect of Cover Crops on the Yield and Nutrient Concentration of Organic Kale (Brassica oleracea L. Var. Acephala). Sci. Rep. 2019, 9, 10374. [Google Scholar] [CrossRef]
- Stein, S.; Hartung, J.; Möller, K.; Zikeli, S. The Effects of Leguminous Living Mulch Intercropping and Its Growth Management on Organic Cabbage Yield and Biological Nitrogen Fixation. Agronomy 2022, 12, 1009. [Google Scholar] [CrossRef]
- Kolota, E.; Adamczewska-Sowińska, K. Living mulches in vegetable crops production: Perspectives and limitations (a review). Acta Sci. Pol. Hortorum Cultus. 2013, 12, 127–142. [Google Scholar]
- Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.Y. Human, Animal and Plant Health Benefits of Glucosinolates and Strategies for Enhanced Bioactivity: A Systematic Review. Molecules 2020, 25, 3682. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sørensen, P.; Li, X.; Olesen, J.E. Carbon and Nitrogen Mineralization Differ between Incorporated Shoots and Roots of Legume versus Non-Legume Based Cover Crops. Plant Soil 2020, 446, 243–257. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Couëdel, A.; Kirkegaard, J.; Alletto, L.; Justes, É. Crucifer-Legume Cover Crop Mixtures for Biocontrol: Toward a New Multi-Service Paradigm. Adv. Agron. 2019, 157, 55–139. [Google Scholar] [CrossRef]
- Karamaouna, F.; Jaques, J.A.; Kati, V. Practices to Conserve Pollinators and Natural Enemies in Agro-Ecosystems. Insects 2021, 12, 31. [Google Scholar] [CrossRef]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The Effectiveness of Flower Strips and Hedgerows on Pest Control, Pollination Services and Crop Yield: A Quantitative Synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; de Groot, G.A.; Kleijn, D.; Dimmers, W.; van Gils, S.; Lammertsma, D.; van Kats, R.; Scheper, J. Flower Availability Drives Effects of Wildflower Strips on Ground-Dwelling Natural Enemies and Crop Yield. Agric. Ecosyst. Environ. 2021, 319, 107570. [Google Scholar] [CrossRef]
- Alcalá Herrera, R.; Cotes, B.; Agustí, N.; Tasin, M.; Porcel, M. Using Flower Strips to Promote Green Lacewings to Control Cabbage Insect Pests. J. Pest Sci. 2022, 95, 669–683. [Google Scholar] [CrossRef]
- Kati, V.; Karamaouna, F.; Economou, L.; Mylona, P.V.; Samara, M.; Mitroiu, M.D.; Barda, M.; Edwards, M.; Liberopoulou, S. Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin. Plants 2021, 10, 1003. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, J.; Reynolds, O.L.; Chen, W.; He, W.; You, M.; Gurr, G.M. Alyssum (Lobularia Maritima) Selectively Attracts and Enhances the Performance of Cotesia Vestalis, a Parasitoid of Plutella Xylostella. Sci. Rep. 2020, 10, 6447. [Google Scholar] [CrossRef] [Green Version]
- Kienzle, J.; Smith-Weißmann, K.; Calmels, M.; Lang, I. Plant Health Care in Organic Farming The Role of Natural Substances in a Biodiversity-Based System Approach; IFOAM Organics Europe: Brussels, Belgium, 2020. [Google Scholar]
- Headrick, D. The Future of Organic Insect Pest Management: Be a Better Entomologist or Pay for Someone Who Is. Insects 2021, 12, 140. [Google Scholar] [CrossRef]
- Barrière, V.; Lecompte, F.; Nicot, P.C.; Maisonneuve, B.; Tchamitchian, M.; Lescourret, F. Lettuce Cropping with Less Pesticides. A Review. Agron. Sustain. Dev. 2013, 34, 175–198. [Google Scholar] [CrossRef]
- Larkin, R.P.; Lynch, R.P. Use and Effects of Different Brassica and Other Rotation Crops on Soilborne Diseases and Yield of Potato. Horticulturae 2018, 4, 37. [Google Scholar] [CrossRef]
- IFOAM Plant Health Care in Organic Farming Position Paper. 2016, 1–5. Available online: https://www.organicseurope.bio/library/plant-health-care-in-organic-farming/ifoameu_policy_position_paper_plant_health_201604/ (accessed on 18 July 2022).
- Zehnder, G.; Gurr, G.M.; Kühne, S.; Wade, M.R.; Wratten, S.D.; Wyss, E. Arthropod Pest Management in Organic Crops. Annu. Rev. Entomol. 2007, 52, 57–80. [Google Scholar] [CrossRef]
- Öztekin, G.B.; Tüzel, Y. Grafted organic seedling production of tomato and watermelon. Acta Hortic. 2017, 1164, 69–76. [Google Scholar] [CrossRef]
- Guerrero, M.M.; Ros, C.; Martínez, M.A.; Martínez, M.C.; Bello, A.; Lacasa, A. Biofumigation vs. Biofumigation plus Solarization to Control Meloidogyne incognita in Sweet Pepper. Iobc Wprs Bull. 2006, 29, 313. [Google Scholar]
- Guerrero, M.M.; Ros, C.; Lacasa, C.M.; Martínez, V.; Lacasab, A.; Fernández, P.; Núñez-Zofío, M.; Larreglac, S.; Martíneza, M.A.; Díez-Rojo, M.A.; et al. Effect of Biosolarization Using Pellets of Brassica Carinata on Soil-Borne Pathogens in Protected Pepper Crops. Acta Hortic. 2010, 883, 337–344. [Google Scholar] [CrossRef]
- Martínez, M.A.; Lacasa, A.; Guerrero, M.M.; Ros, C.; Martínez, M.C.; Bielza, P.; Tello, J. Effect of Soil Disinfectation on Fungi Greenhouses Planted with Sweet Peppers. Bull. OILB Crop 2006, 29, 301–306. [Google Scholar]
- Piedra Buena, A.; García-Álvarez, A.; Díez-Rojo, M.A.; Ros, C.; Fernández, P.; Lacasa, A.; Bello, A. Use of Pepper Crop Residues for the Control of Root-Knot Nematodes. Bioresour. Technol. 2007, 98, 2846–2851. [Google Scholar] [CrossRef]
- Ros, M.; Garcia, C.; Hernandez, M.T.; Lacasa, A.; Fernandez, P.; Pascual, J.A. Effects of Biosolarization as Methyl Bromide Alternative for Meloidogyne Incognita Control on Quality of Soil under Pepper. Biol. Fertil. Soils 2008, 45, 37–44. [Google Scholar] [CrossRef]
- Ros, C.; Martínez, C.; Sánchez, F.; Lacasa, C.M.; Guerrero, M.M.; Lacasa, A. Biosolarización and Grafting as a Way Mitigate the Selection of Virulent Populations of Meloidogyne Incognita in Pepper. IOBC-WPRS Bull. 2011, 71, 113–116. [Google Scholar]
- Altieri, M.A.; Ponti, L.; Nicholls, C. Enhanced Pest Management through Soil Health: Toward a Belowground Habitat Management Strategy. Biodynamics 2005, 253, 33–40. [Google Scholar]
- Alyokhin, A.; Porter, G.; Groden, E.; Drummond, F. Colorado Potato Beetle Response to Soil Amendments: A Case in Support of the Mineral Balance Hypothesis? Agric. Ecosyst. Environ. 2005, 109, 234–244. [Google Scholar] [CrossRef]
- Phelan, P.L.; Norris, K.H.; Mason, J.F. Soil-Management History and Host Preference by Ostrinia Nubilalis: Evidence for Plant Mineral Balance Mediating Insect–Plant Interactions. Environ. Entomol. 1996, 25, 1329–1336. [Google Scholar] [CrossRef]
- Krey, K.L.; Nabity, P.D.; Blubaugh, C.K.; Fu, Z.; Van Leuven, J.T.; Reganold, J.P.; Berim, A.; Gang, D.R.; Jensen, A.S.; Snyder, W.E. Organic Farming Sharpens Plant Defenses in the Field. Front. Sustain. Food Syst. 2020, 4, 97. [Google Scholar] [CrossRef]
- Blundell, R.; Schmidt, J.E.; Igwe, A.; Cheung, A.L.; Vannette, R.L.; Gaudin, A.C.M.; Casteel, C.L. Organic Management Promotes Natural Pest Control through Altered Plant Resistance to Insects. Nat. Plants 2020, 6, 483–491. [Google Scholar] [CrossRef]
- Summers, C.G.; Mitchell, J.P.; Stapleton, J.J. Management of Aphid-Borne Viruses and Bemisia Argentifolii (Homoptera: Aleyrodidae) in Zucchini Squash by Using Uv Reflective Plastic and Wheat Straw Mulches. Environ. Entomol. 2004, 33, 1447–1457. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable Pest Regulation in Agricultural Landscapes: A Review on Landscape Composition, Biodiversity and Natural Pest Control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.; Nicholls, C.I. AGROECOLOGÍA Teoría y Práctica Para Una Agricultura Sustentable; Serie Text; ONU-PNUMA: México City, México, 2000; ISBN 968-7913-04-X. [Google Scholar]
- Snyder, W.E.; Tylianakis, J.M. The Ecology of Biodiversity–Biocontrol Relationships. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; Gurr, G., Wratten, S.D., Snyder, W.E., Read, D.M., Eds.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2012; pp. 21–40. ISBN 9780470656860. [Google Scholar]
- Fernández, J.A.; Orsini, F.; Baeza, E.; Oztekin, G.B.; Muñoz, P.; Contreras, J.; Montero, J.I. Current Trends in Protected Cultivation in Mediterranean Climates. Eur. J. Hortic. Sci 2018, 83, 294–305. [Google Scholar] [CrossRef]
- Baker, B.P.; Green, T.A.; Loker, A.J. Biological Control and Integrated Pest Management in Organic and Conventional Systems. Biol. Control 2020, 140, 104095. [Google Scholar] [CrossRef]
- War, A.R.; Sharma, H.C.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Herbivore Induced Plant Volatiles: Their Role in Plant Defense for Pest Management. Plant Signal. Behav. 2011, 6, 1973–1978. [Google Scholar] [CrossRef]
- Matyjaszczyk, E. Plant Protection Means Used in Organic Farming throughout the European Union. Pest Manag. Sci. 2018, 74, 505–510. [Google Scholar] [CrossRef]
- Baker, B.P.; Mohler, C.L. Weed Management by Upstate New York Organic Farmers: Strategies, Techniques and Research Priorities. Renew. Agric. Food Syst. 2015, 30, 418–427. [Google Scholar] [CrossRef]
- Sanbagavalli, S.; Jeeva, M.; Somasundaram, E. Eco-Friendly Weed Management Options for Organic Farming: A Review. Pharma Innov. 2020, 9, 15–18. [Google Scholar] [CrossRef]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Melander, B.; Liebman, M.; Davis, A.S.; Gallandt, E.R.; Bàrberi, P.; Moonen, A.-C.; Rasmussen, J.; van der Weide, R.; Vidotto, F. Non-Chemical Weed Management. In Weed Research: Expanding Horizons; Hatcher, P.E., Froud-Williams, R.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 245–270. [Google Scholar]
- Hammermeister, A.M. Organic Weed Management in Perennial Fruits. Sci. Hortic. 2016, 208, 28–42. [Google Scholar] [CrossRef]
- Sims, B.; Corsi, S.; Gbehounou, G.; Kienzle, J.; Taguchi, M.; Friedrich, T. Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers. Agriculture 2018, 8, 118. [Google Scholar] [CrossRef]
- Fracchiolla, M.; Renna, M.; D’Imperio, M.; Lasorella, C.; Santamaria, P.; Cazzato, E. Living Mulch and Organic Fertilization to Improve Weed Management, Yield and Quality of Broccoli Raab in Organic Farming. Plants 2020, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Rylander, H.; Rangarajan, A.; Maher, R.M.; Hutton, M.G.; Rowley, N.W.; McGrath, M.T.; Sexton, Z.F. Black Plastic Tarps Advance Organic Reduced Tillage I: Impact on Soils, Weed Seed Survival, and Crop Residue. HortScience 2020, 55, 819–825. [Google Scholar] [CrossRef]
- Maheswari, U.; Arthanari, M.P.M.; Somasundaram, E. Non Chemical Weed Management in Organic Brinjal (Solanum melongena L.). Prog. Res. Int. J. 2016, 11, 3278–3280. [Google Scholar]
- Tei, F.; Pannacci, E. Weed Management Systems in Vegetables. In Weed Research: Expanding Horizons; Hatcher, P.E., Froud-Williams, R.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 355–388. [Google Scholar] [CrossRef]
- Gage, K.L.; Schwartz-Lazaro, L.M. Shifting the Paradigm: An Ecological Systems Approach to Weed Management. Agriculture 2019, 9, 179. [Google Scholar] [CrossRef]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef]
- Stepanovic, S.; Datta, A.; Neilson, B.; Bruening, C.; Shapiro, C.A.; Gogos, G.; Knezevic, S.Z. Effectiveness of Flame Weeding and Cultivation for Weed Control in Organic Maize. Biol. Agric. Hortic. 2016, 32, 47–62. [Google Scholar] [CrossRef]
- Abouziena, H.F.; Haggag, W.M. Métodos Alternativos de Controle Não Químicos de Plantas Daninhas: Uma Revisão. Planta Daninha 2016, 34, 377–392. [Google Scholar] [CrossRef]
- Cai, X.; Gu, M. Bioherbicides in Organic Horticulture. Horticulturae 2016, 2, 3. [Google Scholar] [CrossRef]
- Frabboni, L.; Tarantino, A.; Petruzzi, F.; Disciglio, G. Bio-Herbicidal Effects of Oregano and Rosemary Essential Oils on Chamomile (Matricaria chamomilla L.) Crop in Organic Farming System. Agronomy 2019, 9, 475. [Google Scholar] [CrossRef]
- Jouini, A.; Verdeguer, M.; Pinton, S.; Araniti, F.; Palazzolo, E.; Badalucco, L.; Laudicina, V.A. Potential Effects of Essential Oils Extracted from Mediterranean Aromatic Plants on Target Weeds and Soil Microorganisms. Plants 2020, 9, 1289. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Shahzad, B.; Bajwa, A.A.; Hussain, S.; Rehman, A.; Cheema, S.A.; Abbas, T.; Ali, A.; Shah, L.; Adkins, S.; et al. Utilizing the Allelopathic Potential of Brassica Species for Sustainable Crop Production: A Review. J. Plant Growth Regul. 2019, 38, 343–356. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An Ecological Future for Weed Science to Sustain Crop Production and the Environment. A Review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Bàrberi, P. Ecological Weed Management in Sub-Saharan Africa: Prospects and Implications on Other Agroecosystem Services. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press, Elsevier Inc.: London, UK, 2019; Volume 156, pp. 219–264. ISBN 9780128175989. [Google Scholar]
- Birthisel, S.K.; Clements, R.S.; Gallandt, E.R. Review: How Will Climate Change Impact the ‘Many Little Hammers’ of Ecological Weed Management? Weed Res. 2021, 61, 327–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, J.A.; Ayastuy, M.E.; Belladonna, D.P.; Comezaña, M.M.; Contreras, J.; de Maria Mourão, I.; Orden, L.; Rodríguez, R.A. Current Trends in Organic Vegetable Crop Production: Practices and Techniques. Horticulturae 2022, 8, 893. https://doi.org/10.3390/horticulturae8100893
Fernández JA, Ayastuy ME, Belladonna DP, Comezaña MM, Contreras J, de Maria Mourão I, Orden L, Rodríguez RA. Current Trends in Organic Vegetable Crop Production: Practices and Techniques. Horticulturae. 2022; 8(10):893. https://doi.org/10.3390/horticulturae8100893
Chicago/Turabian StyleFernández, Juan A., Miren Edurne Ayastuy, Damián Pablo Belladonna, María Micaela Comezaña, Josefina Contreras, Isabel de Maria Mourão, Luciano Orden, and Roberto A. Rodríguez. 2022. "Current Trends in Organic Vegetable Crop Production: Practices and Techniques" Horticulturae 8, no. 10: 893. https://doi.org/10.3390/horticulturae8100893
APA StyleFernández, J. A., Ayastuy, M. E., Belladonna, D. P., Comezaña, M. M., Contreras, J., de Maria Mourão, I., Orden, L., & Rodríguez, R. A. (2022). Current Trends in Organic Vegetable Crop Production: Practices and Techniques. Horticulturae, 8(10), 893. https://doi.org/10.3390/horticulturae8100893