Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivar and Materials Used
2.2. Treatments
2.3. Storage and Assessments
2.4. Statistical Analysis
3. Results
3.1. Incidence of Gray Mold (%)
3.2. Mass Loss (%)
3.3. Shattered Berries (%)
3.4. Stem Browning
3.5. Berry Firmness (N)
3.6. TSS, TA, and TSS/TA Ratio
3.7. Color Index (CIRG)
3.8. Anthocyanins Concentration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 March 2020).
- Ritschel, P.S.; Girardi, C.L.; Zanus, M.C.; Fajardo, T.V.M.; Maia, J.D.G.; Souza, R.T.; Naves, R.L.; Camargo, U.A. Novel Brazilian grape cultivars. Acta Hortic. 2015, 1082, 157–163. [Google Scholar] [CrossRef]
- Silvestre, J.P.; Roberto, S.R.; Colombo, R.C.; Gonçalves, L.S.A.; Koyama, R.; Shahab, M.; Ahmed, S.; de Souza, R.T. Bunch sizing of ‘BRS Nubia’ table grape by inflorescence management, shoot tipping and berry thinning. Sci. Hortic. 2017, 225, 764–770. [Google Scholar] [CrossRef]
- Hashim, A.F.; Youssef, K.; Abd-Elsalam, K.A. Ecofriendly nanomaterials for controlling gray mold of table grapes and maintaining postharvest quality. Eur. J. Plant Pathol. 2019, 154, 377–388. [Google Scholar] [CrossRef]
- Youssef, K.; de Oliveira, A.G.; Tischer, C.A.; Hussain, I.; Roberto, S.R. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Int. J. Biol. Macromol. 2019, 141, 247–258. [Google Scholar] [CrossRef]
- Kishino, A.A.; Roberto, S.R.; Genta, W. Implantação do pomar. In Viticultura Tropical: O Sistema de Produção de Uvas de Mesas do Paraná, 2nd ed.; Kishino, A.Y., Carvalho, S.L.C., Roberto, S.R., Eds.; Instituto Agronômico do Paraná: Londrina, Brazil, 2019; pp. 161–200. [Google Scholar]
- Domingues, A.R.; Roberto, S.R.; Ahmed, S.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Postharvest techniques to prevent the incidence of botrytis mold of ‘BRS Vitoria’ seedless grape under cold storage. Horticulturae 2018, 4, 17. [Google Scholar] [CrossRef]
- Chaves, O.J., Jr.; Youssef, K.; Koyama, R.; Ahmed, S.; Dominguez, A.R.; Mühlbeier, D.T.; Roberto, S.R. Control of gray mold on clamshell-packaged ‘Benitaka’ table grapes using sulphur dioxide pads and perforated liners. Pathogens 2019, 8, 271. [Google Scholar]
- Stammler, G.; Brix, H.D.; Nave, B.; Gold, R.; Schoefl, U. Studies on the biological performance of boscalid and its mode of action. In Modern Fungicides and Antifungal Compounds V, Friedrichroda; Dehne, H.W., Deising, H.B., Gisi, U., Kuck, K.H., Russell, P.E., Lyr, H., Eds.; Deutsche PhytomedizinischeGesellschaft: Braunschweig, Germany, 2008; pp. 45–51. [Google Scholar]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray Mold). In Post-Harvest Decay; Academic Press: New York, NY, USA, 2014; pp. 131–146. [Google Scholar]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘Red Globe’grapes in modified SO2 generating pads. Postharvest Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Nelson, K.E.; Ahmedullah, M. Packaging decay-control systems for storage and transit of table grapes for export. Am. J. Enol. Vitic. 1976, 27, 74–79. [Google Scholar]
- Ahmed, S.; Roberto, S.R.; Domingues, A.R.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage. Horticulturae 2018, 4, 29. [Google Scholar] [CrossRef]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfur dioxide releasing pads with either an internal plastic liner or external wrap. HortTechnol. 2018, 18, 206–214. [Google Scholar] [CrossRef]
- Ahmed, S.; Roberto, S.R.; Youssef, K.; Colombo, R.C.; Shahab, M.; Chaves Junior, O.J.; Sumida, C.H.; Souza, R.T. Postharvest preservation of the new hybrid seedless grape, ‘BRS Isis’, grown under the double-cropping a year system in a subtropical area. Agronomy 2019, 9, 603. [Google Scholar] [CrossRef]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Anthocyanin accumulation and color development of ‘Benitaka’ table grape subjected to exogenous abscisic acid application at different timings of ripening. Agronomy 2019, 9, 164. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Ngcobo, M.E.K.; Opara, U.L.; Thiart, G.D. Effects of packaging liners on cooling rate and quality attributes of table grape (cv. Regal seedless). Pack. Tech. Sci. 2012, 25, 73–84. [Google Scholar] [CrossRef]
- Lijavetzky, D.; Carbonell-Bejerano, P.; Grimplet, J.; Bravo, G.; Flores, P.; Fenoll, J.; Hellín, P.; Oliveros, J.C.; Martínez-Zapater, J.M. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS ONE 2012, 7, e39547. [Google Scholar] [CrossRef]
- Carreño, J.; Martinez, A. Proposal of an index for the objective evaluation of the color of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Mustonen, H.M. The efficacy of a range of sulfur dioxide generating pads against Botrytis cinerea infection and on out-turn quality of Calmeria table grapes. Aust. J. Exper. Agric. 1992, 32, 389–393. [Google Scholar] [CrossRef]
- Palou, L.; Crisosto, C.H.; Garner, D.; Basinal, L.M.; Smilanick, J.L.; Zoffoli, J.P. Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. Am. J. Enol. Vitic. 2002, 52, 110–115. [Google Scholar]
- Henríquez, J.L.; Pinochet, S. Impact of ventilation area of the liner bag, in the performance of SO2 generator pads in boxed table grapes. Acta Hortic. 2016, 1144, 267–272. [Google Scholar] [CrossRef]
- Fernandez-Trujillo, J.P.; Obando-Ulloa, J.M.; Baró, R.; Martinez, J.A. Quality of two table grape cultivars treated with single or dual-phase release SO2 generators. J. App. Bot. Food Qual. 2008, 82, 1–8. [Google Scholar]
- Zoffoli, J.P.; Latorre, B.A.; Naranjo, P. Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biol. Technol. 2008, 47, 90–97. [Google Scholar] [CrossRef]
- Sortino, G.; Allegra, A.; Passufiume, R.; Gianguzzi, G.; Gullo, G.; Gallota, A. Postharvest application of sulphur dioxide fumigation to improve quality and storage ability of ‘Red Globe’ grape cultivar during long cold storage. Chem. Eng. Trans. 2017, 58, 403–408. [Google Scholar]
- Youssef, K.; Sanzani, S.M.; Myrta, A.; Ippolito, A. Effect of a novel potassium bicarbonate-based formulation against Penicillium decay of oranges. J. Plant Pathol. 2014, 96, 419–424. [Google Scholar]
- Youssef, K.; Abo Rehab, M.A.; El-Ghany, K.M.A. Preliminary investigation of Verticillium wilt on mango trees (Mangifera indica L.) in Egypt. Am. Eurasian J. Sust Agric. 2014, 8, 50–58. [Google Scholar]
- Garganese, F.; Sanzani, S.M.; Di Rella, D.; Schena, L.; Ippolito, A. Pre-and postharvest application of alternative means to control Alternaria Brown spot of citrus. Crop Prot. 2019, 121, 73–79. [Google Scholar] [CrossRef]
- Lachhab, N.; Sanzani, S.M.; Fallanaj, F.; Youssef, K.; Nigro, F.; Boselli, M.; Ippolito, A. Protein hydrolysates as resistance inducers for controlling green mold of citrus fruit. Acta Hortic. 2015, 1065, 1593–1598. [Google Scholar] [CrossRef]
- Youssef, K.; Hashim, A.F.; Margarita, R.; Alghuthaymi, M.A.; Abd-Elsalam, K.A. Fungicidal efficacy of chemically-produced copper nanoparticles against Penicillium digitatum and Fusarium solani on citrus fruit. Philipp. Agric. Sci. 2017, 100, 69–78. [Google Scholar]
- Hussien, A.; Ahmed, Y.; Al-Essawy, A.; Youssef, K. Evaluation of different salt-amended electrolysed water to control postharvest molds of citrus. Trop. Plant Pathol. 2018, 43, 10–20. [Google Scholar] [CrossRef]
- Roberto, S.R.; Youssef, K.; Hashim, A.F.; Ippolito, A. Nanomaterials as alternative control means against postharvest diseases in fruit crops. Nanomaterials 2019, 9, 1752. [Google Scholar] [CrossRef]
- Youssef, K.; Hussien, A. Electrolysed water and salt solutions can reduce green and blue molds while maintain the quality properties of ‘Valencia’ late oranges. Postharvest Biol. Technol. 2020, 159, 111025. [Google Scholar] [CrossRef]
- Genta, W.; Tessmann, D.J.; Roberto, S.R.; Vida, J.B.; Colombo, L.A.; Scapin, C.R.; Ricce, W.S.; Clovis, L.R. Downy mildew management in protected cultivation of table grapes ‘BRS Clara’. Pesq. Agrop. Bras. 2010, 45, 1388–1395. [Google Scholar] [CrossRef]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Renata, K.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hort. 2020, 259, 108859. [Google Scholar] [CrossRef]
Treatments | Gray Mold Incidence (%) | |||
---|---|---|---|---|
30 Days of CS | 45 Days of CS | 3 Days of SL | 6 Days of SL | |
Slow release—4 g | 0.00 ± 0.00 b z | 0.00 ± 0.00 b | 0.18 ± 0.18 c | 0.60 ± 0.39 b |
Slow release—7 g | 0.83 ± 0.31 ab | 1.84 ± 0.72 a | 3.15 ± 1.26 b | 10.95 ± 1.31a |
Dual release—5 g | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 b |
Dual release—8 g | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 c | 0.00 ± 0.00 b |
Control | 1.81 ± 1.09 a | 2.99 ± 0.68 a | 6.72 ± 1.70 a | 9.71 ± 2.96 a |
Treatments | Mass Loss (%) | Shattered Berries (%) | ||
---|---|---|---|---|
45 Days in CS | 6 Days of SL | 45 Days in CS | 6 Days of SL | |
Slow release—4 g | 3.66 ± 0.41 a z | 9.56 ± 1.52 a | 2.48 ± 0.91 ab | 5.16 ± 0.78 b |
Slow release—7 g | 3.84 ± 0.14 a | 9.06 ± 0.58 a | 1.69 ± 0.63 b | 6.12 ± 0.75 b |
Dual release—5 g | 4.01 ± 0.12 a | 7.70 ± 1.14 a | 3.51 ± 0.54 ab | 10.51 ± 0.84 a |
Dual release—8 g | 4.23 ± 1.36 a | 7.69 ± 1.19 a | 5.80 ± 1.82 a | 11.41 ± 1.52 a |
Control | 5.30 ± 1.46 a | 7.44 ± 0.33 a | 4.81 ± 0.71 ab | 11.87 ± 1.17 a |
Treatments | Stem Browning z | Berry Firmness (N) | ||
---|---|---|---|---|
45 Days in CS | 6 Days of SL | 45 Days in CS | 6 Days of SL | |
Slow release—4 g | 2.20 ± 0.14 b y | 2.75 ± 0.70 ab | 12.01 ± 0.21a | 12.27 ± 0.59 a |
Slow release—7 g | 2.05 ± 0.05 b | 2.55 ± 0.21 ab | 11.73 ± 0.85a | 12.06 ± 0.34 a |
Dual release—5 g | 2.00 ± 0.00 b | 2.85 ± 0.13 a | 11.61 ± 0.56a | 12.77 ± 0.69 a |
Dual release—8 g | 2.00 ± 0.00 b | 2.20 ± 0.16 b | 11.33 ± 0.46a | 11.77 ± 0.32 a |
Control | 2.60 ± 0.14 a | 3.05 ± 0.27 a | 11.62 ± 1.01a | 12.74 ± 0.35 a |
Treatments | TSS (°Brix) | TA (% of Tartaric Acid) | TSS/TA | |||
---|---|---|---|---|---|---|
45 Days CS | 6 Days SL | 45 Days CS | 6 Days SL | 45 Days CS | 6 Days SL | |
Slow release—4 g | 16.30 ± 0.23 a z | 16.10 ± 0.08 a | 0.86 ± 0.00 a | 0.83 ± 0.02 a | 18.94 ± 0.27 a | 19.42 ± 0.51 a |
Slow release—7 g | 15.98 ± 0.23 a | 15.93 ± 0.15 a | 0.89 ± 0.05 a | 0.82 ± 0.03 a | 18.06 ± 0.83 a | 19.51 ± 0.76 a |
Dual release—5 g | 16.58 ± 0.19 a | 15.78 ± 0.18 a | 0.88 ± 0.01 a | 0.86 ± 0.01 a | 18.89 ± 0.27 a | 18.31 ± 0.42 a |
Dual release—8 g | 16.20 ± 0.35 a | 15.65 ± 0.10 a | 0.91 ± 0.02 a | 0.86 ± 0.01 a | 17.75 ± 0.70 a | 18.31 ± 0.23 a |
Control | 16.95 ± 0.44 a | 16.15 ± 0.31 a | 0.88 ± 0.02 a | 0.80 ± 0.02 a | 19.23 ± 0.78 a | 20.14 ± 0.83 a |
Treatments | Color Index (CIRG) | |
---|---|---|
45 Days of CS | 6 Days of SL | |
Slow release—4 g | 2.04 ± 0.25 a z | 2.07 ± 0.07 b |
Slow release—7 g | 2.00 ± 0.26 a | 2.13 ± 0.03 b |
Dual release—5 g | 2.16 ± 0.11 a | 3.01 ± 0.55 a |
Dual release—8 g | 1.66 ± 0.37 a | 2.43 ± 0.04 ab |
Control | 2.04 ± 0.04 a | 2.35 ± 0.07 ab |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, K.; Junior, O.J.C.; Mühlbeier, D.T.; Roberto, S.R. Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae 2020, 6, 20. https://doi.org/10.3390/horticulturae6020020
Youssef K, Junior OJC, Mühlbeier DT, Roberto SR. Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae. 2020; 6(2):20. https://doi.org/10.3390/horticulturae6020020
Chicago/Turabian StyleYoussef, Khamis, Osmar Jose Chaves Junior, Débora Thaís Mühlbeier, and Sergio Ruffo Roberto. 2020. "Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation" Horticulturae 6, no. 2: 20. https://doi.org/10.3390/horticulturae6020020
APA StyleYoussef, K., Junior, O. J. C., Mühlbeier, D. T., & Roberto, S. R. (2020). Sulphur Dioxide Pads Can Reduce Gray Mold While Maintaining the Quality of Clamshell-Packaged ‘BRS Nubia’ Seeded Table Grapes Grown under Protected Cultivation. Horticulturae, 6(2), 20. https://doi.org/10.3390/horticulturae6020020