The Effects of Biostimulants on the Physiological Processes of Yield Formation and Resistance of Apples to Spring Frosts
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Conditions
2.2. Analysis Hydrothermal Conditions 30 Days Before the Harvest of the Apple
2.3. Research Objects
- Budbreak onset—late April (II–III decade);
- Flowering initiation—early to mid-May (I–II decade);
- Flowering completion—late May (III decade);
- Fruit harvest period—early to mid-September (I–II decade);
- Leaf fall duration—October through November.
2.4. Procedures for the Use of “White Pearl” NPC in the Experiment
- Control (no treatment applied);
- Plants receiving foliar spray of 1% solutions (NPC “WPU” Antifreeze + NPC “WP Drip Ca + Mg”);
- Plants receiving foliar spray of 3% solutions (NPC “WPU” Antifreeze + NPC “WP Drip Ca + Mg”).
2.5. Analysis of the Fractional Composition of Water
2.6. Determination of Glucose, Starch and Proline
2.7. Artificial Freezing of Apple Buds and Flowers
2.8. Yield and Average Weight of Apple Fruits
2.9. Statistical Analysis
3. Results
3.1. The Effect of “White Pearl” NPC on the Water Regime of the Sinap Orlovsky Apple Cultivar During the Spring Period
3.2. The Effect of “White Pearl” NPC on the Level of Low-Molecular Osmoprotectors in the Bark of Annual Shoots and Flower Buds of Apple Trees in Spring
3.3. Evaluating the Impact of “White Pearl” NPC Biostimulants on Frost Resistance in Apple Buds and Flowers During Spring
3.4. The Impact of Foliar Sprays with “White Pearl” NPC on the Water Regime of the Sinap Orlovsky Apple Cultivar During the Summer Period
3.5. The Influence of Foliar Sprays with “White Pearl” NPC on the Carbohydrate Metabolism of the Sinap Orlovsky Apple Cultivar During the Summer Period
3.6. The Impact of Foliar Sprays with “White Pearl” NPC on the Yield of the Sinap Orlovsky Apple Cultivar
3.7. The Impact of Foliar Sprays with “White Pearl” NPC on the Weight of the Sinap Orlovsky Apple Cultivar Fruits
4. Discussion
5. Conclusions
- “Dormant bud–silver cone”;
- “Mouse ear”;
- “Inflorescence emergence”;
- 14 days post-bloom;
- “Fruit-hazel”;
- “Fruit-walnut”;
- 25–30 days before harvesting.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedov, E.N. Apple breeding history, goals, methods and results. Agric. Biol. 2007, 1, 3–15. [Google Scholar]
- Levitan, L.; Merwin, I.; Kovach, J. Assessing the relative environmental impacts of agricultural pesticides: The quest for a holistic method. Agric. Ecosyst. Environ. 1995, 55, 153–168. [Google Scholar] [CrossRef]
- Ju, X.T.; Kou, C.L.; Zhang, F.S.; Christie, P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 2006, 143, 117–125. [Google Scholar] [CrossRef]
- Poulsen, M.E.; Naef, A.; Gasser, S.; Christen, D.; Rasmussen, P.H. Influence of different disease control pesticide strategies on multiple pesticide residue levels in apple. J. Hortic. Sci. Biotechnol. 2009, 84, 58–61. [Google Scholar] [CrossRef][Green Version]
- Pathak, H.; Nedwell, D.B. Nitrous oxide emission from soil with different fertilizer, water levels and nitrification inhibitors. Water Air Soil Pollut. 2011, 129, 217–228. [Google Scholar] [CrossRef]
- Damos, P.; Colomar, L.A.; Ioriatti, C. Integrated fruit production and pest management in Europe: The apple case study and how far are from the original concept? Insects 2015, 6, 626–657. [Google Scholar] [CrossRef]
- Khan, A.A.; Wang, Y.F.; Zeb, A.; Hayat, K.; Alhoqail, W.A.; Soliman, M.H. Beneficial elements and their roles against soil pollution. In Beneficial Elements for Remediation of Heavy Metals in Polluted Soil; Elsevier: Amsterdam, The Netherlands, 2025; pp. 1–32. [Google Scholar]
- Ryabchinskaya, T.A.; Kharchenko, G.L. Ecologized strategy of fruit and berry crop protection. Plant Prot. Quar. 2008, 7, 10–12. [Google Scholar]
- Kochkina, A.M.; Kashirskaya, N.Y. Efficiency of apple tree’s protection systems against scab. Pomic. Small Fruit Cult. Russ. 2015, 43, 286–289. [Google Scholar]
- Holb, I.J.; Dremák, P.; Bitskey, K.; Gonda, I. Yield response pest damages and fruit quality parameters of scab-resistance an scab-susceptible apple cultivars in integrated and organic production systems. Sci. Hortic. 2012, 145, 109–117. [Google Scholar]
- Valiušaitė, A.; Uselis, N.; Kviklis, D.; Lanauskas, J.; Rasiekevičiūtė, N. The effect of sustainable plant protection and apple tree management on fruit quality and yield. Zemdirbiste-Agric. 2017, 104, 353–358. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Bolan, S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Sergeeva, N.N. Efficiency of special fertilizers in the compositions of tank mixtures with the means of protection of plants in fruit orchard. Fruit Grow. Vitic. South Russ. 2018, 49, 65–75. [Google Scholar]
- Rai, N.; Rai, S.P.; Sarma, B.K. Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Front. Sustain. Food Syst. 2021, 5, 754853. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef]
- Zaid, A.; Mohammad, F.; Fariduddin, Q. Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol. Mol. Biol. Plants 2020, 26, 25–39. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Wang, Y.-F.; Akbar, R.; Alhoqail, W.A. Mechanistic insights and future perspectives of drought stress management in staple crops. Front. Plant Sci. 2025, 16, 1547452. [Google Scholar] [CrossRef] [PubMed]
- Malaguti, D.; Rombolà, A.D.; Gerin, M.; Simoni, G.; Tagliavini, M.; Marangoni, B. Effect of Seaweed Extracts-Based Leaf Sprays on the Mineral Status, Yield and Fruit Quality of Apple. Acta Hortic. 2002, 594, 357–359. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferiny, M.; Sprocatty, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Yaroshenko, O.V.; Sergeyeva, N.N.; Gaponenko, A.V. Organo-mineral foliar feeding in the technology of growing apple trees in the south of Russia. Subtrop. Ornam. Hortic. 2019, 70, 133–142. [Google Scholar] [CrossRef]
- Golovunin, V.P. Influence of humic growth stimulator and mineral fertilizer on the vegetative development of blue honeksuckle. Contemp. Hortic. 2023, 4, 138–144. Available online: https://old.journal-vniispk.ru/pdf/2023/4/37.pdf (accessed on 18 August 2025).
- Gudkovskii, V.A.; Kozhina, L.V.; Balakirev, A.E.; Nazarov, Y.B.; Kuzin, A.I. Promising technology to control bitter pit and other postharvest pathologic diseases. Acta Hortic. 2021, 1325, 151–158. [Google Scholar] [CrossRef]
- Sedov, E.N.; Sedysheva, G.A.; Krasova, N.G.; Serova, Z.M.; Gorbacheva, N.G.; Galasheva, A.M.; Yanchuk, T.V.; Pikunova, A.V.; Van de Veg, E. Origin, economical and cytoembryological characteristics of triploid apple cultivar ‘Sinap Orlovsky’. Russ. Agric. Sci. 2017, 1, 14–18. [Google Scholar] [CrossRef]
- Ozherelieva, Z.Е.; Prudnikov, P.S.; Zubkova, М.I.; Krivushinaа, D.А.; Knyazev, S.D. Determination of Frost Resistance of Straw-berries in Controlled Conditions; VNIISPK: Orel, Russia, 2019. [Google Scholar]
- Turkina, М.V.; Sokolova, S.V. Study of membrane transport of sucrose in plant tissue. Plant Physiol. 1972, 1, 912–919. [Google Scholar]
- Kabashnikova, L.F.; Kalitukho, L.N.; Derevensky, A.V. Quantitative Analysis of Free and Bound Carbohydrates in a Single Sample of Plant Tissue; BSPU: Minsk, Belarus, 2003. [Google Scholar]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Prudnikov, P.S.; Ozherelieva, Z.Е. Physiological and Biochemical Methods for Diagnosing the Resistance of Fruit Crops to Drought and Hyperthermia; VNIISPK: Orel, Russia, 2019. [Google Scholar]
- Sedov, Е.N.; Ogoltsova, T.P. (Eds.) Program and Methodology of Fruit, Berry and Nut Variety Study; VNIISPK: Orel, Russia, 1999. [Google Scholar]
- Ozherelieva, Z.E.; Prudnikov, P.S. Impact of the B-Plus White Pearl (Belyi Zhemchug) reparation on the spring frost tolerance, yield and quality of apple cross. Hortic. Vitic. 2022, 6, 24–32. [Google Scholar] [CrossRef]
- Ozherelieva, Z.; Prudnikov, P.; Nikitin, A.; Androsova, A.; Bolgova, A.; Stupina, A.; Vetrova, O. Adaptogenic Preparations Enhance the Tolerance to Spring Frosts, Yield and Quality of Apple Fruits. Horticulturae 2023, 9, 591. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Sarma, R.K.; Saikia, R. Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 2014, 377, 111–126. [Google Scholar] [CrossRef]
- Rezvyakova, S.V.; Rezvyakova, E.S. Evaluation of the effects of growth stimulants for improving winter hardiness and yield of raspberry. Bull. Agrar. Sci. 2017, 5, 3–11. [Google Scholar] [CrossRef]
- Popova, V.P.; Sergeeva, N.N.; Fomenko, Т.G.; Yaroshenko, О.V.; Nenko, N.I. Principles of increasing the resistance of garden cenoses to stress factors and changes in the level of soil fertility. Sci. Work. North Cauc. Fed. Sci. Cent. Hortic. Vitic. Winemak. 2019, 23, 89–99. [Google Scholar] [CrossRef]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef]
- Luziatelli, F.; Ficca, A.G.; Colla, G.; Baldassarre Švecová, E.; Ruzzi, M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 2019, 10, 60. [Google Scholar] [CrossRef]
- Kalmykova, О.V. The effectiveness of using biological products in an apple orchard in the conditions of the Lower Volga region. Bull. Altai State Agrar. Univ. 2014, 4, 20–23. [Google Scholar]
- Mushinsky, A.A.; Aminova, E.V.; Avdeeva, Z.A.; Borisova, A.A.; Tumaeva, T.A. The effect of organic fertilizer on the productivity and quality of strawberries. Pomic. Small Fruits Cult. Russ. 2019, 59, 335–342. [Google Scholar] [CrossRef]
- Doroshenko, T.; Ryazanova, L.; Petrik, G.; Gorbunov, I.; Chumakov, S. Features of the economical yield formation of apple plants under non-root nutrition in the Southern Russia organic plantings. In Proceedings of the BIO Web of Conferences BIOLOGIZATION, Krasnodar, Russia, 21–23 September 2021; Volume 34, p. 05004. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of Biostimulants for Organic Apple Produc-tion: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage. Front. Plant Sci. 2018, 9, 1342. [Google Scholar] [CrossRef]
- Prichko, T.G.; Smelik, T.L. Assessment of efficiency of new preparations contained calcium in the fight against of apple bitter pits. Sci. Publ. FSBSO NCRRIHV 2015, 7, 143–146. [Google Scholar]
Depth, cm | pHKCl | Humus, % | Ha, cmol(+) kg−1 | Content | |||
---|---|---|---|---|---|---|---|
P2O5 | K2O | Ca2+ | Mg2+ | ||||
mg/kg | mmol/100 g | ||||||
0…20 | 5.06 | 4.61 | 3.46 | 177.12 | 75.68 | 14.98 | 4.39 |
20…40 | 5.04 | 3.81 | 3.37 | 129.18 | 58.00 | 15.59 | 4.58 |
40…60 | 5.13 | 2.78 | 2.76 | 128.48 | 56.12 | 14.76 | 4.77 |
Year | Average Daily Temperatures Sum ≥ 10 s °C | Precipitation Amount, mm | HTC |
---|---|---|---|
30 Days Before Harvest | |||
2021 | 458.5 | 33.7 | 0.74 |
2022 | 473.1 | 19.3 | 0.41 |
2023 | 506.6 | 28.1 | 0.55 |
2024 | 571.5 | 12.7 | 0.22 |
Option | Development Phases | ||
---|---|---|---|
“Dormant Bud–Silver Cone” | “Mouse Ear” | “Inflorescence Emergence” | |
Annual shoots | |||
Control (without treatment) | 45.02 ± 0.47 a | 53.12 ± 0.11 c | 48.98 ± 0.38 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 49.10 ± 1.39 c | 50.18 ± 1.11 b | 50.02 ± 1.45 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 48.55 ± 1.30 b | 48.55 ± 1.09 a | 48.33 ± 0.48 a |
LSD05 | 2.00 | 2.74 | Ff < Ft |
Flower buds | |||
Control (without treatment) | 76.07 ± 0.35 ab | 81.47 ± 0.37 ab | 83.13 ± 0.12 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 75.43 ± 0.23 a | 81.05 ± 1.09 ab | 84.82 ± 0.59 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 77.30 ± 2.52 b | 80.83 ± 0.96 a | 83.15 ± 0.59 a |
LSD05 | Ff < Ft | Ff < Ft | 1.08 |
Option | Development Phases | ||
---|---|---|---|
“Dormant Bud–Silver Cone” | “Mouse Ear” | “Inflorescence Emergence” | |
Annual shoots | |||
Control (without treatment) | 32.87 ± 3.87 b | 31.92 ± 1.07 c | 20.10 ± 4.68 b |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 29.77 ± 2.41 a | 26.82 ± 0.80 b | 16.33 ± 2.54 ab |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 30.17 ± 2.06 ab | 23.27 ± 0.10 a | 15.5 ± 1.79 a |
LSD05 | Ff < Ft | 2.19 | Ff < Ft |
Flower buds | |||
Control (without treatment) | 35.17 ± 0.83 c | 39.43 ± 3.70 a | 36.57 ± 5.31 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 26.75 ± 1.78 a | 47.02 ± 6.57 b | 41.07 ± 2.77 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 31.68 ± 1.43 b | 43.35 ± 5.65 ab | 38.03 ± 0.71 ab |
LSD05 | Ff < Ft | Ff < Ft | Ff < Ft |
Option | Development Phases | ||
---|---|---|---|
“Dormant Bud–Silver Cone” | “Mouse Ear” | “Inflorescence Emergence” | |
Annual shoots | |||
Control (without treatment) | 12.15 ± 2.67 a | 21.22 ± 1.18 a | 28.88 ± 5.05 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 19.13 ± 0.74 bc | 23.37 ± 0.31 b | 33.68 ± 3.99 bc |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 18.35 ± 1.27 b | 25.38 ± 1.03 c | 32.83 ± 2.27 b |
LSD05 | 4.22 | Ff < Ft | 3.70 |
Flower buds | |||
Control (without treatment) | 40.90 ± 2.47 a | 42.07 ± 4.47 c | 46.57 ± 4.60 bc |
1% NPC “WPU Antifreeze” + 1% NPC “WP Drip Ca + Mg” | 48.68 ± 2.10 c | 34.03 ± 5.14 a | 43.75 ± 3.01 a |
3% NPC “WPU Antifreeze” + 3% NPC “WP Drip Ca + Mg” | 45.62 ± 1.50 b | 37.48 ± 4.12 b | 45.12 ± 1.65 b |
LSD05 | Ff < Ft | Ff < Ft | Ff < Ft |
Option | Development Phases | ||
---|---|---|---|
“Dormant Bud–Silver Cone” | “Mouse Ear” | “Inflorescence Emergence” | |
Annual shoots | |||
Control (without treatment) | 20.29 ± 0.74 ab | 12.18 ± 0.44 ab | 10.04 ± 0.52 ab |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 23.45 ± 0.84 c | 11.79 ± 0.51 a | 9.75 ± 0.51 a |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 19.48 ± 0.85 a | 12.07 ± 0.46 ab | 10.34 ± 0.54 ab |
Flower buds | |||
Control (without treatment) | 16.86 ± 0.54 a | 89.78 ± 2.65 a | 41.16 ± 1.72 c |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 19.76 ± 0.93 c | 102.92 ± 3.28 c | 33.8 ± 1.79 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 17.48 ± 0.53 b | 94. 65 ± 2.50 b | 17.65 ± 1.19 a |
Option | Development Phases | ||
---|---|---|---|
“Dormant Bud–Silver Cone” | “Mouse Ear” | “Inflorescence Emergence” | |
Annual shoots | |||
Control (without treatment) | 1.77 ± 0.04 a | 0.96 ± 0.04 b | 0.83 ± 0.03 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 2.04 ± 0.05 c | 0.95 ± 0.04 a | 0.84 ± 0.03 ab |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 1.92 ± 0.06 b | 1.02 ± 0.04 c | 0.96 ± 0.04 c |
Flower buds | |||
Control (without treatment) | 0.48 ± 0.01 b | 0.33 ± 0.01 c | 0.14 ± 0.01 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 0.57 ± 0.01 c | 0.21 ± 0.01 b | 0.18 ± 0.01 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 0.24 ± 0.01 a | 0.16 ± 0.01 a | 0.18 ± 0.01 b |
Option | Development Phases | |||
---|---|---|---|---|
14 Days After Flowering | “Fruit- Hazel” | “Fruit- Walnut” | 25 Days Before Harvesting | |
Leaves | ||||
Control (without treatment) | 63.77 ± 0.64 ab | 63.97 ± 1.30 a | 61.68 ± 1.00 ab | 57.93 ± 1.15 ab |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 64.38 ± 1.10 b | 63.77 ± 0.79 ab | 60.43 ± 0.70 a | 57.72 ± 0.68 ab |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 62.52 ± 0.55 a | 63.97 ± 0.67 a | 60.63 ± 0.43 a | 56.85 ± 0.77 a |
LSD05 | Ff < Ft | Ff < Ft | Ff < Ft | Ff < Ft |
Fruits | ||||
Control (without treatment) | - | 87.10 ± 1.32 ab | 81.47 ± 0.37 ab | 84.38 ± 0.77 b |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | - | 86.38 ± 0.74 a | 81.05 ± 1.09 ab | 83.58 ± 0.68 ab |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | - | 87.93 ± 2.05 ab | 80.83 ± 0.96 a | 82.93 ± 0.70 a |
LSD05 | - | Ff < Ft | Ff < Ft | Ff < Ft |
Option | Development Phases | |||
---|---|---|---|---|
14 Days After Flowering | “Fruit- Hazel” | “Fruit- Walnut” | 25 Days Before Harvesting | |
Leaves | ||||
Control (without treatment) | 41.08 ± 0.47 b | 39.05 ± 1.36 a | 41.50 ± 1.01 ab | 41.32 ± 1.02 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 40.17 ± 2.35 ab | 40.97 ± 0.90 ab | 37.00 ± 4.10 a | 41.13 ± 1.26 a |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 39.42 ± 1.48 a | 40.57 ± 0.44 ab | 45.67 ± 1.15 b | 44.55 ± 2.06 b |
LSD05 | Ff < Ft | Ff < Ft | Ff < Ft | Ff < Ft |
Fruits | ||||
Control (without treatment) | - | 39.38 ± 1.40 a | 38.28 ± 3.76 b | 44.30 ± 2.37 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | - | 41.08 ± 1.07 b | 35.90 ± 3.88 a | 44.52 ± 1.40 a |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | - | 44.50 ± 2.53 c | 38.97 ± 2.66 b | 48.58 ± 2.57 b |
LSD05 | - | Ff < Ft | Ff < Ft | Ff < Ft |
Option | Development Phases | |||
---|---|---|---|---|
14 Days After Flowering | “Fruit-Hazel” | “Fruit-Walnut” | 25 Days Before Harvesting | |
Leaves | ||||
Control (without treatment) | 22.68 ± 0.80 a | 24.92 ± 0.77 c | 20.18 ± 0.63 b | 16.62 ± 1.05 b |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 24.22 ± 3.10 c | 22.80 ± 0.94 a | 23.43 ± 4.46 c | 16.58 ± 1.43 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 23.10 ± 1.69 b | 23.40 ± 0.62 b | 14.97 ± 1.16 a | 12.30 ± 1.49 a |
LSD05 | Ff < Ft | 1.56 | Ff < Ft | Ff < Ft |
Fruits | ||||
Control (without treatment) | - | 47.72 ± 2.60 b | 49.43 ± 4.29 a | 40.08 ± 2.77 bc |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | - | 45.38 ± 1.14 ab | 52.25 ± 4.39 ab | 39.07 ± 1.33 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | - | 43.43 ± 2.39 a | 49.40 ± 2.88 a | 34.37 ± 2.33 a |
LSD05 | - | Ff < Ft | Ff < Ft | Ff < Ft |
Option | Development Phases | |||||
---|---|---|---|---|---|---|
“Fruit-Hazel” | “Fruit-Walnut” | 25 Days Before Harvesting | ||||
Glucose | Starch | Glucose | Starch | Glucose | Starch | |
Leaves | ||||||
Control (without treatment) | 0.80 ± 0.02 a | 0.0041 ± 0.00010 a | 0.72 ± 0.02 ab | 0.0053 ± 0.0003 c | 0.99 ± 0.03 a | 0.0040 ± 0.00004 c |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 1.03 ± 0.04 c | 0.0058 ± 0.00020 ab | 0.70 ± 0.01 a | 0.0042 ± 0.0003 a | 1.10 ± 0.03 b | 0.0025 ± 0.00009 b |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 0.97 ± 0.03 b | 0.0060 ± 0.00020 ab | 0.72 ± 0.02 ab | 0.0048 ± 0.0002 b | 1.49 ± 0.04 c | 0.0017 ± 0.00002 a |
Fruits | ||||||
Control (without treatment) | 0.54 ± 0.02 b | 0.0012 ± 0.00001 a | 0.60 ± 0.02 a | 0.0017 ± 0.0001 a | 0.87 ± 0.09 a | 0.0045 ± 0.00020 a |
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 0.51 ± 0.01 a | 0.0019 ± 0.00003 b | 0.73 ± 0.02 b | 0.0038 ± 0.0002 b | 1.90 ± 0.07 b | 0.0162 ± 0.00060 c |
3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | 0.55 ± 0.02 c | 0.0030 ± 0.00005 c | 0.99 ± 0.02 c | 0.0051 ± 0.0002 c | 2.33 ± 0.08 c | 0.0140 ± 0.00030 b |
Factor B, Year | Factor A, Option | Average for Factor B LSD B05 = 2.30 | ||
---|---|---|---|---|
Control (Without Treatment) | Foliar sprays | |||
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | |||
2021 | 7.30 ± 1.67 a | 13.40 ± 2.51 a | 8.66 ± 1.00 a | 9.79 ± 3.21 a |
2022 | 35.04 ± 4.41 c | 52.49 ± 6.75 c | 39.37 ± 3.32 c | 42.30 ± 12.45 c |
2023 | 22.13 ± 4.97 b | 47.67 ± 2.56 bc | 22.67 ± 1.76 b | 30.82 ± 14.54 bc |
2024 | 7.82 ± 0.69 a | 12.70 ± 1.65 a | 8.53 ± 0.40 a | 9.68 ± 0.94 a |
Average for factor A LSD A05 = 1.99 | 18.07 ± 6.61 A | 31.56 ± 10.74 C | 19.80 ± 7.32 A | |
LSD AB05 = 3.98 |
Factor B, Year | Factor A, Option | Average for Factor B LSD B05 = 11.4 | ||
---|---|---|---|---|
Control (Without Treatment) | Foliar Sprays | |||
1% NPC “WPU” Antifreeze + 1% NPC “WP Drip Ca + Mg” | 3% NPC “WPU” Antifreeze + 3% NPC “WP Drip Ca + Mg” | |||
2021 | 182.3 ± 11.9 a | 210.0 ± 10.0 a | 209.1 ± 19.5 a | 200.5 ± 18.8 a |
2022 | 205.7 ± 5.5 b | 215.6 ± 21.4 ab | 211.7 ± 4.5 ab | 210.9 ± 11.7 ab |
2023 | 207.0 ± 10.4 bc | 232.0 ± 5.8 b | 219.5 ± 6.99 b | 219.5 ± 12.8 b |
2024 | 202.2 ± 11.9 b | 236.3 ± 4.5 bc | 227.1 ± 20.5 c | 221.9 ± 7.2 bc |
Average for factor A LSD A05 = 9.8 | 199.3 ± 5.8 A | 223.5 ± 6.3 C | 216.9 ± 4.1 BC | |
AB Ff < Ft |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozherelieva, Z.E.; Prudnikov, P.S.; Stupina, A.Y.; Bolgova, A.O. The Effects of Biostimulants on the Physiological Processes of Yield Formation and Resistance of Apples to Spring Frosts. Horticulturae 2025, 11, 1075. https://doi.org/10.3390/horticulturae11091075
Ozherelieva ZE, Prudnikov PS, Stupina AY, Bolgova AO. The Effects of Biostimulants on the Physiological Processes of Yield Formation and Resistance of Apples to Spring Frosts. Horticulturae. 2025; 11(9):1075. https://doi.org/10.3390/horticulturae11091075
Chicago/Turabian StyleOzherelieva, Zoya Evgen’evna, Pavel Sergeevich Prudnikov, Anna Yur’evna Stupina, and Anzhelika Olegovna Bolgova. 2025. "The Effects of Biostimulants on the Physiological Processes of Yield Formation and Resistance of Apples to Spring Frosts" Horticulturae 11, no. 9: 1075. https://doi.org/10.3390/horticulturae11091075
APA StyleOzherelieva, Z. E., Prudnikov, P. S., Stupina, A. Y., & Bolgova, A. O. (2025). The Effects of Biostimulants on the Physiological Processes of Yield Formation and Resistance of Apples to Spring Frosts. Horticulturae, 11(9), 1075. https://doi.org/10.3390/horticulturae11091075