Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (476)

Search Parameters:
Keywords = Fusarium wilt

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5700 KiB  
Article
Genome-Wide Identification and Expression Analysis of the GH19 Chitinase Gene Family in Sea Island Cotton
by Jingjing Ma, Yilei Long, Jincheng Fu, Nengshuang Shen, Le Wang, Shuaijun Wu, Jing Li, Quanjia Chen, Qianli Zu and Xiaojuan Deng
Curr. Issues Mol. Biol. 2025, 47(8), 633; https://doi.org/10.3390/cimb47080633 (registering DOI) - 7 Aug 2025
Abstract
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, [...] Read more.
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, physicochemical property characterization of the encoded proteins, subcellular localization prediction, phylogenetic reconstruction, chromosomal mapping, promoter cis-element analysis, and comprehensive expression profiling using transcriptomic data and qRT-PCR (including tissue-specific expression, hormone treatments, and Fusarium oxysporum infection assays). A total of 107 GH19 genes were identified across the four species (35 in G. barbadense, 37 in G. hirsutum, 19 in G. arboreum, and 16 in G. raimondii). The molecular weights of GH19 proteins ranged from 9.9 to 97.3 kDa, and they were predominantly predicted to localize to the extracellular space. Phylogenetic analysis revealed three well-conserved clades within this family. In tetraploid cotton, GH19 genes were unevenly distributed across 12 chromosomes, often clustering in certain regions, whereas in diploid species, they were confined to five chromosomes. Promoter analysis indicated that GH19 gene promoters contain numerous stress- and hormone-responsive motifs, including those for abscisic acid (ABA), ethylene (ET), and gibberellin (GA), as well as abundant light-responsive elements. The expression patterns of GH19 genes were largely tissue-specific; for instance, GbChi23 was predominantly expressed in the calyx, whereas GbChi19/21/22 were primarily expressed in the roots and stems. Overall, this study provides the first comprehensive genomic and functional characterization of the GH19 family in G. barbadense, laying a foundation for understanding its role in disease resistance mechanisms and aiding in the identification of candidate genes to enhance plant defense against biotic stress. Full article
18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 114
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

22 pages, 12611 KiB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 170
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 6389 KiB  
Article
Biocontrol Potential of Rhizosphere Bacteria Against Fusarium Root Rot in Cowpea: Suppression of Mycelial Growth and Conidial Germination
by Qinghua Zhu, Yixuan Ma, Tong Zhang, Weirong Liu, Songbai Zhang, Yue Chen, Di Peng and Xin Zhang
Biology 2025, 14(8), 921; https://doi.org/10.3390/biology14080921 - 23 Jul 2025
Viewed by 277
Abstract
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, [...] Read more.
The cultivation of cowpea (Vigna unguiculata), a vital vegetable crop, faces significant threats from Fusarium spp.-induced root rot. In this study, three fungal pathogens (Fusarium falciforme HKFf, Fusarium incarnatum HKFi, and Fusarium oxysporum HKFo) were isolated from symptomatic cowpea plants, and we screened 90 rhizobacteria from healthy rhizospheres using six culture media. Among these pathogens, Priestia megaterium TSA-10E showed a notable suppression of F. oxysporum HKFo (63.21%), F. incarnatum HKFi (55.16%), and F. falciforme HKFf (50.93%). In addition, Bacillus cereus KB-6 inhibited the mycelial growth of F. incarnatum HKFi and F. oxysporum HKFo by 42.39% and 47.93%, respectively. Critically, cell-free filtrates from P. megaterium TSA-10E and B. cereus KB-6 cultures reduced conidial germination in F. oxysporum HKFo and F. incarnatum HKFi, highlighting their role in disrupting the early infection stages. In greenhouse trials, TSA-10E and KB-6 reduced disease severity by 48.7% and 40.4%, respectively, with treated plants maintaining healthy growth while untreated controls succumbed to wilting. Broad-spectrum assays revealed that B. subtilis TSA-6E and P. megaterium TSA-10E were potent antagonists against both economic and grain crop pathogens. These findings underscore the potential of rhizobacteria as sustainable biocontrol agents for managing root rot disease caused by Fusarium spp. in cowpea cultivation. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

24 pages, 6634 KiB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 424
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

18 pages, 1756 KiB  
Technical Note
Detection of Banana Diseases Based on Landsat-8 Data and Machine Learning
by Renata Retkute, Kathleen S. Crew, John E. Thomas and Christopher A. Gilligan
Remote Sens. 2025, 17(13), 2308; https://doi.org/10.3390/rs17132308 - 5 Jul 2025
Viewed by 590
Abstract
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred [...] Read more.
Banana is an important cash and food crop worldwide. Recent outbreaks of banana diseases are threatening the global banana industry and smallholder livelihoods. Remote sensing data offer the potential to detect the presence of disease, but formal analysis is needed to compare inferred disease data with observed disease data. In this study, we present a novel remote-sensing-based framework that combines Landsat-8 imagery with meteorology-informed phenological models and machine learning to identify anomalies in banana crop health. Unlike prior studies, our approach integrates domain-specific crop phenology to enhance the specificity of anomaly detection. We used a pixel-level random forest (RF) model to predict 11 key vegetation indices (VIs) as a function of historical meteorological conditions, specifically daytime and nighttime temperature from MODIS and precipitation from NASA GES DISC. By training on periods of healthy crop growth, the RF model establishes expected VI values under disease-free conditions. Disease presence is then detected by quantifying the deviations between observed VIs from Landsat-8 imagery and these predicted healthy VI values. The model demonstrated robust predictive reliability in accounting for seasonal variations, with forecasting errors for all VIs remaining within 10% when applied to a disease-free control plantation. Applied to two documented outbreak cases, the results show strong spatial alignment between flagged anomalies and historical reports of banana bunchy top disease (BBTD) and Fusarium wilt Tropical Race 4 (TR4). Specifically, for BBTD in Australia, a strong correlation of 0.73 was observed between infection counts and the discrepancy between predicted and observed NDVI values at the pixel with the highest number of infections. Notably, VI declines preceded reported infection rises by approximately two months. For TR4 in Mozambique, the approach successfully tracked disease progression, revealing clear spatial spread patterns and correlations as high as 0.98 between VI anomalies and disease cases in some pixels. These findings support the potential of our method as a scalable early warning system for banana disease detection. Full article
(This article belongs to the Special Issue Plant Disease Detection and Recognition Using Remotely Sensed Data)
Show Figures

Figure 1

18 pages, 10719 KiB  
Article
Integrated Transcriptomic and Functional Analyses Reveal the Role of the Plant–Pathogen Interaction Pathway in Fusarium solani Infection of Zingiber officinale
by Lingling Zhang, Qie Jia, Lei Liu and Yiqing Liu
Horticulturae 2025, 11(7), 791; https://doi.org/10.3390/horticulturae11070791 - 4 Jul 2025
Viewed by 326
Abstract
Fusarium wilt, caused by Fusarium solani, is a devastating disease that leads to significant losses in ginger (Zingiber officinale) crops worldwide. To explore the molecular mechanisms underlying F. solani infection and disease progression, we performed a comparative transcriptome analysis of [...] Read more.
Fusarium wilt, caused by Fusarium solani, is a devastating disease that leads to significant losses in ginger (Zingiber officinale) crops worldwide. To explore the molecular mechanisms underlying F. solani infection and disease progression, we performed a comparative transcriptome analysis of ginger rhizomes during storage, comparing inoculated and non-inoculated samples. A total of 647 and 6398 DEGs were identified in the 1.5- and 2-day infection groups, respectively. KEGG analysis revealed that most DEGs were enriched in the plant–pathogen interaction pathway, with both PTI and ETI being activated. Six DEGs in this pathway were validated by qRT-PCR at two time points, showing a strong correlation with FPKM values from the transcriptome data. Furthermore, transient expression analysis in Nicotiana benthamiana leaves demonstrated that overexpressing ZoCEBiP1 helped scavenge excess ROS, thereby reducing disease severity. Transcriptional profiling of DEGs in the plant–pathogen interaction pathway revealed significant changes in genes involved in ROS and NO metabolism. In F. solani-infected ginger rhizomes, levels of H2O2 and O2 were elevated, along with increased activities of antioxidant enzymes (POD, CAT, SOD, and APX) and higher NO content and NOS activity. These findings elucidated the early defense response of ginger rhizomes to F. solani infection and provided insights for developing effective strategies to manage fungal diseases. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

15 pages, 1741 KiB  
Article
Evaluation of Figleaf Gourd and White-Seeded Pumpkin Genotypes as Promising Rootstocks for Cucumber Grafting
by Gengyun Li, Jiamei Zou, Tianrui Gong, Xuejiao Li, Jing Meng, Jie Zhang, Bin Xu and Shuilian He
Horticulturae 2025, 11(7), 778; https://doi.org/10.3390/horticulturae11070778 - 3 Jul 2025
Viewed by 306
Abstract
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is [...] Read more.
Rootstocks are vital in cucumber production. Although figleaf gourd (Cucurbita ficifolia) is among the species used, its application remains limited due to the perception that white-seeded pumpkin (C. maxima × C. moschata) offers superior commercial traits. This perception is partly due to the insufficient collection and evaluation of local figleaf gourd germplasm, which has obscured its potential as a rootstock. Based on prior screening, four wild figleaf gourd genotypes from Yunnan Province were selected and compared with seven commercial white-seeded pumpkin rootstocks. Scions grafted onto figleaf gourd exhibited vegetative growth (stem diameter, plant height, and leaf area) and fruit morphology (length, diameter, biomass, and surface bloom) comparable to the top-performing white-seeded pumpkin genotypes. Fruits from figleaf gourd rootstocks also displayed comparable or significantly higher nutritional quality, including vitamin C, total soluble solids, soluble sugars, and proteins. Notably, figleaf gourd itself showed significantly greater intrinsic resistance to Fusarium wilt than white-seeded pumpkin. When used as a rootstock, it protected the scion from pathogen stress by triggering a stronger antioxidant response (higher SOD and POD activity) and mitigating cellular damage (lower MDA levels and electrolyte leakage). These results provide evidence that these figleaf gourd genotypes are not merely viable alternatives but are high-performing rootstocks, particularly in enhancing nutritional value and providing elite disease resistance. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

17 pages, 2905 KiB  
Article
Water Stress Is Differently Tolerated by Fusarium-Resistant and -Susceptible Chickpea Genotypes During Germination
by Ümmühan Kaşıkcı Şimşek, Murat Dikilitas, Talap Talapov and Canan Can
Life 2025, 15(7), 1050; https://doi.org/10.3390/life15071050 - 30 Jun 2025
Viewed by 281
Abstract
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc [...] Read more.
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc). Its population dynamics in the soil are affected by fluctuations in soil water content and host characteristics. For the last three decades, drought has been common in most areas of the world due to global warming. Drought stress decreases the quality and quantity of the chickpeas, particularly where soil-borne pathogens are the main stress factor for plants. The use of both drought-tolerant and disease-resistant cultivars may be the only option for cost-effective yield production. In this study, we screened the seeds of twelve chickpea genotypes WR-315, JG-62, C-104, JG-74, CPS-1, BG-212, ANNIGERI, CHAFFA, BG-215, UC-27, ILC-82, and K-850 for drought tolerance at increasing polyethylene glycol (PEG) concentrations (0-, 5-, 7.5-, 10-, 15-, 20-, 25-, 30- and 50%) to create drought stress conditions at different severities. The performances of genotypes that were previously tested in Foc resistance/susceptibility studies were assessed in terms of percentage of germination, radicle and hypocotyl length, germination energy, germination rate index, mean germination time, and vigor index in drought conditions. We determined the genotypes of C-104, CPS-1, and WR-315 as drought-susceptible, moderately drought-tolerant, and drought-tolerant, respectively. We then elucidated the stress levels of selected genotypes (20-day-old seedlings) at 0–15% PEG conditions via measuring proline and malondialdehyde (MDA) contents. Our findings showed that genotypes that were resistant to Foc also exhibited drought tolerance. The responses of chickpea genotypes infected with Foc under drought conditions are the next step to assess the combined stress on chickpea genotypes. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

21 pages, 3945 KiB  
Article
Microbial Community Composition Associated with Potato Plants Displaying Early Dying Syndrome
by Tudor Borza, Rhea Amor Lumactud, So Yeon Shim, Khalil Al-Mughrabi and Balakrishnan Prithiviraj
Microorganisms 2025, 13(7), 1482; https://doi.org/10.3390/microorganisms13071482 - 26 Jun 2025
Viewed by 387
Abstract
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as [...] Read more.
Potato early dying disease complex (PED) leads to premature senescence and rapid decline in potato plants. Unlike potato wilt caused solely by Verticillium species, PED symptoms are more severe due to the synergistic effects of multiple pathogens, including root-lesion nematodes, fungi such as Colletotrichum and Fusarium, and soft-rot bacteria. To investigate the microbiome responsible for PED, soil and stem samples from healthy-looking and symptomatic plants were analyzed using amplicon-targeted next-generation sequencing (Illumina MiSeq and PacBio technologies). Samples were collected from four locations in New Brunswick, Canada from fields previously rotated with barley or oat. Comparative analysis of the bacterial, fungal, and eukaryotic diversity in soil samples showed minimal differences, with only bacterial alpha diversity influenced by the plant health status. Verticillium dahliae was abundant in all soil samples, and its abundance was significantly higher in the stems of diseased plants. Additional fungal species implicated in PED, including Plectosphaerella cucumerina, Colletotrichum coccodes, Botrytis sp., and Alternaria alternata, were also identified in the stems. This study highlights the complex, plant-associated microbial interactions underlying PED and provides a foundation for microbiome-informed disease management strategies. Full article
Show Figures

Figure 1

15 pages, 868 KiB  
Article
Comparative Genomics Reveals Ancient and Unique Pathogenicity Features in Australian Fusarium oxysporum f. sp. vasinfectum
by Angel David Popa-Baez, Linda J. Smith, Warwick N. Stiller, Melanie Soliveres, Gunjan Pandey, Christopher A. Saski, Don C. Jones and Iain W. Wilson
J. Fungi 2025, 11(7), 481; https://doi.org/10.3390/jof11070481 - 25 Jun 2025
Viewed by 542
Abstract
Fusarium oxysporum f. sp. vasinfectum (Fov) is a devastating cotton pathogen. Australian Fov strains are distinguished by their ability to infect plants without nematode interaction and are genetically distinct from global Fov, classified into two vegetative compatibility groups (VCG-01111 and [...] Read more.
Fusarium oxysporum f. sp. vasinfectum (Fov) is a devastating cotton pathogen. Australian Fov strains are distinguished by their ability to infect plants without nematode interaction and are genetically distinct from global Fov, classified into two vegetative compatibility groups (VCG-01111 and VCG-01112). Here, we present chromosome-level genome assemblies of a historical isolate for each Australian Fov VCG. The end-to-end gapless genome assemblies demonstrate high contiguity and completeness, with 97.7% BUSCO completeness for both isolates. Phylogenetic analysis indicates that the Australian Fov lineages diverged from other known Fov genomes over 3.6 million years ago, while VCG-01111 and VCG-01112 separated approximately 1.1 million years ago. Comparative genomics analysis identified four accessory chromosomes unique to the Australian isolates. Functional annotations revealed 14,495 and 15,342 genes in VCG-01111 and VCG-01112, respectively, with accessory chromosomes containing significantly fewer genes than core chromosomes. Ortholog analysis uncovered unique gene clusters enriched in key metabolic pathways, pathogenicity, and cell division processes. Additionally, we identified several novel lineage-specific peptides unique to each Australian isolate. This comprehensive genomic characterization provides the first insights into the unique evolutionary history of Australian Fov, distinguishing them from global Fov races. Our findings lay the foundation for understanding the genetic factors underlying their exceptional virulence, which makes Australian Fov among the most aggressive cotton pathogens worldwide. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 1584 KiB  
Article
New Therapeutic Options for Fusariosis: A Patent Review (2008–2023)
by Izadora Dillis Faccin, Túlio Máximo Salomé, Gleyce Hellen de Almeida de Souza, Leonardo da Costa Xavier, Izabel Almeida Alves, Vanessa Castro Felix Lima, Fabíola Lucini, Simone Simionatto and Luana Rossato
J. Fungi 2025, 11(6), 463; https://doi.org/10.3390/jof11060463 - 18 Jun 2025
Viewed by 627
Abstract
Fusariosis is an infection caused by the fungus Fusarium spp., which is pathogenic to both plants and humans. The disease presents several clinical manifestations and epidemiological patterns. Current treatment relies on azoles and polyenes, but increasing antifungal resistance requires the exploration of new [...] Read more.
Fusariosis is an infection caused by the fungus Fusarium spp., which is pathogenic to both plants and humans. The disease presents several clinical manifestations and epidemiological patterns. Current treatment relies on azoles and polyenes, but increasing antifungal resistance requires the exploration of new therapeutic options. This study reviewed patents related to the treatment of Fusariosis from the last 15 years (up to June 2023). The search identified 318 patents, categorized by identification code, publication date, type of application and mechanism of action, using the International Patent Classification and Cooperative Patent Classification systems. In addition, we conducted a bibliographic search in the PubMed database using the same criteria to identify the number of scientific articles. Of the 318 patents, 21 targeted Fusarium infections in humans. The years 2014 and 2018 stood out with three patents each, while the same period recorded an average of 58 published articles. The patents addressed mechanisms such as drug delivery, gene expression, immunotherapy, engineered drugs, and novel compounds. This research highlights the urgent need for continued innovation in therapeutic technologies to effectively treat Fusarium wilt. Full article
Show Figures

Figure 1

21 pages, 3404 KiB  
Article
Bacillus subtilis B579 Controls Cucumber Fusarium Wilt by Improving Rhizosphere Microbial Community
by Zongqiang Fan, Jinghan Feng, Lixue Zheng, Yanru Chen, Minglei Wang, Xiangqian Peng, Shuo Wang and Fang Chen
Microorganisms 2025, 13(6), 1382; https://doi.org/10.3390/microorganisms13061382 - 13 Jun 2025
Viewed by 565
Abstract
With continuous improvements in people’s environmental awareness, biological control agents have garnered considerable attention owing to their advantageous impacts on improving soil fertility and alleviating plant diseases. Bacillus subtilis (B. subtilis) B579, isolated from the rhizosphere soil of cucumber, has effectively [...] Read more.
With continuous improvements in people’s environmental awareness, biological control agents have garnered considerable attention owing to their advantageous impacts on improving soil fertility and alleviating plant diseases. Bacillus subtilis (B. subtilis) B579, isolated from the rhizosphere soil of cucumber, has effectively suppressed the growth of pathogenic Fusarium oxysporum. Our study investigates the effects of B. subtilis B579 on the properties of the rhizosphere soil (its physicochemical properties and enzymatic activities) and microbial community of cucumber under Fusarium oxysporum infection. An amplicon sequencing analysis of the microorganisms in the rhizosphere soil was conducted, and the soil’s properties were measured. The findings demonstrated that B. subtilis B579 exhibited 73.68% efficacy in controlling cucumber Fusarium wilt disease. B579 pretreatment substantially increased the bacterial and fungi diversity and improved the soil’s physicochemical properties (pH level and OC, TN, TP, AK, and AP contents) and enzyme activities, especially those of urease and alkaline phosphatase, which exhibited significant increases of 77.22% and 64.77%, respectively, in comparison to those under the pathogen treatment. Furthermore, the utilization of B579 reduced the abundance of Fusarium while simultaneously increasing the abundance of beneficial groups, including the Bacillus, Paenibacillus, Sphingomonas, Pseudomonas, Microbacterium, Mortierella, and Trichoderma genera. The RDA showed that the abundance of Bacillus, Paenibacillus, Sphingomonas, and Mortierella in the rhizosphere showed positive correlations with most of the soil properties, whereas Fusarium abundance was negatively correlated with most of the soil’s properties. This study provides novel insights into the disease suppression mechanisms of Bacillus subtilis B579, laying the theoretical foundation for its development as a biocontrol agent. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

19 pages, 3870 KiB  
Article
Biocontrol Mechanisms of Trichoderma longibrachiatum SMF2 Against Lanzhou Lily Wilt Disease Caused by Fusarium oxysporum and Fusarium solani
by Xing Cao, Jiahui Liang, Ze Wu, Mingshun Zhang, Haiyan Li, Tao Liu, Wenxiu Yue, Yanan Wang, Liangbao Jiang, Guiqing Wang, Peibao Zhao, Yanrong Zhou, Xiulan Chen, Juanjuan Sui, Dong Hou, Xiaoyan Song and Xiusheng Zhang
Horticulturae 2025, 11(6), 660; https://doi.org/10.3390/horticulturae11060660 - 10 Jun 2025
Cited by 1 | Viewed by 553
Abstract
Lanzhou lily is a plant native to China with high edible, medicinal, and ornamental value that is relatively susceptible to Fusarium wilt. In this study, the application of Trichoderma longibrachiatum SMF2 (TlSMF2) effectively controlled Lanzhou lily wilt disease caused by Fusarium [...] Read more.
Lanzhou lily is a plant native to China with high edible, medicinal, and ornamental value that is relatively susceptible to Fusarium wilt. In this study, the application of Trichoderma longibrachiatum SMF2 (TlSMF2) effectively controlled Lanzhou lily wilt disease caused by Fusarium oxysporum and F. solani. TlSMF2 and the antimicrobial peptaibols trichokonins (TKs) produced by TlSMF2 inhibited the mycelial growth and spore germination of these two pathogens. Transcriptome analysis revealed that the TKs-induced defense responses of Lanzhou lily were mainly related to the production of plant hormones and defense enzymes. In detail, TKs treatment increased the levels of salicylic acid (SA) and jasmonic acid (JA) and the expression of their related genes and upregulated the activities of chitinase and phenylalanine ammonia-lyase (PAL). Moreover, TKs caused the induction of LzWRKY26 and LzWRKY75, which is highly homologous to LrWRKY3 that positively regulates Lilium regale resistance to F. oxysporum. LzWRKY26 expression was also induced by SA and MeJA treatments and F. oxysporum infection, which was consistent with the findings that many cis-acting elements associated with phytohormones and stress responses are present in the promoter region of LzWRKY26. Therefore, the biocontrol mechanisms of TlSMF2 against Lanzhou lily wilt disease involve substrate competition and toxicity against pathogens, as well as the induction of systemic resistance in plants. Our results highlight a promising biological control agent for soil-borne fungal diseases and offer deeper insights into the biocontrol mechanisms of TlSMF2. Full article
Show Figures

Figure 1

12 pages, 1012 KiB  
Opinion
Oxygenated Nanobubbles as a Sustainable Strategy to Strengthen Plant Health in Controlled Environment Agriculture
by Md Al Mamun and Tabibul Islam
Sustainability 2025, 17(12), 5275; https://doi.org/10.3390/su17125275 - 7 Jun 2025
Viewed by 818
Abstract
Controlled Environment Agriculture (CEA) offers a protected system for agricultural production; however, it remains vulnerable to diseases, particularly root diseases such as Pythium root rot and Fusarium wilt. Sustainable and eco-friendly agricultural practices using plant-beneficial microbes can help mitigate these harmful diseases. These [...] Read more.
Controlled Environment Agriculture (CEA) offers a protected system for agricultural production; however, it remains vulnerable to diseases, particularly root diseases such as Pythium root rot and Fusarium wilt. Sustainable and eco-friendly agricultural practices using plant-beneficial microbes can help mitigate these harmful diseases. These microbes produce natural antibiotics and promote induced systemic resistance (ISR), which enhances nutrient uptake, stress tolerance, and disease resistance. While plant-beneficial microbes have been applied in conventional cropping systems, they have yet to be fully integrated into CEA-based systems. Oxygen availability in the root zone is critical for the functionalities of beneficial microorganisms. Insufficient levels of dissolved oxygen (DO) can hinder microbial activity, lead to the accumulation of harmful compounds, and cause stress to the plants. Contemporary aeration technologies, such as novel oxygenated nanobubble (ONB) technology, provide better oxygen distribution and promote optimal microbial proliferation, enhancing plant resilience. Hydroponic and soilless substrate-based systems of CEA production have significant potential to integrate beneficial microbes, increase crop yields, prevent diseases, and improve resource use efficiency. This review aims to summarize the significance of DO and the potential impact of novel ONB technology in CEA for managing root zone diseases while increasing crop productivity and sustainability. Full article
Show Figures

Figure 1

Back to TopTop