Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Phenological and Phytopathological Evaluations
2.3. Chemical Composition of Leaves
2.4. Statistical Analyses
3. Results
3.1. Effects of Treatments Against P. viticola
3.2. Leaves Chemical Composition
3.2.1. Hydroxycinnamoyl Tartaric Acids: Caftaric Acid and Coutaric Acid
3.2.2. Flavonoids
3.2.3. Stilbenes
4. Discussion
4.1. Efficacy of Yeast-Based Biostimulants YE1 and YE2 in Enhancing Grapevine Resistance to P. viticola in Open Fields
4.2. Metabolic Effects of Yeast-Based Biostimulants on Grapevine Defense Against P. viticola
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DAD | diode array detector |
DSS | decision support system |
ET | ethylene |
JA | jasmonate |
LRR | leucine-rich repeat receptor |
MAMPs | Microbe-Associated Molecular Patterns |
NT | untreated control |
PRs | pathogenesis-related proteins |
ROS | reactive oxygen species |
SA | salicylic acid |
Tr | treatment |
YE1 | Treatment with yeast-based biostimulant 1—yeast derivative |
YE2 | Treatment with yeast-based biostimulant 2—Romeo |
References
- Toffolatti, S.L.; Russo, G.; Campia, P.; Bianco, P.A.; Borsa, P.; Coatti, M.; Torriani, S.F.; Sierotzki, H. A time-course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of Plasmopara viticola treated with anti-resistance strategies. Pest Manag. Sci. 2018, 74, 2822–2834. [Google Scholar] [CrossRef] [PubMed]
- Reglinski, T.; Lyon, G.D.; Newton, A.C. Induction of resistance mechanisms in barley by yeast-derived elicitors. Ann. Appl. Biol. 1994, 124, 509–517. [Google Scholar] [CrossRef]
- Bahuguna, A.; Sharma, S.; Rai, A.; Bhardwaj, R.; Sahoo, S.K.; Pandey, A.; Yadav, B. Advance technology for biostimulants in agriculture. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; Volume 17, pp. 393–412. [Google Scholar] [CrossRef]
- Koledenkova, K.; Esmaeel, Q.; Jacquard, C.; Nowak, J.; Clément, C.; Ait Barka, E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front. Microbiol. 2022, 13, 889472. [Google Scholar] [CrossRef]
- Ricci, M.; Tilbury, L.; Daridon, B.; Sukalac, K. General Principles to Justify Plant Biostimulant Claims. Front. Plant Sci. 2019, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; El Enshasy, H.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth; Productivity; and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. Plants 2022, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Goron, T.L.; Pizarro-Tobías, P.; Sánchez-Monedero, M.Á.; Audette, Y.; Deolu-Ajayi, A.O.; van der Werf, A.; Goitom Teklu, M.; Shenker, M.; Pombo Sudré, C.; et al. Application of biostimulant products and biological control agents in sustainable viticulture: A review. Front. Plant Sci. 2022, 13, 932311. [Google Scholar] [CrossRef]
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Reglinski, T.; Lyon, G.D.; Newton, A.C. The control of Botrytis cinerea and Rhizoctonia solani on lettuce using elicitors extracted from yeast cell walls. Z. Pflanzenk. Pflanzen. 1995, 102, 257–266. [Google Scholar]
- Suzuki, H.; Reddy, M.S.; Naoumkina, M.; Aziz, N.; May, G.D.; Huhman, D.V.; Sumner, L.W.; Blount, J.W.; Mendes, P.; Dixon, R.A. Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 2005, 220, 696–707. [Google Scholar] [CrossRef]
- Tumpa, F.H.; Khokon, M.A.R. Foliar Application of Chitosan and Yeast Elicitor Facilitate Reducing Incidence and Severity of Alternaria Leaf Blight of Tomato and Brinjal. Res. J. Plant Pathol. 2020, 3, 4. [Google Scholar]
- Hussein, M.; Kamberoglu, M.A. The response to potato virus X infection of tomato plants treated with ISR2000. Eur. J. Plant. Pathol. 2017, 149, 807–815. [Google Scholar] [CrossRef]
- Shahzadi, A.; Tahir, N.; Usman, M.K.; Elabiyi, C.O.; Raza, A.; Ouedraogo, A. Protecting Plants from Disease and Increasing Their Yields Through the Use of Yeasts as a Biological Agent. Int. J. Res. Adv. Agri. Sci. 2022, 1, 1–13. [Google Scholar]
- Ali, A.; Ölmez, F.; Zeshan, M.A.; Mubeen, M.; Iftikhar, Y.; Sajid, A.; Abid, M.; Kumar, A.; Divvela, P.K.; Solanki, M.K. Yeast-based solutions in controlling plant pathogens. Biocatal. Agric. Biotechnol. 2024, 58, 103199. [Google Scholar] [CrossRef]
- Kowalska, J.; Krzyminska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Moon, H.N.; Lee, G.Y.; Yun, H.S.; Kwon, C.A. Non-proteinaceous yeast derivaties induces Arabidopsis defense responses independently of salicylic acid. J. Plant Biol. 2015, 58, 38–43. [Google Scholar] [CrossRef]
- Narusaka, M.; Minami, T.; Iwabuchi, C.; Hamasaki, T.; Takasaki, S.; Kawamura, K.; Narusaka, Y. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop. PLoS ONE 2015, 10, e0115864. [Google Scholar] [CrossRef]
- Lee, G.; Lee, S.H.; Kim, K.M.; Ryu, C.M. Foliar application of the leaf colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientif. Rep. 2017, 7, 39432. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Farabullini, F.; Pizzi, M. ROMEO™, Cerevisane based product for control of the main pathologies of grapevine and other crops: Main features and first experimental results. Acta Italus Hortus 2015, 15, 38–45. [Google Scholar]
- Zanzotto, A.; Morroni, M. Major biocontrol studies and measures against fungal and oomycete pathogens of grapevine. In Biocontrol of Major Grapevine Diseases: Leading Research; CABI: Wallingfor, UK, 2016; Volume 1, pp. 1–34. [Google Scholar] [CrossRef]
- Bittel, P.; Robatzek, S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 2007, 10, 335–341. [Google Scholar] [CrossRef] [PubMed]
- De Miccolis Angelini, R.M.; Rotolo, C.; Gerin, D.; Abate, D.; Pollastro, S.; Faretra, F. Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeast-derived defense inducer cerevisane. Pest Manag. Sci. 2019, 75, 2020–2033. [Google Scholar] [CrossRef] [PubMed]
- Boso, S.; Alonso-Villaverde, V.; Gago, P.; Santiago, J.L.; Martínez, M.C. Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Prot. 2014, 63, 26–35. [Google Scholar] [CrossRef]
- Rossi, V.; Salinari, F.; Poni, S.; Caffi, T.; Bettati, T. Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput. Agric. 2014, 100, 88–99. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–110. [Google Scholar] [CrossRef]
- Townsend, G.R.; Heuberger, J.W. Methods for estimating losses caused by diseases in fungicide experiments. Plant Dis. Rep. 1943, 27, 340–343. [Google Scholar]
- Fleming, R.; Retnakaran, A. Evaluating Single Treatment Data Using Abbott’s Formula With Reference to Insecticides. J. Econ. Entomol. 1985, 78, 1179–1181. [Google Scholar] [CrossRef]
- Taibi, O.; Fedele, G.; Salotti, I.; Rossi, V. Infection risk-based application of plant resistance inducers for the control of downy and powdery mildews in vineyards. Agronomy 2023, 13, 2959. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Garrett, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Gozzo, F.; Faoro, F. Systemic acquired resistance (50 years after discovery): Moving from the lab to the field. J. Agr. Food Chem. 2013, 61, 12473–12491. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; der Does, D.V.; Van Wees, S.C. Signalling networks involved in induced resistance. In Induced Resistance for Plant Defense; Elsevier: Amsterdam, The Netherlands, 2014; pp. 58–80. [Google Scholar] [CrossRef]
- Steiner, U.; Schönbeck, F. Induced disease resistance in monocots. In Induced Resistance to Disease in Plants Developments in Plant Pathology; Springer: Dordrecht, The Netherlands, 1995; Volume 4, pp. 86–110. [Google Scholar]
- Bargmann, C.; Schönbeck, F. Acremonium kiliense as inducer of resistance to wilt diseases on tomatoes/Acremonium kiliense als Resistenzinduktor gegenüber Welkekrankheiten der Tomate. Z. Für Pflanzenkrankh. Und Pflanzenschutz/J. Plant Dis. Prot. 1992, 99, 266–272. [Google Scholar]
- Lopes, M.R.; Klein, M.N.; Ferraz, L.P.; da Silva, A.C.; Kupper, K.C. Saccharomyces cerevisiae: A novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiol. Res. 2015, 175, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Conrath, U.; Beckers, G.J.; Langenbach, C.J.; Jaskiewicz, M.R. Priming for enhanced defense. Annu. Rev. Phytopathol. 2015, 53, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Nogueira Júnior, A.F.; Tränkner, M.; Ribeiro, R.V.; Von Tiedemann, A.; Amorim, L. Photosynthetic cost associated with induced defense to Plasmopara viticola in grapevine. Front. Plant Sci. 2020, 11, 235. [Google Scholar] [CrossRef]
- Delaunois, B.; Farace, G.; Jeandet, P.; Clément, C.; Baillieul, F.; Dorey, S.; Cordelier, S. Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ. Sci. Pollution Res. 2014, 21, 4837–4846. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Babenko, L.M.; Smirnov, O.E.; Romanenko, K.O.; Trunova, O.K.; Kosakivska, I.V. Phenolic compounds in plants: Biogenesis and functions. Ukr. Biochem. J. 2019, 91, 5–18. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C. Varietal differences among the phenolic profiles and antioxidant activities of seven table grape cultivars grown in the south of Italy based on chemometrics. J. Agricult. Food Chem. 2011, 59, 9815–9826. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Lima, M.R.M.; Felgueiras, M.L.; Cunha, A.; Chicau, G.; Ferreres, F.; Dias, A.C.P. Differential phenolic production in leaves of Vitis vinifera cv Alvarinho affected with esca disease. Plant Physiol. Biochem. 2017, 112, 45–52. [Google Scholar] [CrossRef]
- Ciubotaru, R.M.; Franceschi, P.; Vezzulli, S.; Zulini, L.; Stefanini, M.; Oberhuber, M.; Robatscher, P.; Chitarrini, G.; Vrhovsek, U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. Front. Plant Sci. 2023, 14, 1112157. [Google Scholar] [CrossRef]
- Dai, G.H.; Andary, C.; Mondolotcosson, L.; Boubals, D. Involvement of phenolic-compounds in the resistance of grapevine callus to downy mildew (Plasmopara-Viticola). Eur. J. Plant Pathol. 1995, 101, 541–547. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Adrian, M.; Trouvelot, S.; Gamm, M.; Poinssot, B.; Héloir, M.C.; Daire, X. Activation of grapevine defense mechanisms: Theoretical and applied approaches. In Plant Defence: Biological Control. Progress in Biological Control; Springer: Berlin/Heidelberg, Germany, 2012; Volume 12, pp. 313–331. [Google Scholar] [CrossRef]
- Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clement, C.; Courot, E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 2010, 36, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Ciaffi, M.; Paolacci, A.R.; Paolocci, M.; Alicandri, E.; Bigini, V.; Badiani, M.; Muganu, M. Transcriptional regulation of stilbene synthases in grapevine germplasm differentially susceptible to downy mildew. BMC Plant Biol. 2019, 19, 1–18. [Google Scholar] [CrossRef]
- Bruisson, S.; Maillot, P.; Schellenbaum, P.; Walter, B.; Gindro, K.; Deglène-Benbrahim, L. Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 2016, 131, 92–99. [Google Scholar] [CrossRef] [PubMed]
Months | 2019 | 2020 | ||||
---|---|---|---|---|---|---|
mm | R-days | °C | mm | R-days | °C | |
April | 106.2 | 9 | 12.1 | 61.6 | 5 | 13 |
May | 147.8 | 17 | 13.8 | 31 | 6 | 17.3 |
June | 10.4 | 1 | 23.3 | 130 | 10 | 19.4 |
July | 195.2 | 7 | 24.7 | 19.4 | 3 | 23.4 |
August | 40.6 | 3 | 24.2 | 40.2 | 3 | 24.6 |
Year | Phenological Phase | |||||
---|---|---|---|---|---|---|
Bud Burst (09) | Flowering (65) | Fruit Set (71) | Majority of Berries Touching (79) | Veraison (81) | Ripening (89) | |
2019 | 12/04 | 18/06 | 24/06 | 16/07 | 25/07 | 08/10 |
2020 | 05/04 | 08/06 | 15/06 | 02/07 | 20/07 | 01/10 |
Time (min) | El. A (%) | El. B (%) | Flow (mL/min) |
---|---|---|---|
0 | 100 | 0 | 0.8 |
5 | 95 | 5 | - |
35 | 82 | 18 | - |
50 | 80 | 20 | 0.9 |
60 | 57 | 43 | - |
80 | 35 | 65 | - |
95 | 0 | 100 | 1.2 |
100 | 0 | 100 | 1.2 |
101 | 100 | 0 | 0.8 |
Defense Protocol | Active Principle | Dose (kg/ha) |
---|---|---|
NT | Untreated control | |
YE1 | Yeast derivative | 0.80 |
YE2 | Romeo | 0.25 |
Year | Timing of Treatments | ||||||
---|---|---|---|---|---|---|---|
Tr1 | Tr2 | Tr3 | Tr4 | Tr5 | Tr6 | Tr7 | |
2019 | 24/06 * | 01/07 * | 08/07 * | - | - | - | - |
2020 | 23/05 | 01/06 * | 12/06 | 22/06 | 02/07 * | 11/07 | 16/07 * |
12 July 2019 | ||||||
---|---|---|---|---|---|---|
Treatment | Leaves | Clusters | ||||
Intensity (%) | Diffusion (%) | Efficacy (%) | Intensity (%) | Diffusion (%) | Efficacy (%) | |
NT | 3.5 | 7.8 | 0 b | 8.3 | 15.0 | 0 b |
YE1 | 0 | 0 | 100 a | 0 | 0 | 100 a |
YE2 | 0 | 0 | 100 a | 0 | 0 | 100 a |
12 June 2020 | ||||||
---|---|---|---|---|---|---|
Treatment | Leaves | Clusters | ||||
Intensity (%) | Diffusion (%) | Efficacy (%) | Intensity (%) | Diffusion (%) | Efficacy (%) | |
NT | 2.0 | 5.5 | 0 b | 2.6 | 6.5 | 0 b |
YE1 | 0 | 0 | 100 a | 0 | 0 | 100 a |
YE2 | 0 | 0 | 100 a | 0 | 0 | 100 a |
16 July2020 | ||||||
Treatment | Leaves | Clusters | ||||
Intensity (%) | Diffusion (%) | Efficacy (%) | Intensity (%) | Diffusion (%) | Efficacy (%) | |
NT | 21.0 | 35.5 | 0.0 b | 12.8 | 23.0 | 0.0 b |
YE1 | 0.5 | 2.0 | 97.9 a | 0.6 | 2.5 | 94.9 a |
YE2 | 0.3 | 1.5 | 98.6 a | 0.5 | 2.0 | 95.3 a |
3 August2020 | ||||||
Treatment | Clusters | |||||
Intensity (%) | Diffusion (%) | Efficacy (%) | ||||
NT | 13.6 | 26.0 | 0.0 c | |||
YE1 | 0.8 | 2.5 | 93.7 b | |||
YE2 | 0.8 | 3.5 | 94.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puccioni, S.; Biselli, C.; Perria, R.; Zanella, G.; D’Arcangelo, M.E.M. Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon. Horticulturae 2025, 11, 203. https://doi.org/10.3390/horticulturae11020203
Puccioni S, Biselli C, Perria R, Zanella G, D’Arcangelo MEM. Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon. Horticulturae. 2025; 11(2):203. https://doi.org/10.3390/horticulturae11020203
Chicago/Turabian StylePuccioni, Sergio, Chiara Biselli, Rita Perria, Gianmaria Zanella, and Mauro Eugenio Maria D’Arcangelo. 2025. "Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon" Horticulturae 11, no. 2: 203. https://doi.org/10.3390/horticulturae11020203
APA StylePuccioni, S., Biselli, C., Perria, R., Zanella, G., & D’Arcangelo, M. E. M. (2025). Alternative Effects Yeast-Based Biostimulants Against Downy Mildew in Vitis vinifera cv Cabernet Sauvignon. Horticulturae, 11(2), 203. https://doi.org/10.3390/horticulturae11020203