Millerandage—One of the Grapevine Cultivation Challenges in the Climate Change Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Cultivars
2.2. Climate Monitorization
2.3. Phenophase Monitoring
2.4. Millerandage Assessment
2.5. Statistical Analysis
3. Results
3.1. Climatic Characterization of the Year 2023
3.2. Climatic Characterization of the Pre-Flowering and Flowering Phenophases
3.3. Millerandage Grade
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. Influence of Climate Warming on Grapevine (Vitis Vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Bucur, G.M.; Cojocaru, G.A.; Antoce, A.O. The Climate Change Influences and Trends on the Grapevine Growing in Southern Romania: A Long-Term Study. BIO Web Conf. EDP Sci. 2019, 15, 01008. [Google Scholar] [CrossRef]
- Jaster, D.; Tomczyk, A.M.; Hildebrandt-Radke, I.; Matulewski, P. Agroclimatic Indicators for Grapevines in the Zielona Góra Wine Region (Poland) in the Era of Advancing Global Warming. Atmosphere 2024, 15, 657. [Google Scholar] [CrossRef]
- Parker, A.K.; de Cortázar-Atauri, I.G.; Trought, M.C.T.; Destrac, A.; Agnew, R.; Sturman, A.; van Leeuwen, C. Adaptation to Climate Change by Determining Grapevine Cultivar Differences Using Temperature-Based Phenology Models: This Article Is Published in Cooperation with the XIIIth International Terroir Congress November 17–18 2020, Adelaide, Australia. Guest Editors: Cassandra Collins and Roberta De Bei. OENO One 2020, 54, 955–974. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Polychroni, I.; Droulia, F.; Nastos, P.T. The Spatiotemporal Evolution of the Growing Degree Days (GDD) Agroclimatic Index for the Viticulture over the Northern Mediterranean Basin. Atmosphere 2024, 15, 485. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. NOAA’s 2023 Annual Climate Report; National Centers for Environmental Information: Asheville, NC, USA, 2024. [Google Scholar]
- Khadivi-Khub, A. Physiological and Genetic Factors Influencing Fruit Cracking. Acta Physiol. Plant. 2015, 37, 1718. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Cortiñas-Rodríguez, J.A.; Fernández-González, E.; Fernández-González, M.; Vázquez-Ruiz, R.A.; Aira, M.J. Fungal Diseases in Two North-West Spain Vineyards: Relationship with Meteorological Conditions and Predictive Aerobiological Model. Agronomy 2020, 10, 219. [Google Scholar] [CrossRef]
- Naulleau, A.; Hossard, L.; Prévot, L.; Gary, C. Grapevine Yield Estimation in a Context of Climate Change: The GraY Model. In Proceedings of the 14th International Terroir congress and the 2nd ClimWine symposium, Bordeaux, France, 3–8 July 2022; p. 14. [Google Scholar]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of Climate Change on Grape Berry Ripening: An Assessment of Adaptation Strategies for the Australian Vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef] [PubMed]
- Bruni, B. Coulure, Millerandage and Sweet and Green Millerandage in Grape Bunches. Inf. Di Ortoflorofruttic. 1970, 11, 9–11. [Google Scholar]
- Zinelabidine, L.H.; Torres-Pérez, R.; Grimplet, J.; Baroja, E.; Ibáñez, S.; Carbonell-Bejerano, P.; Martínez-Zapater, J.M.; Ibáñez, J.; Tello, J. Genetic Variation and Association Analyses Identify Genes Linked to Fruit Set-Related Traits in Grapevine. Plant Sci. 2021, 306, 110875. [Google Scholar] [CrossRef]
- Barbagallo, M.G.; Domina, G.; Scafidi, F.; Pisciotta, A. Millerandage and Flower Abscission in ‘Grillo’, ‘Frappato’ and ‘Nero d’Avola’ Grapevines: Some Probable Causes. Acta Hortic. 2018, 1229, 195–199. [Google Scholar] [CrossRef]
- Williams, C.M.J.; Maier, N.A.; Bartlett, L. Effect of Molybdenum Foliar Sprays on Yield, Berry Size, Seed Formation, and Petiolar Nutrient Composition of “Merlot” Grapevines. J. Plant Nutr. 2005, 27, 1891–1916. [Google Scholar] [CrossRef]
- Ortoleva, S. Effect of Shoot Tipping and Boron Treatment on Vegetative and Productive Behavior of Vitis Vinifera L. Cv. Grillo. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2020. [Google Scholar]
- Cahurel, J.Y. Effect of “Millerandage” on Grape Quality. The Case of Gamay Noir à Jus Blanc. Progrès Agric. et Vitic. 1999, 116, 161–162. [Google Scholar]
- Spellman, G. Wine, Weather and Climate. Weather 1999, 54, 230–239. [Google Scholar] [CrossRef]
- Jackson, D.I.; Lombard, P.B. Environmental and Management Practices Affecting Grape Composition and Wine Quality—A Review. Am. J. Enol. Vitic. 1993, 44, 409–430. [Google Scholar] [CrossRef]
- Lorenz, D.; Eichhorn, K.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological Growth Stages of the Grapevine (Vitis vinifera L. ssp. vinifera)—Codes and Descriptions According to the Extended BBCH Scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. Guidelines for the Efficacy Evaluation of Plant Protection Products. EPPO Bull. 2001, 31, 289. [Google Scholar] [CrossRef]
- Severin, V.; Cornea, P.C. Ghid Pentru Diagnoza Bolilor Plantelor (Guidelines for Diagnosis of Plant Diseases), 1st ed.; Ceres: București, Romania, 2009; Volume 1. [Google Scholar]
- Iliescu, M.; Tomoiaga, L.; Chedea, V.S.; Sirbu, A. Evaluation of Climate Changes on the Vine Agrosystem in Târnave Vineyard. J. Environ. Prot. Ecol. 2019, 20, 1754–1760. [Google Scholar]
- Zaldea, G.; Doina, D.; Liliana, P.; Maria, I.; Viorica, E.; Anamaria, T.; Ionica, B.; Andreea, G. The Evolution of Climatic Conditions between 1989 and 2021 in Representative Vine Areas of Romania. Lucr. Ştiinţifice Ser. Hortic. 2022, 65, 69–74. [Google Scholar]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing Local Climate Vulnerability and Winegrowers’ Adaptive Processes in the Context of Climate Change. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. A Review on the Observed Climate Change in Europe and Its Impacts on Viticulture. Atmosphere 2022, 13, 837. [Google Scholar] [CrossRef]
- Țârdea, C.; Dejeu, L. Viticultură, 1st ed.; Editura Didactică și Pedagogică, R.A.-București: București, Romania, 1995; Volume 1. [Google Scholar]
- González-Fernández, E.; Piña-Rey, A.; Fernández-González, M.; Aira, M.J.; Rodríguez-Rajo, F.J. Prediction of Grapevine Yield Based on Reproductive Variables and the Influence of Meteorological Conditions. Agronomy 2020, 10, 714. [Google Scholar] [CrossRef]
- Lebon, G.; Duchêne, E.; Brun, O.; Clément, C. Phenology of Flowering and Starch Accumulation in Grape (Vitis Vinifera L.) Cuttings and Vines. Ann. Bot. 2005, 95, 943–948. [Google Scholar] [CrossRef]
- Slimane-Harbi, M.B.; Chabbouh, N.; Snoussi, H.; Bessis, R.; El-Gazzah, M. The Study of the Traditional Vine Germplasm of Tunisia. Details on the Origin of “Razzegui” Millerandage. Bull. de l’OIV 2004, 77, 487–501. [Google Scholar]
- Ibáñez, J.; Baroja, E.; Grimplet, J.; Ibáñez, S. Cultivated Grapevine Displays a Great Diversity for Reproductive Performance Variables. Crop Breed. Genet. Genom. 2020, 2, e200003. [Google Scholar] [CrossRef]
- Jaquinet, A.; Domahidy, M.; Aerny, J. Millerandage in Chasselas Grapevine. Quantitative and Qualitative Development during Ripening. Rev. Suisse Vitic. D’arboriculture D’horticulture 1982, 14, 163–168. [Google Scholar]
Loc. | Coordinates | Area (ha) | Altitude [m] | Slope [%] | Exp. | Soil | Cultivars |
---|---|---|---|---|---|---|---|
S1 | 46.173789, 23.849772 | 6.72 | 241–245 | 0 | S | alluvial with sandy texture | FR, So, PN, Bs, PG, TR, RR, Ez, Io, Ar, Na, As, Se, FN, MO, RI, Br, FA, Ra, Fu, Nb, Tv, TiC, Rg, Am |
S2 | 46.182241, 23.856428 | 30.85 | 280–306 | 6 | SW | clayey sand | RI, FN, TR, Nb, FR, FA, SG, PG |
Month/Climatic Parameter | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Air Temperature [°C] | Monthly Average T | 3.3 | 1.1 | 6.9 | 9.1 | 15.8 | 19.2 | 21.9 | 21.9 | 18.5 | 12.8 | 6.3 | 2.4 | 11.6 |
Multiannual | −1.5 | 1.0 | 5.4 | 11.2 | 16.0 | 19.6 | 21.2 | 21.0 | 15.9 | 10.7 | 4.7 | −0.2 | 10.4 | |
AbsMaxT | 14.7 | 14.3 | 22.3 | 21.3 | 27.5 | 32.3 | 34.5 | 36.5 | 31.1 | 29.7 | 19.7 | 18.8 | 36.5 | |
AvgMaxT | 6.7 | 5.6 | 13.2 | 14.8 | 22.8 | 26.2 | 29.9 | 30.1 | 27.1 | 21.3 | 10.6 | 6.3 | 17.9 | |
MtaAbsMaxT | 17.5 | 20.8 | 27.5 | 32.5 | 33.4 | 37.3 | 39.2 | 41.6 | 36.0 | 32.9 | 26.7 | 16.1 | 41.6 | |
AbsMinT | −4.7 | −14.8 | −6.8 | −1.4 | 4 | 9.7 | 8.1 | 9.1 | 7.3 | −1.9 | −5.9 | −6.2 | −14.8 | |
AvgMinT | 0.2 | −2.8 | 1.2 | 4.5 | 9.9 | 13.9 | 15.3 | 15.0 | 11.7 | 6.0 | 2.1 | −1.1 | 6.3 | |
MtaAbsMinT | −24.7 | −22.1 | −22.0 | −6.7 | −2.0 | 2.5 | 6.0 | 6.0 | −1.6 | −9.5 | −12.9 | −24.0 | −24.7 | |
Global heat units (GHU) [°C] | Registered value | - | - | - | 272.5 | 490.0 | 575.8 | 680.2 | 679.2 | 553.6 | 397.9 | - | - | 3649.2 |
Multiannual | - | - | - | 301.1 | 486.9 | 587.6 | 655.7 | 653.1 | 485.8 | 286.5 | - | - | 3456.7 | |
Active heat units (GHU) [°C] | Registered value | - | - | - | 175.1 | 490 | 575.8 | 680.2 | 679.2 | 553.6 | 363.6 | - | - | 3517.5 |
Multiannual | - | - | - | 238.7 | 479.7 | 588.6 | 659.9 | 652.2 | 467.9 | 225.4 | - | - | 3312.4 | |
Useful heat units (GHU) [°C] | Registered value | - | - | - | 25.1 | 180.0 | 275.8 | 370.2 | 369.2 | 253.6 | 103.6 | - | - | 1577.5 |
Multiannual | - | - | - | 63.3 | 184.2 | 288.2 | 346.8 | 345.4 | 179.5 | 57.3 | - | - | 1464.8 | |
Precipitations [mm/m2] | Registered value | 41.6 | 39.2 | 27.4 | 75.4 | 34.8 | 93.4 | 72.4 | 68.6 | 27.6 | 13.0 | 40.6 | 13.6 | 547.6 |
Multiannual | 24.1 | 21.9 | 29.1 | 52.9 | 76.2 | 95.2 | 87.4 | 61.9 | 56.5 | 44.6 | 36.6 | 33.4 | 619.9 | |
Differences | 17.5 | 17.3 | −1.7 | 22.5 | −41.4 | −1.8 | −15.0 | 6.7 | −28.9 | −31.6 | 4.0 | −19.8 | −72.3 | |
Days with rain | >1 mm/m2 | 11 | 8 | 5 | 9 | 6 | 10 | 10 | 6 | 6 | 3 | 10 | 3 | 87 |
>5 mm/m2 | 2 | 2 | 2 | 6 | 2 | 6 | 4 | 5 | 1 | 1 | 2 | 0 | 33 | |
>10 mm/m2 | 0 | 1 | 1 | 4 | 1 | 5 | 3 | 2 | 1 | 0 | 0 | 0 | 18 | |
Relative humidity [%] | Registered value | 89.2 | 80.7 | 67.2 | 73.7 | 66.9 | 79.6 | 76.2 | 74.0 | 76.0 | 74.5 | 82.7 | 89.4 | 77.5 |
Multiannual | 91.0 | 86.6 | 79.9 | 76.9 | 77.1 | 79.0 | 79.8 | 80.5 | 82.6 | 84.4 | 88.3 | 92.7 | 83.2 | |
Sunlight [hours] | Registered value | 30 | 109 | 203 | 207 | 264 | 268 | 298 | 277 | 249 | 152 | 31 | 67 | 2155 |
Multiannual | 62 | 99 | 160 | 190 | 232 | 252 | 265 | 242 | 174 | 145 | 106 | 51 | 1978 |
Crt. No. | Phenophase BBCH | Time Period (2023) | Picture |
---|---|---|---|
1 | Beginning of bud swelling 01 | April 13th | |
2 | Bud development 05–09 | April 18th–April 28th | |
3 | Leaf development 10–15 | May 2nd–May 10th | |
4 | Inflorescence emerges 51–57 | May 10th–May 29th | |
5 | Flowering 65–69 | June 6th–June 20th | |
6 | Fruit development 71–77 | June 20th–July 13th | |
7 | Veraison 81–85 | August 20th–August 23rd | |
8 | Harvest 89 | September 15th–October 10th | |
9 | Senescence 91 93–97 | October 10th–October 17th October 17th–November 1st |
Crt. No. | Cultivar Name | Cultivar Code | I [%] | F [%] | MillGRD [%] |
---|---|---|---|---|---|
1 | Ezerfurtu | Ez | 43.30 ± 5.40 a | 100.00 ± 0.00 a | 43.30 ± 5.40 a |
2 | Napoca | Na | 37.40 ± 6.20 ab | 100.00 ± 0.00 a | 37.40 ± 6.20 a |
3 | Rhin Riesling | RR | 36.70 ± 3.70 ab | 100.00 ± 0.00 a | 36.70 ± 3.70 ab |
4 | Argesis | Ar | 27.70 ± 2.80 bc | 100.00 ± 0.00 a | 27.70 ± 2.80 c |
5 | Someșan | So | 29.07 ± 2.42 bc | 96.00 ± 3.06 a | 28.00 ± 2.66 bc |
6 | Fetească regală | FR | 26.82 ± 2.79 c | 91.20 ± 2.96 a | 25.50 ± 2.98 cd |
7 | Selena | Se | 17.80 ± 5.00 d | 91.00 ± 3.48 a | 17.29 ± 5.14 de |
8 | Astra | As | 10.52 ± 2.80 de | 98.00 ± 2.00 a | 10.14 ± 2.52 efghi |
9 | Timpuriu de Cluj | TiC | 15.84 ± 2.65 d | 90.00 ± 4.22 a | 14.98 ± 2.82 ef |
10 | Fetească neagră | FN | 16.09 ± 3.58 d | 81.00 ± 3.97 ab | 14.14 ± 3.68 ef |
11 | Fetească albă | FA | 14.92 ± 2.33 d | 90.00 ± 2.81 a | 13.91 ± 2.34 efg |
12 | Iordană | Io | 10.31 ± 1.41 def | 94.00 ± 4.00 a | 9.48 ± 0.83 efghij |
13 | Blasius | Bs | 8.24 ± 1.96 def | 92.00 ± 4.90 a | 7.70 ± 1.96 fghijk |
14 | Italian Riesling | RI | 13.82 ± 2.04 d | 62.80 ± 5.37 bcd | 10.34 ± 1.81 efgh |
15 | Regent | Rg | 4.91 ± 0.67 ef | 92.00 ± 3.74 a | 4.44 ± 0.51 hijk |
16 | Sauvignon blanc | SG | 7.48 ± 1.22 ef | 68.00 ± 3.12 bc | 5.08 ± 0.88 ghijk |
17 | Traminer roz | TR | 5.67 ± 1.45 ef | 69.33 ± 4.73 bc | 4.46 ± 1.37 hijk |
18 | Amurg | Am | 2.90 ± 0.44 ef | 70.00 ± 5.48 bc | 2.08 ± 0.40 hijk |
19 | Neuburger | Nb | 4.98 ± 0.82 ef | 44.00 ± 5.05 def | 3.07 ± 1.01 hijk |
20 | Furmint | Fu | 2.52 ± 0.90 ef | 66.00 ± 5.01 bc | 1.70 ± 0.34 hijk |
21 | Transilvania | Tv | 2.35 ± 0.35 ef | 54.00 ± 5.01 cde | 1.22 ± 0.11 ijk |
22 | Brumăriu | Br | 1.15 ± 0.40 ef | 42.00 ± 14.13 ef | 0.96 ± 0.33 jk |
23 | Pinot gris | PG | 1.90 ± 0.52 ef | 17.00 ± 4.30 gh | 0.57 ± 0.17 jk |
24 | Radames | Ra | 1.18 ± 0.18 ef | 34.00 ± 9.09 fg | 0.53 ± 0.19 jk |
25 | Muscat Ottonel | MO | 1.00 ± 0.20 ef | 32.00 ± 10.63 fgh | 0.47 ± 0.19 k |
26 | Pinot noir | PN | 0.67 ± 0.19 f | 13.00 ± 3.96 h | 0.15 ± 0.05 k |
Significance | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, M.D.; Tomoiagă, L.L.; Răcoare, H.S.; Sîrbu, A.D.; Giurcă, I.S.; Chedea, V.S.; Teușdea, A.C.; Comșa, M. Millerandage—One of the Grapevine Cultivation Challenges in the Climate Change Context. Horticulturae 2025, 11, 165. https://doi.org/10.3390/horticulturae11020165
Muntean MD, Tomoiagă LL, Răcoare HS, Sîrbu AD, Giurcă IS, Chedea VS, Teușdea AC, Comșa M. Millerandage—One of the Grapevine Cultivation Challenges in the Climate Change Context. Horticulturae. 2025; 11(2):165. https://doi.org/10.3390/horticulturae11020165
Chicago/Turabian StyleMuntean, Maria Doinița, Liliana Lucia Tomoiagă, Horia Silviu Răcoare, Alexandra Doina Sîrbu, Ioana Sorina Giurcă, Veronica Sanda Chedea, Alin Cristian Teușdea, and Maria Comșa. 2025. "Millerandage—One of the Grapevine Cultivation Challenges in the Climate Change Context" Horticulturae 11, no. 2: 165. https://doi.org/10.3390/horticulturae11020165
APA StyleMuntean, M. D., Tomoiagă, L. L., Răcoare, H. S., Sîrbu, A. D., Giurcă, I. S., Chedea, V. S., Teușdea, A. C., & Comșa, M. (2025). Millerandage—One of the Grapevine Cultivation Challenges in the Climate Change Context. Horticulturae, 11(2), 165. https://doi.org/10.3390/horticulturae11020165