Effects of Trunk Covering and Airflow Treatment on Sap Flux and Bud Burst During the Dormant Stage in ‘Fuji’ Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Trunk Covering and Airflow Treatment During the Dormant Stage
2.3. Collection of Temperature and Humidity Data
2.4. Measurement of Surface Temperature of the Trunk
2.5. Observation of Bud Burst and Measurement of Xylem Sap Flow
2.6. Data Analysis
3. Results
3.1. Analysis of Meteorological Factors in Jangsu, Korea from February to March over the Past 30 Years (1994–2023)
3.2. Effects of Covering Materials on the Surface Temperature of the Trunk in ‘Fuji’ Apples
3.3. Effects of Airflow Treatment on the Surface Temperature of the Trunk in ‘Fuji’ Apples
3.4. Effects of Trunk Covering Materials and Airflow Treatment on Xylem Sap Flow and Bud Burst in ‘Fuji’ Apples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milyaev, A.; Born, U.; Sprich, E.; Hagemann, M.; Flachowsky, H.; Luedeling, E. Identifying indicators of apple bud dormancy status by exposure to artificial forcing conditions. Tree Physiol. 2024, 44, tpae112. [Google Scholar] [CrossRef] [PubMed]
- Beauvieux, R.; Wenden, B.; Dirlewanger, E. Bud dormancy in perennial fruit tree species: A pivotal role for oxidative cues. Front. Plant Sci. 2018, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Wang, K.; Pandey, S.; Perales, M.; Allona, I.; Khan, M.R.I.; Busov, V.B.; Bhalerao, R.P. Molecular advances in bud dormancy in trees. Exp. Bot. 2024, 75, 6063–6075. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, H.; Blanke, M. Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry. Plant Physiol. 2017, 218, 1–5. [Google Scholar] [CrossRef]
- Janská, A.; Maršik, P.; Zelenková, S.; Ovesna, J. Cold stress and acclimation-what is important for metabolic adjustment? Plant Biol. 2010, 12, 395–405. [Google Scholar] [CrossRef]
- Li, W.; Wang, R.; Li, M.; Li, L.; Wang, C.; Welti, R.; Wang, X. Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. Biol. Chem. 2008, 283, 461–468. [Google Scholar] [CrossRef]
- Charrier, G.; Ngao, J.; Saudreau, M.; Ameglio, T. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Front. Plant Sci. 2015, 6, 259. [Google Scholar] [CrossRef]
- Malagi, G.; Sachet, M.R.; Citadin, I.; Herter, F.G.; Bonhomme, M.; Regnard, J.L.; Legave, J.M. The comparison of dormancy dynamics in apple trees grown under temperate and mild winter climates imposes a renewal of classical approaches. Trees 2015, 29, 1365–1380. [Google Scholar] [CrossRef]
- Fernandez, E.; Whitney, C.; Cuneo, I.F.; Luedeling, E. Prospects of decreasing winter chill for deciduous fruit production in Chile throughout the 21st century. Clim. Chang. 2020, 159, 423–439. [Google Scholar] [CrossRef]
- Pertille, R.H.; Citadin, I.; de Oliveira, L.S.; Suchoronczek, A. Dormancy dynamics and cold hardiness of apple trees grown in a mild winter region. Sci. Hortic. 2024, 333, 113284. [Google Scholar] [CrossRef]
- Matsuo, T.; Ide, S.; Shitida, M. Correlation between chilling sensitivity of plant tissue and fatty acid composition of phosphatidylglycerols. Phytochemistry 1992, 31, 2289–2293. [Google Scholar] [CrossRef]
- Gusta, L.V.; Wisniewski, M. Understanding plant cold hardiness: An opinion. Physiol. Plant. 2013, 147, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Mayr, S.; Améglio, T. Freezing stress in tree xylem. In Progress in Botany; Lüttge, U., Ed.; Springer: Geneva, Switzerland, 2016; Volume 77, pp. 381–414. [Google Scholar]
- Oh, S.D.; Kang, S.D. Frost damage. In Fruit Tree Physiology in Relation to Temperature; Oh, S.D., Ed.; Gilmoum Press: Seoul, Republic of Korea, 2004; pp. 85–92. [Google Scholar]
- Ballar, J.K.; Proebsting, E.L. Frost and Frost Control in Washington Orchards; Washington State University Cooperative Extension Service Bulletin: Pullman, WA, USA, 1978; Extension Bulletin 634. [Google Scholar]
- Krezdorn, A.H.; Martsolf, J.D. Review of effects of cultural practices on frost hazard. Proc. Fl. State Hortic. Soc. 1984, 97, 21–24. [Google Scholar]
- Martsolf, J.D.; Wiltbank, W.J.; Hannah, H.E.; Fernandez, R.T.; Bucklin, R.A.; Datta, A. Freeze protection potential of windbreaks. Proc. Fl. State Hortic. Soc. 1986, 99, 13–18. [Google Scholar]
- Rieger, M. Freeze protection for horticultural crops. Hortic. Rev. 1989, 11, 45–109. [Google Scholar]
- Martsolf, J.D.; Gerber, J.F. Infrared radiation shields for cold protection of young citrus trees. Am. Soc. Hortic. Sci. 1969, 94, 217–220. [Google Scholar] [CrossRef]
- Reese, R.L.; Gerber, J.F. An empirical description of cold protection provided by a wind machine. Am. Soc. Hortic. Sci. 1969, 94, 697–700. [Google Scholar] [CrossRef]
- Maki, T. Forecasting procedures and technical methods of cold protection in the Japanese citrus industry. Proc. Inter. Soc. Citric. 1977, 1, 192–196. [Google Scholar]
- Dozier, W.; Caylor, A.; Himelrick, D.; Powell, A.; Latham, A.; Pitts, A.; McGuire, J. Cold protection of kiwifruit plants with trunk wraps and microsprinkler irrigation. HortScience 1992, 27, 977–979. [Google Scholar] [CrossRef]
- Jackson, L.K.; Buchanan, D.W.; Rippetoe, L.W. Comparison of wraps and banks for citrus cold protection. Proc. Fl. State Hortic. Soc. 1983, 96, 29–31. [Google Scholar]
- Eggert, R. Cambium temperatures of peach and apple trees in winter. Proc. Am. Soc. Hortic. Sci. 1944, 45, 33–36. [Google Scholar]
- Jensen, R.E.; Savage, E.F.; Hayden, R.A. The effect of certain environmental factors on cambium temperatures of peach trees. Am. Soc. Hortic. Sci. 1970, 95, 286–292. [Google Scholar] [CrossRef]
- Savage, E.F. Cold injury as related to cultural management and possible protective devices for dormant peach trees. HortScience 1970, 5, 425–428. [Google Scholar] [CrossRef]
- Jackson, L.K.; Parsons, L.R. Cold Protection Methods; University of Florida Cooperative Extension Service: Gainesville, FL, USA, 1994. [Google Scholar]
- Schaffer, B.; Andersem, P.C. Handbook of Environmental Physiology of Fruit Crops; CRC Press: Boca Raton, FL, USA, 2019; pp. 117–118. [Google Scholar]
- Bidwell, R.G.S. Plant Physiology. 28. Physiology of Plants Under Stress; Macmillan Publishing Co. Inc.: New York, NY, USA, 1979; pp. 637–650. [Google Scholar]
- Weinberger, J.H. Field notes on Cold Injury Taken at the USDA; Hort Field Station: Fort Valley, GA, USA, 1949. [Google Scholar]
- Choi, Y.M.; You, K.P.; Choi, D.G. Estimation of the relationship between the natural frequency and fruit drop during the fruit enlargement stage of apple. Hortic. Sci. Technol. 2024, 43. [Google Scholar] [CrossRef]
- Garman, C.F.; Diener, R.G.; Stafford, J.R. Effect of shaker type and direction of shake on apple detachment. Agric. Eng. Res. 1972, 17, 195–205. [Google Scholar] [CrossRef]
- Torregrosa, A.; Albert, F.; Aleixos, N.; Ortiz, C.; Blasco, J. Analysis of the detachment of citrus fruits by vibration using artificial vision. Biosyst. Eng. 2014, 119, 1–12. [Google Scholar] [CrossRef]
- KOSIS (Korean Statistical Information Service). Available online: https://kosis.kr (accessed on 23 December 2024).
- Eccel, E.; Rea, R.; Caffarra, A.; Crisci, A. Risk of spring frost to apple production under future climate scenarios: The role of phonological acclimation. Int. J. Biometeorol. 2009, 53, 273–286. [Google Scholar] [CrossRef]
- Naor, A.; Flaishman, M.; Stern, R.; Moshe, A.; Erez, A. Temperature effects on dormancy completion of vegetative buds in apple. Am. Soc. Hortic. Sci. 2003, 128, 636–641. [Google Scholar] [CrossRef]
- Lee, B.H.N.; Park, Y.S.; Park, H.S. Changes in dormant phase and bud development of ‘Fuji’ apple trees in the Chungju area of Korea. Korea Hortic. Sci. Technol. 2015, 33, 501–510. [Google Scholar] [CrossRef]
- Meier, M.; Fuhrer, J.; Holzkamper, A. Changing risk of spring frost damage in grapevines due to climate change? A case study in the Swiss Rhone Valley. Int. J. Biometeorol. 2018, 62, 991–1002. [Google Scholar] [CrossRef]
- Poling, E.B. Spring cold injury to winegrapes and protection strategies and methods. HortScience 2008, 43, 1652–1662. [Google Scholar] [CrossRef]
- Pyke, N.B.; Ansell, K.A.; Ruth, J.E. Field evaluation of insulation wraps for frost protection on kiwifruit trunks. N. Z. J. Exp. Agric. 1988, 16, 129–135. [Google Scholar] [CrossRef]
- Kwack, Y.B.; Kim, H.L.; Kim, S.C.; Kim, M.J.; Lee, Y.B. The influence of insulation wraps on the temperature change of kiwifruit trunk surface during winter. Korea Environ. Agric. 2014, 33, 403–408. [Google Scholar] [CrossRef]
- Hinrichs-Berger, J. Painting deciduous fruit trees with white paint for control of frost injuries and trunk infections by Pseudomonas syringae. Gesunde Pflanz. 2004, 56, 48–54. [Google Scholar] [CrossRef]
- Cleugh, H.A.; Miller, J.M.; BÖhm, M. Direct mechanical effects of wind on crops. Agrofor. Syst. 1998, 41, 85–112. [Google Scholar] [CrossRef]
- Yim, J.H.; Choi, Y.M.; Choi, D.G. Effect of wind velocity on photosynthesis, sap flux, and damage of leaves in apple trees. Korea Agric. For. Meteorol. 2014, 16, 131–136. [Google Scholar] [CrossRef]
- Ortiz, C.; Torregrosa, A. Determining adequate vibration frequency, amplitude, and time for mechanical harvesting of fresh mandarins. Am. Soc. Agric. Biol. Eng. 2013, 56, 15–22. [Google Scholar] [CrossRef]
Month | Year | Mean Value | Mean Maximum Value | Maximum Value | Mean Minimum Value | Minimum Value | Mean Wind Velocity (m·s−1) | Maximum Wind Velocity (m·s−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
Highest | Date (Julian Day) | Lowest | Date (Julian Day) | |||||||
February | 1994–1998 | −1.3 ± 1.7 z | 6.1 ± 1.5 | 15.2 ± 3.2 | 47.0 ± 6.5 | −7.6 ± 1.9 | −15.9 ± 1.8 | 37.0 ± 5.2 | 1.7 ± 0.2 | 7.6 ± 0.9 |
1999–2003 | −1.2 ± 1.1 | 5.4 ± 1.4 | 12.8 ± 1.8 | 52.8 ± 5.9 | −6.9 ± 1.3 | −16.3 ± 3.0 | 36.0 ± 4.3 | 1.6 ± 0.3 | 8.7 ± 1.8 | |
2004–2008 | −0.9 ± 2.1 | 5.5 ± 2.8 | 14.2 ± 3.7 | 47.4 ± 6.1 | −6.8 ± 2.0 | −14.9 ± 3.4 | 39.6 ± 4.1 | 2.0 ± 0.2 | 8.9 ± 0.8 | |
2009–2013 | −0.4 ± 2.1 | 6.0 ± 2.3 | 15.9 ± 2.3 | 53.6 ± 6.3 | −6.0 ± 2.2 | −15.6 ± 2.3 | 37.8 ± 7.9 | 1.7 ± 0.3 | 7.5 ± 1.0 | |
2014–2018 | −0.5 ± 1.2 | 5.7 ± 1.1 | 14.1 ± 3.5 | 45.6 ± 9.7 | −6.2 ± 1.6 | −13.1 ± 2.1 | 34.2 ± 2.8 | 2.0 ± 0.2 | 7.7 ± 0.8 | |
2019–2023 | 0.3 ± 1.7 | 7.1 ± 1.9 | 15.3 ± 3.1 | 52.6 ± 5.6 | −5.7 ± 2.0 | −12.3 ± 1.4 | 37.2 ± 6.2 | 1.7 ± 0.3 | 7.8 ± 0.8 | |
Mean | −0.7 ± 0.6 | 6.0 ± 0.6 | 14.6 ± 1.1 | 49.8 ± 3.5 | −6.5 ± 0.7 | −14.7 ± 1.6 | 37.0 ± 1.8 | 1.8 ± 0.2 | 8.0 ± 0.6 | |
March | 1994–1998 | 3.5 ± 1.3 | 10.7 ± 1.8 | 19.1 ± 2.3 | 82.4 ± 7.4 | −2.5 ± 1.3 | −8.2 ± 1.5 | 69.6 ± 12.7 | 1.9 ± 0.1 | 8.9 ± 0.8 |
1999–2003 | 4.2 ± 1.2 | 11.3 ± 1.5 | 19.6 ± 1.4 | 84.2 ± 5.4 | −2.3 ± 1.1 | −8.4 ± 1.6 | 67.0 ± 7.8 | 1.9 ± 0.2 | 10.2 ± 1.9 | |
2004–2008 | 4.1 ± 1.1 | 11.1 ± 1.4 | 19.3 ± 1.2 | 79.4 ± 7.2 | −2.4 ± 1.1 | −9.5 ± 1.6 | 65.4 ± 3.6 | 2.1 ± 0.2 | 9.0 ± 1.2 | |
2009–2013 | 4.1 ± 1.3 | 10.5 ± 2.0 | 21.0 ± 2.4 | 79.8 ± 9.0 | −2.0 ± 1.3 | −7.8 ± 0.9 | 69.0 ± 7.1 | 2.4 ± 0.1 | 9.0 ± 0.4 | |
2014–2018 | 5.0 ± 1.1 | 12.4 ± 1.0 | 21.3 ± 1.7 | 85.6 ± 5.0 | −1.7 ± 1.1 | −9.4 ± 2.3 | 62.4 ± 3.4 | 1.9 ± 0.2 | 8.3 ± 0.7 | |
2019–2023 | 6.4 ± 1.0 | 13.8 ± 1.4 | 21.1 ± 1.5 | 82.4 ± 5.7 | −0.7 ± 0.8 | −6.8 ± 1.2 | 65.0 ± 4.5 | 1.7 ± 0.2 | 8.0 ± 0.4 | |
Mean | 4.6 ± 1.0 | 11.6 ± 1.2 | 20.2 ± 1.0 | 82.3 ± 2.4 | −1.9 ± 0.7 | −8.4 ± 1.0 | 66.4 ± 2.7 | 2.0 ± 0.2 | 8.9 ± 0.8 |
Covering Materials | Mean Temperature (°C) | Mean Humidity (%) | Trunk Surface Temperature (°C) | ||
---|---|---|---|---|---|
Positive Light | Negative Light | Difference | |||
Uncovered | 9.0 ± 6.9 z | 78.9 ± 25.1 | 15.9 ± 1.0 a y | 9.7 ± 1.0 a | 6.2 ± 1.1 a |
Whitewash | 11.2 ± 0.6 c | 9.6 ± 0.3 a | 1.6 ± 0.9 c | ||
Newspaper | 8.8 ± 6.3 | 72.3 ± 25.3 | 13.5 ± 0.7 b | 8.5 ± 0.3 b | 5.0 ± 0.7 b |
Rice straw | 9.3 ± 6.8 | 76.3 ± 22.9 | 13.5 ± 1.0 b | 7.9 ± 0.7 c | 5.7 ± 1.1 ab |
Foam insulation | 8.9 ± 6.8 | 74.0 ± 25.4 | 9.7 ± 0.9 d | 7.8 ± 1.0 c | 1.9 ± 1.3 c |
Airflow Treatment | Trunk Treatment | Mean Temperature (°C) | Mean Humidity (%) | Trunk Surface Temperature (°C) | ||
---|---|---|---|---|---|---|
Positive Light | Negative Light | Difference | ||||
Non-airflow | Uncovered | 10.7 ± 5.5 z | 51.0 ± 24.2 | 15.5 ± 0.6 a y | 8.9 ± 1.2 b | 6.6 ± 1.3 a |
Whitewash | 12.5 ± 0.5 c | 11.6 ± 0.7 a | 0.8 ± 0.7 c | |||
Airflow | Uncovered | 10.5 ± 5.5 | 50.1 ± 24.2 | 13.1 ± 0.4 b | 8.7 ± 1.5 b | 4.4 ± 1.4 b |
Whitewash | 11.5 ± 0.7 d | 11.1 ± 0.6 a | 0.4 ± 0.6 c | |||
Significance | ||||||
Airflow Treatment (A) | - | - | ns | ns | ns | |
Trunk Treatment (B) | - | - | ns | * | ns | |
A × B | - | - | ** | ns | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-M.; Choi, D.-G. Effects of Trunk Covering and Airflow Treatment on Sap Flux and Bud Burst During the Dormant Stage in ‘Fuji’ Apples. Horticulturae 2025, 11, 108. https://doi.org/10.3390/horticulturae11020108
Choi Y-M, Choi D-G. Effects of Trunk Covering and Airflow Treatment on Sap Flux and Bud Burst During the Dormant Stage in ‘Fuji’ Apples. Horticulturae. 2025; 11(2):108. https://doi.org/10.3390/horticulturae11020108
Chicago/Turabian StyleChoi, Young-Min, and Dong-Geun Choi. 2025. "Effects of Trunk Covering and Airflow Treatment on Sap Flux and Bud Burst During the Dormant Stage in ‘Fuji’ Apples" Horticulturae 11, no. 2: 108. https://doi.org/10.3390/horticulturae11020108
APA StyleChoi, Y.-M., & Choi, D.-G. (2025). Effects of Trunk Covering and Airflow Treatment on Sap Flux and Bud Burst During the Dormant Stage in ‘Fuji’ Apples. Horticulturae, 11(2), 108. https://doi.org/10.3390/horticulturae11020108