Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Raw Materials
2.2. Sea Buckthorn Material, Fruit Processing, Chocolate Preparation and Processing
2.3. Determination of Textural Properties
2.4. Determination of Total Dry Matter Content
2.5. Determination of Protein and Crude Fat Contents
2.6. Determination of the Colour Components
2.7. Extraction of Bioactive Substances from Chocolate Samples, and Determination of Vitamin C, Flavonoid, Total Polyphenol and Carotenoid Contents
2.8. Determination of Antioxidant Activity
2.9. Determination of Mineral Elements
2.10. Sensory Features
2.11. Statistical Analysis
3. Results and Discussion
3.1. Texture Parameters
3.2. Quality and Colour Parameters
3.3. Antioxidant Compounds and Activity
3.4. Mineral Elements
3.5. Sensorial Features
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Functional Foods. Available online: https://publications.europa.eu/resource/cellar/238407ee-0301-4309-9fac-e180e33a3f89.0001.02/DOC_1 (accessed on 20 September 2025).
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Gialleli, A.I.; Bosnea, L.; Kanellaki, M.; Koutinas, A.A.; Castro, G.R. Novel cheese by incorporation of sea buckthorn berries (Hippophea rhamnoids L.) supported probiotic cells. LWT—Food Sci. Technol. 2017, 79, 616–624. [Google Scholar] [CrossRef]
- Tarahi, M.; Tahmouzi, S.; Kianini, M.R.; Ezzati, S.; Hedayati, S.; Niakousari, M. Current innovations in the development of functional gummy candies. Foods 2024, 13, 76. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef] [PubMed]
- Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 2002, 73, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.F.; Silva Lannes, C.S. Effects of chicken by-prodduct gelatin on the physicochemicalproperties and texture of chocolate spread. J. Texture Stud. 2017, 48, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Konar, N.; Toker, O.S.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Enrichment of milk chocolate by using EPA and DHA originated from various origins: Effects and products quality. Sugar Tech 2018, 20, 745–755. [Google Scholar] [CrossRef]
- Toker, O.S.; Konar, N.; Pirouzian, H.R.; Oba, S.; Polat, D.G.; Palabiyik, I.; Poyrazoglu, E.S.; Sagdic, O. Deveeloping functional white chocolate by incorporating different forms of EPA and DHA—Effects on products quality. LWT—Food Sci. Technol. 2018, 87, 177–185. [Google Scholar] [CrossRef]
- Tolve, R.; Tchuenbou-Magaia, F.L.; Verderese, D.; Simonato, B.; Puggia, D.; Galgano, F.; Zamboni, A.; Favati, F. Physico-chemical and sensory acceptability of no added sugar chocolate spreads fortified with multiple micronutrients. Food Chem. 2021, 364, 130386. [Google Scholar] [CrossRef] [PubMed]
- Bolenz, S.; Glöde, L. Technological and nutritional aspects of milk chocolate enriched with grape pomace products. Eur. Food Res. Technol. 2021, 247, 623–636. [Google Scholar] [CrossRef]
- Lipșa, F.D.; Stoica, F.; Rațu, R.N.; Veleșcu, I.D.; Cârlescu, P.M.; Motrescu, I.; Usturoi, M.G.; Râpeanu, G. Red Onion Peel Powder as a Functional Ingredient for Manufacturing Ricotta Cheese. Foods 2024, 13, 182. [Google Scholar] [CrossRef]
- Florea, A.M.; Gafencu, A.M.; Lipșa, F.D.; Gabur, I.; Ulea, E.A. First Report of Sclerotinia sclerotiorum Causing Forsythia Twig Blight in Romania. Plants 2023, 12, 3516. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=celex%3A32000L0036 (accessed on 20 September 2025).
- Singh, V.; Kallio, H.; Sawhney, R.C.; Gupta, R.K.; RongSen, L.R.L.; Eliseev, I.P.; Khabarov, S.N.; Korovina, M.A.; Skuridin, G.M.; Shchapov, N.S.; et al. (Eds.) Geographical Adaptation and Distribution of Seabuckthorn (Hippophae L.) Resources. In Seabuckthorn (Hippophae L.): A multipurpose Wonder Plant; Indus Publishing Company: New Delhi, India, 2003; Volume 1, pp. 21–34. [Google Scholar]
- Tian, L.; Wu, W.; Zhou, X.; Zhang, D.; Yu, Y.; Wang, H.; Wang, Q. The Ecosystem Effects of Sand-Binding Shrub Hippophae rhamnoides in Alpine Semi-Arid Desert in the Northeastern Qinghai–Tibet Plateau. Land 2019, 8, 183. [Google Scholar] [CrossRef]
- Stobdan, T.; Phunchok, T. Value Chain Analysis of Seabuckthorn (Hippophae rhamnoides L.) in Leh Ladakh. In Ministry of Agriculture and farmer Welfare; Government of India: New Dehli, India, 2017. [Google Scholar]
- Janceva, S.; Andersone, A.; Lauberte, L.; Bikovens, O.; Nikolajeva, V.; Jashina, L.; Zaharova, N.; Telysheva, G.; Senkovs, M.; Rieksts, G.; et al. Sea buckthorn (Hippophea rhamnoides) waste biomass after harvesting as a source of valuable biologically active compounds with nutraceutical and antibacterial potential. Plants 2022, 11, 642. [Google Scholar] [CrossRef]
- Hibasami, H.; Mitani, A.; Katsuzaki, H.; Imai, K.; Ypshioka, K.; Komiya, T. Isolation of five types of flavonol from seabuckthorn (Hippophea rhamnoides) and induction of apoptosis by some of the flavonols in human promyelotic leukemia HL-60 cells. Int. J. Mol. Med. 2005, 15, 805–809. [Google Scholar] [PubMed]
- Chaman, S.; Nawazish-I-Husain, S.; Danish, Z.; Farrackh, Z.K. Phytochemical analysis, antioxidant and antibacterial effects of sea buckthorn berries. Pak. J. Pharm. Sci. 2011, 24, 345–351. [Google Scholar]
- Sabir, S.M.; Maqsood, H.; Hayat, I.; Khan, M.Q.; Khaliq, A. Elemental and nutritional analysis of seabuck thorn (Hippophea rhamnoides ssp. Turkestanica) berries of Pakistani origin. J. Med. Food 2005, 8, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S.; Negi, P.S.; Ramteke, R.S. Antioxidant and antibacterial activities of aqueous extract of sea buckthorn (Hippophea rhamnoides) seeds. Fitoterapia 2007, 78, 590–592. [Google Scholar] [CrossRef]
- Luntraru, C.M.; Apostol, L.; Oprea, O.B.; Neagu, M.; Popescu, A.F.; Tomescu, J.A.; Mulțescu, M.; Susman, I.E.; Gaceu, L. Reclaim and valorization on sea buckthorn (Hippophea rhamnoides) by-products: Antioxidant activity and chemical characterization. Foods 2022, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Antioxidant and anti-enzymatic activities of sea buckthorn (Hippophae rhamnoides L.) fruits modulated by chemical components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [PubMed]
- Gâtlan, A.M.; Gutt, G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef]
- Murariu, O.C.; Lipsa, F.D.; Cârlescu, P.M.; Frunză, G.; Ciobanu, M.M.; Cara, I.G.; Murariu, F.; Stoica, F.; Albu, A.; Tallarita, A.V.; et al. The Effect of Including Sea Buckthorn Berry By-Products on White Chocolate Quality and Bioactive Characteristics under a Circular Economy Context. Plants 2024, 13, 2799. [Google Scholar] [CrossRef]
- Banu, C. (Ed.) Food Industry Treaty; ASAB: Bucuresti, Romania, 2009; pp. 578–589. ISSN 978-973-7725-62-2. [Google Scholar]
- Szczesniak, A.S. Classification of Textural Characteristics. J. Food Sci. 1963, 28, 981–985. [Google Scholar] [CrossRef]
- Wee, M.S.M.; Goh, A.T.; Stieger, M.; Forde, C.G. Correlation of instrumental texture properties from textural profile analysis (TPA) with eating behaviours and macronutrient composition for a wide range of solid foods. Food Funct. 2018, 9, 5301–5312. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Sindireva, A.; Golubkina, N.; Bezuglova, H.; Fedotov, M.; Alpatov, A.; Erdenotsogt, E.; Sekara, A.; Murariu, O.C.; Caruso, G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. Plants 2023, 12, 2847. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, M.M.; Postolache, A.N.; Lipşa, F.D.; Munteanu, M.; Rațu, R.N.; Murariu, O.C.; Boișteanu, P.C. Meat Fatty Acid Composition of Wild Boars Hunted in Romania in Relationship to Gender and Age-Class. Animals 2022, 12, 810. [Google Scholar] [CrossRef] [PubMed]
- Murariu, O.C.; Caruso, G.; Frunză, G.; Lipsa, F.D.; Ulea, E.; Tallarita, A.V.; Calistru, A.; Jităreanu, G. Effect of Wheat Flour Integration with Blueberry Fruits on Rheological, Quality, Antioxidant, and Sensory Attributes of ‘French’ Bread. Foods 2025, 14, 1189. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.; Hughes, R.E. Foliar ascorbic acid in some angiosperms. Phytochemistry 1983, 22, 2493–2499. [Google Scholar] [CrossRef]
- Ðnç, E.; Segliòa, D.; Galoburda, R.; Krasnova, I. Content of phenolic compounds in various sea buckthorn parts. Proc. Latv. Acad. Sci. 2013, 67, 411–415. [Google Scholar]
- Dumbrava, D.; Popescu, L.A.; Soica, C.M.; Nicolin, A.; Cocan, I.; Negrea, M.; Alexa, E.; Obistioiu, D.; Radulov, I.; Popescu, S.; et al. Nutritional, Antioxidant, Antimicrobial, and Toxicological Profile of Two Innovative Types of Vegan, Sugar-Free Chocolate. Foods 2020, 9, 1844. [Google Scholar] [CrossRef]
- Aroyeun, S.O.; Okunade, A.F.; Obatoye, A.O.; Olalekan Adeniran, M.A. Nutritional Profile and Organoleptic Qualities of Milk Chocolate Incorporated with Different Spices. Asian Food Sci. J. 2019, 13, 53426. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Müller, A.J.; Sandoval, A.J. Thermal, structural and rheological characteristics of dark chocolate with different compositons. J. Food Eng. 2013, 116, 1226–1231. [Google Scholar] [CrossRef]
- Izidoro, D.R.; Scheer, A.P.; Sierakowski, M.-R.; Haminiuk, C.W.I. Influence of green banana pulp on the rheological behaviour and chemical characteristics of emulsions (mayonnaises). LWT—Food Sci. Technol. 2008, 41, 1018–1028. [Google Scholar] [CrossRef]
- Servais, C.; Jones, R.; Roberts, I. The influence of particle size distribution on the processing of food. J. Food Eng. 2002, 51, 201–208. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Rheological properties, melting behaviours and physical quality characteristics of sucrose-free chocolates processed using inulin/polydextrose bulking mixtures sweetened with stevia and thaumatin extracts. LWT—Food Sci. Technol. 2015, 62, 592–597. [Google Scholar] [CrossRef]
- Afoakwa, E.; Paterson, A.; Fowler, M. Factors infuencing rheological and textural qualities in chocolate—Review. Trends Food Sci. Technol. 2007, 18, 290–298. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Industrial manufacture of sugarfree chocolates applicability of alternative sweeteners and carbohydrate polymers as raw materials in product development. Trends Food Sci. Technol. 2013, 32, 84–96. [Google Scholar] [CrossRef]
- Wolf, B. Chocolate Flow Properties Beckett’s Industrial Chocolate Manufacture and Use; Beckett, S.T., Fowler, M., Ziegler, G.R., Eds.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017; pp. 274–297. [Google Scholar]
- Glicerina, V.; Balestra, F.; Dalla Rosa, M.; Romani, S. Microstructural and rheological characteristics of dark, milk and white chocolate: A comparative study. J. Food Eng. 2016, 169, 165–171. [Google Scholar] [CrossRef]
- Afaokwa, E.O. Chocolate Science and Technology; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Zyzelewicz, D.; Krysiak, W.; Nebesny, E.; Budryn, G. Application of various methods for the determination of the color of cocoa beans roasted under variable process parameters. Eur. Food Res. Technol. 2014, 238, 549–563. [Google Scholar] [CrossRef]
- Aidoo, R.P.; Afoakwa, E.O.; Dewettinck, K. Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture rheological, microstructure and physical quality characteristics. J. Food Eng. 2014, 226, 1259–1268. [Google Scholar] [CrossRef]
- Lindecrantz, A. Investigation of seedpowder technology for pre-crystallization processing for dark chocolate—Effect on fat crystal structure and storage stability. In Master of Science Thesis in the Master Degree Program Biotechnology; Lindecrantz, A., Ed.; Chalmers University of Technology: Gothenburg, Sweeden, 2014. [Google Scholar]
- Muhammad, D.; Saputro, A.; Rottiers, H.; Van de Walle, D.; Dewettinck, K. Physicochemical properties and antioxidant activities of chocolates enriched with engineered cinnamon nanoparticles. Eur. Food Res. Technol. 2018, 244, 1185–1202. [Google Scholar] [CrossRef]
- Miller, K.B.; Stuart, D.A.; Smith, N.L.; Lee, C.Y.; McHale, N.L.; Flanagan, J.A.; Ou, B.; Hurst, W.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 2006, 54, 4062–4068. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2022, 64, 4865–4881. [Google Scholar] [CrossRef]
- Maier, T.; Göppert, A.; Kammerer, D.R.; Schieber, A.; Carle, R. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur. Food Res. Technol. 2008, 227, 267–275. [Google Scholar] [CrossRef]
- Netzel, M.; Netzel, G.; Maier, T.; Kammerer, D.R.; Carle, R.; Schieber, A.; Bitsch, I.; Bitsch, R. Polyphenole aus trauben—Erste ergebnisse aus metabolisierungsstudien mit traubentresterextrakten und probanden. Flüssiges Obs. 2008, 75, 240–246. [Google Scholar]
- Orem, A.; Yucesan, F.B.; Orem, C.; Akcan, B.; Kural, B.V.; Alasalvar, C.; Shahidi, F. Hazelnut-enriched diet improves cardiovascular risk biomarkers beyond a lipidlowering effect in hypercholesterolemic subjects. J. Clin Lipidol. 2013, 7, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.; Perri, L.; Battaglia, S.; Nocella, C.; Menichelli, D.; Cammisotto, V.; Novo, M.; Carnevale, R.; Violi, F. Hazelnut and cocoa spread improves flow-mediated dilatation in smokers. Intern. Emerg. Med. 2018, 13, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Paz-Yépez, C.; Peinado, I.; Heredia, A.; Andr’es, A. Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Res. Int. 2019, 119, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Ross, K. Concepts important in understanding the health benefits of phenolics in fruits and vegetables: Extractables and non-extractables phenolics and the influence of cells wall polysaccarides on bioaccessibility and bioavailability. Res. Health Nutr. 2014, 2, 29–43. [Google Scholar]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Zhao, Y.-Y.; Luo, C.-X.; Li, J.; Gao, Y.-Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind. Crops Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bioaccessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α- and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Gomes, S.M.; Miranda, R.; Santos, L. Enhancing the Biological Properties of White Chocolate: Moringa oleifera Leaf Extract as a Natural Functional Ingredient. Foods 2025, 14, 359. [Google Scholar] [CrossRef]
- Sarıtas, S.; Duman, H.; Pekdemir, B.; Rocha, J.M.; Oz, F.; Karav, S. Functional chocolate: Exploring advances in production and health benefits. Int. J. Food Sci. Technol. 2024, 59, 5303–5325. [Google Scholar] [CrossRef]
- Tuigunov, D.; Smagul, G.; Sinyavskiy, Y.; Omarov, Y.; Barmak, S. Functionalization of Chocolate: Current Trends and Approaches to Health-Oriented Nutrition. Processes 2025, 13, 1431. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Comprehensive evaluation of phenolic profile in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. Food Res. Int. 2018, 112, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.L.; Klevorn, C.M.; Hess, B.J. Minimizing the negative flavor attributes and evaluating consumer acceptance of chocolate fortified with peanut skin extracts. J. Food Sci. 2016, 81, S2824–S2830. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, P.; Pajin, B.; Loncaric, A.; Jozinovic, A.; Petrovic, J.; Fišteš, A.; Zaric, D.; Šaponjac, V.T.; Ackar, D.; Loncarevic, I. Whey as a carrier material for blueberry bioactive components: Incorporation in white chocolate. Sustainability 2022, 14, 14172. [Google Scholar] [CrossRef]
- Zyzelewicz, D.; Oracz, J.; Bilicka, M.; Kulbat-Warycha, K.; Klewicka, E. Influence of freeze-dried phenolic-rich plant powders on the bioactive compounds profile, antioxidant activity and aroma of different types of chocolates. Molecules 2021, 26, 7058. [Google Scholar] [CrossRef] [PubMed]
- Huaman-Rojas, D.; Maicelo-Quintana, J.L.; Mori-Mestanza, D.; Auquiñivin-Silva, E.A.; Medina-Mendoza, M.; Cayo-Colca, I.S.; Maldonado-Ramirez, I.; Castro-Alayo, E.M.; Balcázar-Zumaeta, C.R. Enriching white chocolates with native Amazonian blackberries improves its physicochemical properties. Appl. Food Res. 2024, 4, 100433. [Google Scholar] [CrossRef]
- Polinski, S.; Kowalska, S.; Topka, P.; Szydłowska-Czerniak, A. Physicochemical, antioxidant, microstructural properties and bioaccessibility of dark chocolate with plant extracts. Molecules 2021, 26, 5523. [Google Scholar] [CrossRef] [PubMed]
- Kotzekidou, P.; Giannakidis, P.; Boulamatsis, A. Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT—Food Sci. Technol. 2008, 41, 119–127. [Google Scholar] [CrossRef]
- Kumar, Y.; Tarafdar, A.; Badgujar, P.C. Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. J. Food Qual. 2021, 2021, 5753391. [Google Scholar] [CrossRef]
- De Oliveira, T.T.B.; dos Reis, I.M.; de Souza, M.B.; da Silva Bispo, E.; Maciel, L.F.; Druzian, J.I.; Guimarães Tavares, P.P.L.; de Oliveira Cerqueira, A.; dos Santos Boa Morte, E.; Glória, M.B.A.; et al. Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT—Food Sci. Technol. 2021, 148, 111674. [Google Scholar] [CrossRef]
- Mohamed, H.R.H. Alleviation of cadmium chloride–induced acute genotoxicity, mitochondrial DNA disruption, and ros generation by chocolate coadministration in mice liver and kidney tissues. Biol. Trace Elem. Res. 2022, 200, 3750–3761. [Google Scholar] [CrossRef] [PubMed]
- Shateri, Z.; Kooshki, A.; Hormozi, R.; Hosseini, S.A.; Mousavi, R.; Foroumandi, E. Effects of chocolate on cognitive function in healthy adults: A systematic review and meta-analysis on clinical trials. Phytother. Res. 2023, 37, 3688–3697. [Google Scholar] [CrossRef]
- Olas, B.; Kontek, B.; Malinowska, P.; Zuchowski, J.; Stochmal, A. Hippophae rhamnoides L. Fruits reduce the oxidative stress in human blood platelets and plasma. Oxid. Med. Cell Longev. 2016, 2016, 4692486. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Cui, M.; Guo, H.; Chen, S.; Du, J.; Li, H.; Li, Z. Polyphenols from Hippophae rhamnoides suppressed colon cancer growth by regulating miRNA-mediated cell cycle arrest and apoptosis in vitro and in vivo. J. Funct. Foods 2021, 87, 104780. [Google Scholar] [CrossRef]
- Boca, A.; Ilies, R.; Saccomanno, J.; Pop, R.; Vesa, S.; Tataru, A.D.; Buzoianu, A.D. Sea buckthorn extract in the treatment of psoriasis. Exp. Ther. Med. 2019, 17, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ji, H.; Hu, Q. Research progress in clinical treatment of Alzheimer’s disease and potential drugs from natural products. Yao Xue Xue Bao 2022, 12, 1954–1961. [Google Scholar] [CrossRef]
- Uchida, A.; Imai, K.; Miki, R.; Hamaguchi, T.; Nishiwaki, H.; Ito, M.; Ueyama, J.; Hattori, S.; Tano, S.; Fuma, K.; et al. Butyrate-producing bacteria in pregnancy maintenance: Mitigating dysbiosis-induced preterm birth. J. Trans. Med. 2025, 23, 533. [Google Scholar] [CrossRef]
- Elvira-Torales, L.; García-Alonso, J.; Periago-Castón, M. Nutritional importance of carotenoids and their effect on liver health: A review. Antioxidants 2019, 8, 229. [Google Scholar] [CrossRef]
- Ran, B.; Guo, C.; Li, W.; Li, W.; Wang, Q.; Qian, J.; Li, H. Sea buckthorn (Hippophae rhamnoides L.) fermentation liquid protects against alcoholic liver disease linked to regulation of liver metabolome and the abundance of gut microbiota. J. Sci. Food Agric. 2021, 101, 2846–2854. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Available online: http://www.fda.gov/nutritioneducation (accessed on 22 September 2025).
- Murariu, F.; Voda, A.D.; Murariu, O.C. Researches on food safety assessment—Supporting a healthy lifestyle for the population from NE of Romania. J. Biotechnol. 2019, 305, s68. [Google Scholar] [CrossRef]
- Joshi, M.; Aayush, K.; Sharma, K.; Bose, I.; Khan, A.A.; Atanassova, M.; Yang, T.; Murariu, O.C.; Sharma, S.; Caruso, G. Fiber and nanofiber based edible packaging for enhancing the shelf life food: A review. Food Biosci. 2024, 59, 103970. [Google Scholar] [CrossRef]
- Pedro, N.A.R.; de Oliveira, E.; Cadore, S. Study of the mineral content of chocolate flavoured beverages. Food Chem. 2006, 95, 94–100. [Google Scholar] [CrossRef]
- Dobhal, K.; Singh, N.; Semwal, A.; Negi, A. A brief review on: Hazelnuts. Int. J. Recent Sci. Res. 2018, 9, 23680–23684. [Google Scholar] [CrossRef]
Experimental Treatment | Milk Powder % | Caster Sugar % | Water % | Cocoa Butter % | Sea Buckthorn % |
---|---|---|---|---|---|
Chocolate with no additions | 45 | 20 | 15 | 20 | - |
Chocolate with 10% juice addition | 35 | 20 | 15 | 20 | 10 |
Chocolate with 15% juice addition | 30 | 20 | 15 | 20 | 15 |
Chocolate with 20% juice addition | 25 | 20 | 15 | 20 | 20 |
Chocolate with 25% juice addition | 20 | 20 | 15 | 20 | 25 |
Chocolate with 10% fruit addition | 35 | 20 | 15 | 20 | 10 |
Chocolate with 15% fruit addition | 30 | 20 | 15 | 20 | 15 |
Chocolate with 20% fruit addition | 25 | 20 | 15 | 20 | 20 |
Chocolate with 25% fruit addition | 20 | 20 | 15 | 20 | 25 |
Chocolate with 10% by-product addition | 35 | 20 | 15 | 20 | 10 |
Chocolate with 15% by-product addition | 30 | 20 | 15 | 20 | 15 |
Chocolate with 20% by-product addition | 25 | 20 | 15 | 20 | 20 |
Chocolate with 25% by-product addition | 20 | 20 | 15 | 20 | 25 |
H. rhamnoides Fruit Part | DM % | Vit C mg 100 g−1 | Fl mg CE g−1 | Pol mg GAE g−1 | AA µmol Trolox eq. g−1 | TC mg g−1 | β-car mg g−1 | Lyc mg g−1 | Pr mg g−1 | Lip mg g−1 | K | Ca | Mg | Na | P | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg 100 g−1 | ||||||||||||||||
By-product | 96.7 | 1300.6 | 2.3 | 5.0 | 22.6 | 1.0 | 0.6 | 0.2 | 150.4 | 240.6 | 56.3 | 43.6 | 64.7 | 33.8 | 61.0 | 1.36 |
Whole fruit | 14.0 | 550.8 | 3.4 | 16.3 | 119.6 | 42.1 | 28.4 | 4.9 | 120.3 | 196.2 | 67.6 | 37.5 | 56.0 | 40.3 | 53.5 | 1.45 |
Juice | 10.0 | 127.6 | 4.1 | 22.1 | 174.8 | 62.7 | 43.3 | 7.8 | 102.7 | 169.5 | 70.5 | 35.2 | 53.4 | 42.1 | 50.9 | 1.48 |
Type of Hippophae rhamnoides Fruit Material (TP) × Percentage of Addition (PA) | Fmax Compression (N) | k Elasto–Plastic Coefficient (-) | Fmax Cutting (N) |
---|---|---|---|
Chocolate with no additions | 37.6 ± 2.0 a | 0.63 ± 0.03 a | 23.3 ± 1.9 a |
Chocolate with 10% juice addition | 20.1 ± 1.7 e | 0.18 ± 0.04 cd | 20.4 ± 1.2 bc |
Chocolate with 15% juice addition | 16.6 ± 1.2 f | 0.13 ± 0.10 e | 11.7 ± 0.8 d |
Chocolate with 20% juice addition | 12.7 ± 1.5 g | 0.05 ± 0.01 f | 10.7 ± 1.3 df |
Chocolate with 25% juice addition | 12.7 ± 0.5 g | 0.05 ± 0.01 f | 9.4 ± 0.8 eg |
Chocolate with 10% fruit addition | 30.2 ± 1.0 b | 0.20 ± 0.01 c | 21.9 ± 1.7 ab |
Chocolate with 15% fruit addition | 14.8 ± 1.0 f | 0.15 ± 0.01 de | 18.6 ± 1.2 c |
Chocolate with 20% fruit addition | 10.3 ± 0.8 h | 0.04 ± 0.01 f | 10.9 ± 1.2 de |
Chocolate with 25% fruit addition | 9.2 ± 0.1 h | 0.03 ± 0.01 f | 10.7 ± 1.0 df |
Chocolate with 10% by-product addition | 37.2 ± 0.5 a | 0.26 ± 0.02 b | 22.6 ± 1.3 a |
Chocolate with 15% by-product addition | 26.3 ± 1.5 c | 0.15 ± 0.01 de | 12.0 ± 0.6 d |
Chocolate with 20% by-product addition | 15.3 ± 0.3 f | 0.04 ± 0.01 f | 8.8 ± 0.7 fg |
Chocolate with 25% by-product addition | 10.8 ± 0.9 h | 0.04 ± 0.01 f | 7.7 ± 0.9 g |
Type of Hippophae rhamnoides Fruit Material (TP) × Percentage of Addition (PA) | Hardness (N) | Consistency (mJ) | Adhesiveness (mJ) | Cohesiveness (-) | Elasticity (-) | Chewability (N) |
---|---|---|---|---|---|---|
Chocolate with no additions | 28.1 ± 0.7 a | 184.5 ± 8.4 a | 1.03 ± 0.12 i | 0.147 ± 0.015 g | 1.74 ± 0.10 a | 8.10 ± 0.63 a |
Chocolate with 10% juice addition | 14.1 ± 2.0 de | 95.6 ± 10.0 e | 1.19 ± 0.10 hi | 0.161 ± 0.010 g | 1.31 ± 0.10 b | 4.61 ± 0.29 f |
Chocolate with 15% juice addition | 12.4 ± 1.5 ef | 80.7 ± 8.0 f | 1.33 ± 0.05 h | 0.214 ± 0.010 f | 1.07 ± 0.10 df | 4.28 ± 0.29 fg |
Chocolate with 20% juice addition | 9.9 ± 0.6 gh | 65.9 ± 4.0 g | 1.50 ± 0.16 g | 0.221 ± 0.010 f | 1.06 ± 0.05 ef | 3.02 ± 0.20 h |
Chocolate with 25% juice addition | 9.7 ± 0.6 h | 57.0 ± 3.0 g | 1.72 ± 0.10 f | 0.297 ± 0.020de | 0.95 ± 0.05 f | 2.53 ± 0.10 i |
Chocolate with 10% fruit addition | 18.1 ± 0.7 c | 142.3 ± 5.0 bc | 1.29 ± 0.05 h | 0.214 ± 0.010 f | 1.69 ± 0.07 a | 7.19 ± 0.20 c |
Chocolate with 15% fruit addition | 14.6 ± 0.6 d | 139.0 ± 4.0 c | 1.44 ± 0.02 gh | 0.285 ± 0.015 e | 1.34 ± 0.05 b | 5.43 ± 0.20 e |
Chocolate with 20% fruit addition | 13.5 ± 0.5 de | 130.7 ± 3.0 c | 2.01 ± 0.10 e | 0.310 ± 0.020 cd | 1.23 ± 0.05 bc | 3.32 ± 0.10 h |
Chocolate with 25% fruit addition | 10.2 ± 0.5 gh | 107.8 ± 3.0 d | 2.38 ± 0.10 bc | 0.338 ± 0.020 b | 1.15 ± 0.05 ce | 2.69 ± 0.10 i |
Chocolate with 10% by-product addition | 26.9 ± 1.0 a | 180.2 ± 7.0 a | 2.19 ± 0.10 d | 0.288 ± 0.020 de | 1.74 ± 0.10 a | 7.63 ± 0.30 b |
Chocolate with 15% by-product addition | 21.2 ± 0.8 b | 153.0 ± 6.0 b | 2.23 ± 0.1 cd | 0.292 ± 0.015 de | 1.66 ± 0.10 a | 6.52 ± 0.20 d |
Chocolate with 20% by-product addition | 12.6 ± 0.7 ef | 92.9 ± 7.0 e | 2.51 ± 0.13 b | 0.321 ± 0.017 bc | 1.19 ± 0.05 cd | 4.06 ± 0.20 g |
Chocolate with 25% by-product addition | 11.5 ± 0.5 fg | 64.1 ± 6.0 g | 2.91 ± 0.15 a | 0.427 ± 0.020 a | 0.95 ± 0.05 f | 2.57 ± 0.10 i |
Type of Hippophae rhamnoides Fruit Material (TP) × Percentage of Addition (PA) | Dry Matter (%) | Soluble Solids (°Brix) | pH | Proteins | Fats | Mineral Substances | Ash | L* | a* | b* |
---|---|---|---|---|---|---|---|---|---|---|
Chocolate with no additions | 91.0 ± 1.2 a | 7.0 ± 0.2 a | 6.67 ± 0.02 a | 11.1 ± cf | 18.5 ± fg | 2.2 ± 0.1 d | 0.08 ± 0.01 bc | 88.3 ± 2.1 a | 2.30 ± 0.5 g | 35.5 ± 1.4 b |
Chocolate with 10% juice addition | 89.2 ± 1.5 ac | 5.0 ± 0.1 b | 5.79 ± 0.02 c | 10.9 ± dg | 18.2 ± g | 2.5 ± 0.1 bc | 0.08 ± 0.01 bc | 86.1 ± 0.6 ab | 3.51 ± 0.2 g | 25.4 ± 0.5 cd |
Chocolate with 15% juice addition | 88.2 ± 2.0 ad | 4.9 ± 0.1 b | 5.54 ± 0.01 e | 10.8 ± eg | 18.0 ± g | 2.6 ± 0.2 ab | 0.08 ± 0.01 bc | 85.2 ± 0.4 ab | 4.02 ± 0.1 f | 24.5 ± 0.4 d |
Chocolate with 20% juice addition | 86.9 ± 1.5 bd | 4.8 ± 0.2 bc | 5.01 ± 0.02 f | 10.7 ± fg | 17.7 ± g | 2.6 ± 0.3 ab | 0.09 ± 0.01 ac | 84.9 ± 0.1 b | 4.56 ± 0.1 e | 22.4 ± 0.4 e |
Chocolate with 25% juice addition | 85.9 ± 1.8 cd | 4.8 ± 0.1 bc | 4.80 ± 0.04 g | 10.5 ± g | 17.5 ± g | 2.6 ± 0.4 ab | 0.09 ± 0.02 b | 83.7 ± 1.3 b | 4.63 ± 0.1 e | 20.5 ± 0.2 ef |
Chocolate with 10% fruit addition | 89.7 ± 2.0 ab | 5.0 ± 0.2 b | 5.79 ± 0.06 c | 11.3 ± ce | 19.6 ± ef | 2.4 ± 0.4 cd | 0.07 ± 0.02 c | 70.3 ± 0.3 c | 4.76 ± 0.1 e | 27.2 ± 0.3 c |
Chocolate with 15% fruit addition | 88.7 ± 1.3 ac | 4.9 ± 0.2 b | 5.70 ± 0.01 d | 11.4 ± bd | 20.5 ± ce | 2.4 ± 0.2 cd | 0.08 ± 0.01 bc | 64.8 ± 0.1 d | 5.46 ± 0.1 d | 26.3 ± 0.3 cd |
Chocolate with 20% fruit addition | 84.8 ± 2.0 d | 4.6 ± 0.1 c | 5.56 ± 0.02 e | 11.6 ± bc | 21.3 ± cd | 2.7 ± 0.3 ab | 0.08 ± 0.02 bc | 57.7 ± 0.6 e | 6.35 ± 0.1 c | 22.2 ± 0.7 e |
Chocolate with 25% fruit addition | 84.7 ± 1.7 d | 4.4 ± 0.1 d | 5.56 ± 0.02 e | 11.9 ± ab | 22.8 ± b | 2.9 ± 0.4 ab | 0.09 ± 0.01 ab | 55.4 ± 0.1 e | 6.90 ± 0.1 b | 19.7 ± 0.3 f |
Chocolate with 10% by-product addition | 90.2 ± 1.6 ab | 5.0 ± 0.2 b | 5.86 ± 0.02 b | 11.4 ± bd | 20.3 ± de | 2.3 ± 0.2 cd | 0.08 ± 0.01 bc | 69.2 ± 0.9 c | 5.43 ± 0.3 d | 39.4 ± 1.2 a |
Chocolate with 15% by-product addition | 89.7 ± 2.0 ab | 4.9 ± 0.1 b | 5.53 ± 0.02 e | 11.6 ± bc | 21.5 ± c | 2.4 ± 0.1 cd | 0.08 ± 0.01 bc | 66.2 ± 1.2 d | 6.42 ± 0.1 c | 36.5 ± 0.7 b |
Chocolate with 20% by-product addition | 89.5 ± 2.0 ac | 4.9 ± 0.2 b | 5.02 ± 0.02 f | 11.9 ± ab | 23.0 ± b | 2.5 ± 0.1 bc | 0.08 ± 0.01 bc | 57.4 ± 0.2 e | 7.81 ± 0.5 a | 35.7 ± 0.8 b |
Chocolate with 25% by-product addition | 87.2 ± 1.8 ad | 4.8 ± 0.1 bc | 4.81 ± 0.01 g | 12.4 ± a | 24.7 ± a | 3.1 ± 0.1 a | 1.11 ± 0.01 a | 55.4 ± 0.1 e | 8.09 ± 0.1 a | 35.1 ± 0.8 b |
Type of Hippophae rhamnoides Fruit Material (TP) × Percentage of Addition (PA) | Vitamin C (mg 100 g−1) | Flavonoids (mg CE g−1) | Polyphenols (mg GAE g−1) | Antioxidant Activity (µmol Trolox eq. g−1) | Total Carotenoids (mg g−1) | β-Carotene (mg g−1) | Lycopene (mg g−1) |
---|---|---|---|---|---|---|---|
Chocolate with no additions | 0.1 ± 0.0 h | 0.08 ± 0.02 h | 0.19 ± 0.03 il | 4.8 ± 0.2 l | 0.10 ± 0.01 f | 0.51 ± 0.03 g | 0.04 ± 0.02 h |
Chocolate with 10% juice addition | 24.6 ± 1.0 f | 0.15 ± 0.01 g | 0.26 ± 0.01 h | 7.0 ± 0.3 i | 0.85 ± 0.10 e | 0.68 ± 0.03 f | 0.18 ± 0.01 e |
Chocolate with 15% juice addition | 28.2 ± 2.0 de | 0.18 ± 0.01 f | 0.32 ± 0.02 g | 9.2 ± 0.5 h | 1.23 ± 0.10 d | 0.96 ± 0.05 e | 0.19 ± 0.01 e |
Chocolate with 20% juice addition | 29.9 ± 1.0 d | 0.20 ± 0.01 e | 0.37 ± 0.02 f | 15.3 ± 1.0 f | 2.34 ± 0.10 b | 1.81 ± 0.10 c | 0.24 ± 0.02 c |
Chocolate with 25% juice addition | 42.2 ± 2.0 a | 0.25 ± 0.01 d | 0.44 ± 0.02 e | 19.5 ± 1.0 d | 2.61 ± 0.15 a | 1.97 ± 0.10 b | 0.34 ± 0.02 b |
Chocolate with 10% fruit addition | 21.1 ± 1.0 g | 0.26 ± 0.01 d | 0.48 ± 0.02 d | 17.6 ± 1.0 e | 0.73 ± 0.04 e | 0.55 ± 0.03 g | 0.15 ± 0.01 f |
Chocolate with 15% fruit addition | 28.2 ± 1.0 de | 0.29 ± 0.01 c | 0.52 ± 0.03 c | 23.6 ± 1.0 c | 1.21 ± 0.10 d | 0.91 ± 0.05 e | 0.16 ± 0.01 f |
Chocolate with 20% fruit addition | 33.4 ± 1.0 c | 0.38 ± 0.02 b | 0.65 ± 0.03 b | 27.6 ± 1.5 b | 1.74 ± 0.10 c | 1.31 ± 0.07 d | 0.21 ± 0.01 d |
Chocolate with 25% fruit addition | 37.0 ± 1.0 b | 0.48 ± 0.02 a | 0.84 ± 0.04 a | 35.0 ± 1.5 a | 2.75 ± 0.15 a | 2.07 ± 0.10 a | 0.39 ± 0.02 a |
Chocolate with 10% by-product addition | 21.1 ± 1.0 g | 0.09 ± 0.01 h | 0.17 ± 0.01 l | 4.6 ± 0.2 l | 0.13 ± 0.01 f | 0.09 ± 0.01 i | 0.12 ± 0.01 g |
Chocolate with 15% by-product addition | 24.6 ± 1.0 f | 0.13 ± 0.01 g | 0.21 ± 0.01 i | 6.1 ± 0.3 il | 0.13 ± 0.01 f | 0.10 ± 0.01 i | 0.12 ± 0.01 g |
Chocolate with 20% by-product addition | 26.4 ± 2.0 ef | 0.14 ± 0.01 g | 0.24 ± 0.01 h | 10.5 ± 1.0 h | 0.18 ± 0.01 f | 0.13 ± 0.01 hi | 0.13 ± 0.01 g |
Chocolate with 25% by-product addition | 29.9 ± 2.0 d | 0.18 ± 0.01 f | 0.31 ± 0.02 g | 12.2 ± 0.6 g | 0.24 ± 0.01 f | 0.19 ± 0.01 h | 0.15 ± 0.01 f |
Type of Hippophae rhamnoides Fruit Material (TP) × Percentage of Addition (PA) |
K (mg 100 g−1) |
Ca (mg 100 g−1) |
Mg (mg 100 g−1) |
Na (mg 100 g−1) |
P (mg 100 g−1) |
Zn (mg 100 g−1) |
---|---|---|---|---|---|---|
Chocolate with no additions | 86.7 ± 3.4 a | 121.9 ± 5.1 e | 51.7 ± 3.0 f | 110.0 ± 5.8 bc | 37.5 ± 2.1 g | 1.56 ± 0.09 |
Chocolate with 10% juice addition | 84.0 ± 4.4 a | 132.1 ± 6.2 de | 54.2 ± 3.3 ef | 110.8 ± 5.3 bc | 38.9 ± 2.0 fg | 1.53 ± 0.09 |
Chocolate with 15% juice addition | 77.3 ± 3.5 bc | 136.1 ± 6.3 cd | 58.1 ± 2.1 de | 116.1 ± 5.3 ac | 42.7 ± 2.4 df | 1.50 ± 0.08 |
Chocolate with 20% juice addition | 76.8 ± 3.9 bc | 139.5 ± 6.3 bd | 60.3 ± 3.5 cd | 117.8 ± 5.7 ac | 45.5 ± 2.4 cd | 1.49 ± 0.08 |
Chocolate with 25% juice addition | 71.8 ± 3.3 ce | 144.3 ± 6.6 ad | 63.5 ± 3.6 bd | 123.9 ± 6.2 a | 48.9 ± 2.5 bc | 1.47 ± 0.08 |
Chocolate with 10% fruit addition | 81.7 ± 3.3 ab | 136.4 ± 6.1 cd | 59.0 ± 2.9 de | 107.2 ± 5.2 c | 39.1 ± 2.1 fg | 1.50 ± 0.08 |
Chocolate with 15% fruit addition | 76.9 ± 3.9 bc | 139.2 ± 5.9 bd | 62.7 ± 3.5 bd | 110.5 ± 5.6 bc | 43.2 ± 2.2 df | 1.48 ± 0.08 |
Chocolate with 20% fruit addition | 73.8 ± 3.7 cd | 144.5 ± 7.0 ad | 65.6 ± 3.3 ac | 112.7 ± 5.5 bc | 47.9 ± 2.4 bc | 1.44 ± 0.08 |
Chocolate with 25% fruit addition | 66.7 ± 3.3 e | 149.5 ± 6.5 ab | 68.7 ± 3.3 ab | 118.1 ± 5.6 ab | 50.3 ± 2.7 ab | 1.42 ± 0.08 |
Chocolate with 10% by-product addition | 70.1 ± 4.1 de | 140.9 ± 6.5 bd | 61.3 ± 3.1 cd | 107.4 ± 5.0 c | 40.6 ± 2.2 eg | 1.47 ± 0.08 |
Chocolate with 15% by-product addition | 60.7 ± 3.6 f | 145.3 ± 6.8 ac | 65.2 ± 3.3 ac | 111.5 ± 5.8 bc | 43.7 ± 2.2 de | 1.44 ± 0.08 |
Chocolate with 20% by-product addition | 55.8 ± 3.1 f | 150.0 ± 7.5 ab | 68.2 ± 3.5 ab | 114.7 ± 4.2 ac | 48.0 ± 2.4 bc | 1.42 ± 0.09 |
Chocolate with 25% by-product addition | 49.6 ± 3.0 g | 155.5 ± 7.4 a | 70.4 ± 3.4 a | 116.8 ± 5.8 ac | 53.2 ± 2.7 a | 1.40 ± 0.08 |
n.s. |
TP × PA | AS | OC | IC | FP | T | A | CBF | AFF | MPF | ChF | CiF | FF | MPT | CBT | AFT | ST | BT | ST | FT | RT | AT | BT | Tl | MP | BP | S | H | OI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UC | bd | a | a | a | ab | ad | a | a | a | a | e | c | a | a | a | f | a | bd | e | bc | d | e | ab | ab | a | bc | ac | a |
C10JA | ad | ac | bd | b | bc | be | bc | c | bf | bd | be | ab | c | b | de | cd | b | cd | d | d | bd | bd | be | ac | c | c | ce | ad |
C15JA | bd | bd | cd | bc | c | ac | bc | c | cf | cd | ad | ab | c | b | e | cd | b | cd | bc | d | ad | ac | ae | ad | bc | bc | bd | ae |
C20JA | bd | cd | cd | bc | c | ab | cd | c | df | cd | ac | ab | c | bc | e | ab | b | cd | ac | cd | ad | a | ad | bd | bc | bc | ac | de |
C25JA | ce | d | d | bc | c | ab | d | c | f | d | ac | a | c | c | e | ab | ab | d | ac | a | ac | a | ac | d | bc | ac | ac | e |
C10FA | a | ac | bd | b | a | ce | a | ab | b | ab | ac | ab | b | b | bd | cd | bc | bc | bc | d | bd | ce | e | ab | bc | c | e | ac |
C15FA | ab | ac | bd | bc | ac | ar | cd | c | cf | cd | ac | ab | c | b | be | bc | bc | bd | ac | cd | bd | ce | ac | bd | bc | bc | ac | ad |
C20FA | ad | bd | bd | c | ac | ad | bc | c | df | cd | ab | ab | c | b | be | ab | ab | d | a | cd | ab | ce | ac | cd | bc | bc | ab | ad |
C25FA | bd | cd | cd | c | bc | a | cd | c | ef | d | a | a | c | bc | ce | a | a | d | a | bd | a | ab | a | cd | ab | a | a | be |
C10BPA | ab | ab | ab | a | ab | e | a | b | bc | ac | de | b | b | b | b | ef | d | a | cd | bd | d | e | e | a | c | ac | de | ab |
C15BPA | ac | ac | ac | a | ab | e | a | b | bd | ad | de | ab | b | b | b | de | d | b | ac | bc | cd | e | e | ab | bc | ac | bd | ab |
C20BPA | de | ac | bd | a | ab | de | ab | b | be | ad | de | ab | b | b | bc | cd | cd | bc | ac | b | bd | d | de | ac | bc | ab | ad | ad |
C25BPA | e | bd | bd | a | ab | ce | ab | b | bf | bd | ce | ab | b | b | bd | cd | ab | bc | ab | b | ac | bd | ce | ac | bc | a | ad | ce |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murariu, O.C.; Lipșa, F.D.; Ulea, E.; Murariu, F.; Ciobanu, M.-M.; Frunză, G.; Cârlescu, P.M.; Stoica, F.; Diaconu, N.; Caruso, G. Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework. Horticulturae 2025, 11, 1187. https://doi.org/10.3390/horticulturae11101187
Murariu OC, Lipșa FD, Ulea E, Murariu F, Ciobanu M-M, Frunză G, Cârlescu PM, Stoica F, Diaconu N, Caruso G. Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework. Horticulturae. 2025; 11(10):1187. https://doi.org/10.3390/horticulturae11101187
Chicago/Turabian StyleMurariu, Otilia Cristina, Florin Daniel Lipșa, Eugen Ulea, Florin Murariu, Marius-Mihai Ciobanu, Gabriela Frunză, Petru Marian Cârlescu, Florina Stoica, Nicoleta Diaconu, and Gianluca Caruso. 2025. "Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework" Horticulturae 11, no. 10: 1187. https://doi.org/10.3390/horticulturae11101187
APA StyleMurariu, O. C., Lipșa, F. D., Ulea, E., Murariu, F., Ciobanu, M.-M., Frunză, G., Cârlescu, P. M., Stoica, F., Diaconu, N., & Caruso, G. (2025). Influence of Sea Buckthorn Fruit Part on Physical Properties, Quality and Bioactive Properties of White Chocolate Under the Circular Economic Framework. Horticulturae, 11(10), 1187. https://doi.org/10.3390/horticulturae11101187