Evaluation of Integrated Pest and Disease Management Combinations against Major Insect Pests and Diseases of Tomato in Tamil Nadu, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations
2.2. Plant Sources
2.3. IPDM Components and Resources
Nursery Preparation and Grafted Eggplant–Tomato Seedlings Generation
2.4. Field Preparation, Planting, and IPDM Imposition
- Application of neem cake @ 250 kg/ha.
- Seedling drenching with Imidacloprid 17.8 SL @ 5 mL/L (10 days before planting).
- Seedling drenching with B. subtilis + T. asperellum + P. lilacinum each @ 5 g/L (at the time of planting) and shade drying for 30 min.
- Yellow sticky traps @ 100/ha were installed with P. absoluta lures for mass trapping one week after transplanting.
- Installation of blue sticky traps @ 100/ha one week after transplanting for mass trapping of sucking pests.
- Installation of pheromone traps @ 12/ha for H. armigera from 30 days after transplanting.
- Application of Econeem Plus® 1% @ 2 mL/L @ 1000 mL/ha at 30 days after planting to manage sucking pests and any borers.
- The treatment involved applying B. subtilis @ 0.5% on the 40th day and repeating the spray after 15 days.
- In the experimental fields, the lures for H. armigera and P. absoluta were replaced once every three weeks, and the yellow and blue sticky traps were replaced once every fortnight. No such interventions were imposed in the farmers’ practice plots. The farmer’s practice treatment was a calendar-based application of chemical pesticides.
2.5. Observations of Insect Pests, Diseases, and Natural Enemies
2.6. Observation of Plant Growth Parameters and Yield
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. World Food and Agriculture-Statistical Yearbook; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Lange, W.H.; Bronson, L. Insect pests of tomatoes. Annu. Rev. Entomol. 1981, 26, 345–371. [Google Scholar] [CrossRef]
- Butani, D.K. Insect pest of vegetables-tomato. Pesticides 1977, 11, 33–36. [Google Scholar]
- Reddy, N.A.; Kumar, C.T.A. Insect pests of tomato, Lycopersicon esculentum Mill. in eastern dry zone of Karnataka. Insect. Environ. 2004, 10, 40–42. [Google Scholar]
- Sridhar, V.; Naik, S.O.; Nitin, K.S.; Asokan, R.; Swathi, P.; Gadad, H. Efficacy of integrated pest management tools evaluated against Tuta absoluta (Meyrick) on tomato in India. J. Biol. Cont. 2019, 33, 264–270. [Google Scholar] [CrossRef]
- Shanmugam, P.S.; Ramaraju, K.; Indhumathi, K. First record of South American tomato moth, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Tamil Nadu, India. Entomon 2016, 41, 61–66. [Google Scholar] [CrossRef]
- Dhandapani, N.U.; Shekhar, R.; Murugan, M. Bio-intensive pest management (BIPM) in major vegetable crops: An Indian perspective. Food Agric. Environ. 2003, 1, 333–339. [Google Scholar]
- Choudhary, K.; Kumar, S.; Sharma, D.; Ruchika, K.; Thakur, K.; Yangchan, J. A review on destructive tomato pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae) and its management. J. Biol. Cont. 2022, 36, 84. [Google Scholar] [CrossRef]
- Singh, K.; Raju, S.V.S.; Singh, D.K. Seasonal incidence of white fly (Bemisia tabaci Gennadius) on Tomato (Lycopersicon esculentum Mill.) in eastern region of UP. Veg. Sci. 2011, 38, 200–202. [Google Scholar]
- Kagezi, E.L.; Kyamanywa, S.; Akemo, M.C.; Luther, G.; Erbaugh, M. Damage-Yield Relationships of Major Pests of Tomatoes in Central Uganda. IPM CRSP Annu. Rep. 2000, 8, 259–262. [Google Scholar]
- Lukyanenko, A.N. Disease resistance in tomato. In Genetic Improvement of Tomato; Springer: Berlin/Heidelberg, Germany, 1991; pp. 99–119. [Google Scholar]
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Singh, D.; Sinha, S.; Yadav, D.K.; Sharma, J.P.; Srivastava, D.K.; Lal, H.C.; Mondal, K.K.; Jaiswal, R.K. Characterization of biovar/races of Ralstonia solanacearum, the incitant of bacterial wilt in solanaceous crops. Indian Phytopath 2010, 63, 261–265. [Google Scholar]
- Manikandan, R.; Raguchander, T. Prevalence of tomato wilt disease incited by soil-borne pathogen Fusarium oxysporum f. sp. lycopersici (Sacc.) in Tami Nadu. J. Trop. Agric. 2014, 32, 279–283. [Google Scholar]
- Yadav, O.P.; Dabbas, M.R.; Gaur, L.B. Screening of tomato advanced lines, genotypes against Alternaria solani. Plant Arch. 2014, 14, 553–555. [Google Scholar]
- Koshale, K.; Khare, C. Seasonal occurrence of prevalent diseases of tomato under field conditions. Int. J. Chem. Stud. 2018, 6, 2002–2006. [Google Scholar]
- Mathur, K.; Shekhawat, K.S. Chemical Control of Early Blight in Kharif Sown Tomato. Indian J. Mycol. Plant Pathol. 1986, 16, 235–238. [Google Scholar]
- Nowicki, M.; Kozik, E.U.; Foolad, M.R. Late blight of tomato. In Translational Genomics for Crop Breeding: Biotic Stress; Rajeev, K., Roberto Tuberosa, V., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; Volume 1, pp. 241–265. [Google Scholar] [CrossRef]
- Nirmaladevi, D.; Venkataramana, M.; Srivastava, R.K.; Uppalapati, S.R.; Gupta, V.K.; Yli-Mattila, T.; Chandra, N.S. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci. Rep. 2016, 6, 21367. [Google Scholar] [CrossRef]
- Sidharthan, V.K.; Aggarwal, R.; Surenthiran, N.; Shanmugam, V. Selection and characterization of the virulent Fusarium oxysporum f. sp. lycopersici isolate inciting vascular wilt of tomato. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1749–1756. [Google Scholar] [CrossRef]
- Kavitha, R.; Umesha, S. Prevalence of bacterial spot in tomato fields of Karnataka and effect of biological seed treatment on disease incidence. Crop Prot. 2007, 26, 991–997. [Google Scholar] [CrossRef]
- Nagendran, K.; Venkataravanappa, V.; Chauhan, N.S.; Kodandaram, M.H.; Rai, A.B.; Singh, B.; Vennila, S. Viral diseases: A threat for tomato cultivation in Indo-Gangetic eastern plains of India. J. Plant Pathol. 2019, 101, 15–22. [Google Scholar] [CrossRef]
- Kumar, A.; Razi, R.; Singh, A.; Das, H.; Res-vgg, A. novel model for plant disease detection by fusing vgg16 and resnet models. In International Conference on Machine Learning, Image Processing, Network Security and Data Sciences; Springer: Singapore, 2020; pp. 383–400. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Khan, T.A. Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch. Phytopathol. PFL 2010, 43, 609–614. [Google Scholar] [CrossRef]
- Srinivasnaik, S.; Sridharan, S.; Bhuvaneswari, K.; Kumar, S.M.; Nakkeeran, S.; Jalali, S.K. Identification of Extensive Insecticide Usage Areas through Insecticide Usage Pattern Survey for Exploration of Insecticide Tolerant Strains of Entomophages in Major Vegetable Growing Districts of Tamil Nadu. Environ. Ecol. 2022, 40, 1481–1488. [Google Scholar]
- Mund, J.P. The agricultural sector in Cambodia: Trends, processes and disparities. Pac. News 2011, 35, 10–14. [Google Scholar]
- Barzman, M.; Barberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Sattin, M. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Dinakaran, D.; Gajendran, G.; Mohankumar, S.; Karthikeyan, G.; Thiruvudainambi, S.; Jonathan, E.I.; Muniappan, R. Evaluation of integrated pest and disease management module for shallots in Tamil Nadu, India: A farmer’s participatory approach. J. Integr. Pest Manag. 2013, 4, B1–B9. [Google Scholar] [CrossRef]
- Gajanana, T.M.; Moorthy, P.N.; Anupama, H.L.; Raghunatha, R.; Kumar, G.T. Integrated pest and disease management in tomato: An economic analysis. Agri. Econ. Res. Rev. 2006, 19, 269–280. [Google Scholar] [CrossRef]
- Collange, B.; Mireille, N.; Peyre, G.; Mateille, T.; Tchamitchian, M. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot. 2011, 30, 1251–1262. [Google Scholar] [CrossRef]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M.L. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.) A century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- Ravishankar, M.; Manickam, R.; Chen, J.R.; Sotelo-Cardona, P.; Kenyon, L.; Srinivasan, R. Evaluation of different bacterial wilt-resistant eggplant rootstocks for grafting tomato. Plants 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Black, L.L.; Wu, D.L.; Wang, J.F. Grafting Tomatoes for Production in the Hot-Wet Season, Asian Vegetable Research & Development Center; AVRDC Publication: Shanhua, Taiwan, 2003; Volume 3, p. 551. [Google Scholar]
- NICRA Team of Tomato Pest Surveillance. Manual for Tomato Pest Surveillance; Jointly published by National Centre for Integrated Pest Management (NCIPM); Central Institute for Dryland Agriculture, Hyderabad, Indian Institute of Horticultural Research, Bengaluru and Indian Institute of Vegetable Research, Varanasi: New Delhi, India, 2012.
- Kabdwal, B.C.; Sharma, R.; Tewari, R.; Tewari, A.K.; Singh, R.P.; Dandona, J.K. Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and Arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt J. Biol. Pest Control 2019, 29, 1. [Google Scholar] [CrossRef]
- Akinkunmi, O.Y.; Akintoye, H.A.; Umeh, V.C.; AdeOluwa, O.O. Influence of spacing on the feeding activities of major pests of sunflowers and their associated damage. Agric. Bio. J. N. Am. 2012, 3, 233–236. [Google Scholar] [CrossRef]
- Asiry, K.A.; Huda, M.N.; Mousa, M.A. Abundance and population dynamics of the key insect pests and agronomic traits of tomato (Solanum lycopersicon L.) varieties under different planting densities as a sustainable pest control method. Horticulturae 2022, 8, 976. [Google Scholar] [CrossRef]
- Porras, M.F.; Malacrinò, A.; An, C.; Seng, K.H.; Socheath, O.; Norton, G.; O’Rourke, M.E. An Integrated Pest Management Program Outperforms Conventional Practices for Tomato (Solanum lycopersicum) in Cambodia. Plant Health Prog. 2022, 23, 206–211. [Google Scholar] [CrossRef]
- Reddy, G.V.; Tangtrakulwanich, K. Module of integrated insect pest management on tomato with growers’ participation. J. Agrl. Sci. 2014, 19, 269–280. [Google Scholar] [CrossRef]
- Wagh, S.S.; Patil, P.D. Efficacy of IPM modules against tomato leaf miner, Liriomyzatrifolii (Burgess). Trends Biosci. 2012, 5, 188–190. [Google Scholar]
- Jakhar, B.L.; Suman, S. Evaluation of different modules for the management of tomato fruit borer, Helicoverpa armigera pest of tomato. J. Appl. Nat. Sci. 2015, 7, 155–158. [Google Scholar] [CrossRef]
- Batista, F.A.; Almeida, J.E.; Lamas, C. Effect of Thiamethoxam on Entomopathogenic Microorganisms. Neotrop. Entomol. 2001, 30, 437–447. [Google Scholar] [CrossRef]
- Ravi, M.; Santharam, G.; Sathiah, N. Ecofriendly management of tomato fruit borer, Helicoverpa armigera (Hubner). J. Biopestic. 2008, 1, 134–137. [Google Scholar] [CrossRef]
- Yan, L.; Khan, R.A. Biological control of bacterial wilt in tomato through the metabolites produced by the biocontrol fungus Trichoderma harzianum. Egypt. J. Biol. Pest Control 2021, 31, 5. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Hooda, K.S.; Bhatt, J.C.; Jhosi, D.; Sushil, S.N.; Singh, S.R.K.; Siddiqie, S.S.; Choudhary, B. On-farm Validation of IPM Module in Tomato in North West Himalayas. Indian J. Ext. Educ. 2009, 45, 33–36. [Google Scholar]
- Hooda, K.S.; Sushil, S.N.; Joshi, D.; Bhatt, J.C.; Hedau, N.K.; Gupta, H.S. Efficacy of different modules for the management of major pests of tomato (Lycopersicon esculentum) and garden pea (Pisum sativum) in the Himalayas. Indian Phytopath 2011, 64, 335–341. [Google Scholar]
- Elad, Y. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot. 2000, 19, 709–714. [Google Scholar] [CrossRef]
- Dara, S.K. IPM solutions for insect pests in California strawberries: Efficacy of botanical, chemical, mechanical, and microbial options. CAPCA Advis. 2016, 19, 40–46. [Google Scholar]
- Thomine, E.; Mumford, J.; Rusch, A.; Desneux, N. Using crop diversity to lower pesticide use: Socio-ecological approaches. Sci. Total Environ. 2022, 804, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Trumble, J.T.; Alvarado-Rodriguez, B. Development and economic evaluation of an IPM program for fresh market tomato production in Mexico. Agric. Ecosyst. Environ. 1993, 43, 267–284. [Google Scholar] [CrossRef]
- De Costa, D.M.; De Costa, J.M.; Weerathunga, M.T.; Prasanna, K.; Bulathsinhalage, V.N. Assessment of management practices, awareness of the safe use of pesticides, and perception of integrated management of pests and diseases of chili and tomato grown by small-scale farmers in selected districts of Sri Lanka. Pest Manag. Sci. 2021, 77, 5001–5020. [Google Scholar] [CrossRef]
Assigned Location Name | Location | District | Geo-Coordinates | Hybrid | Date of Transplanting | Experiment Area (m2) |
---|---|---|---|---|---|---|
LI | Vandikaranur | Coimbatore | 11.006123° N 76.830208° E | Shivam | 26 September 2022 | 1860 |
LII | Karadimadai | Coimbatore | 10.929349° N 76.854019° E | Shivam | 30 September 2022 | 1274 |
LIII | Somanahalli | Dharmapuri | 12.237983° N 78.097717° E | Madan | 24 September 2022 | 1500 |
LIV | Kamalapuram | Dharmapuri | 12.94662° N 78.149872° E | Shivam | 23 September 2022 | 1465 |
Tr. No. | Treatments |
---|---|
T1 | Eggplant rootstock (RS)-EG203-grafted tomato + IPDM |
T2 | Eggplant RS-TS03-grafted tomato + IPDM |
T3 | Tomato + IPDM |
T4 | Eggplant RS-EG203-grafted tomato + farmers’ practice (FP) |
T5 | Eggplant RS-TS03-grafted tomato + FP |
T6 | Tomato + FP |
Location | 45 DAT | 60 DAT | 75 DAT | 90 DAT | 120 DAT | 135 DAT |
---|---|---|---|---|---|---|
Location I (Vandikaranur, Coimbatore) | M. anisopliae @ 5 mL/L. | B. subtilis @ 4 g/L | B. thuringienisis @ 2 mL/L | B. subtilis @ 4 g/L | B. bassiana @ 5 mL/L | |
Location II (Karadimadai, Coimbatore) | - | B. subtilis @ 4 g/L + M. anisopliae @ 5 mL/L | B. thuringienisis @ 2 mL/L | B. subtilis @ 4 g/L | B. bassiana @ 5 mL/L | Tilt® 25%EC @ 1 mL/L |
Location III (Somanahalli, Dharmapuri) | M. anisopliae @ 5 mL/L | B. subtilis @ 4 g/L | B. thuringienisis @ 2 mL/L and B. subtilis @ 4 g/L | B. subtilis @ 4 g/L | Tracer® 45%SC @ 0.4 mL/L | Tilt® 25%EC @ 1 mL/L |
Location IV (Kamalapuram, Dharmapuri) | M. anisopliae @ 5 mL/L | B. subtilis @ 4 g/L | B. thuringienisis @ 2 mL/L | B. subtilis @ 4 g/L | B. bassiana @ 5 mL/L |
Component | Particulars |
---|---|
Azadirachtin 1% EC (Econeem® Plus) | Ms. Margo Biocontrols Private Ltd., Hyderabad, India |
M. anisopliae (Grub hunter®) | Ms. Bannariamman Sugars Ltd., Erode, India |
B. bassiana (Larva hunter®) | |
B. thuringien sis (Larva terminator®) | |
B. subtilis | Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore |
T. asperellum | |
P. lilacinum | Department of Nematology, TNAU, Coimbatore, India |
Imidacloprid 17.8% SL (Confidor®) | Ms. Bayer India Ltd., Mumbai, India |
Spinosad 45% SC (Tracer®) | Ms. Dow Agro Science Ltd., Hyderabad, India |
Propiconozole 25% EC (Tilt®) | Ms. Syngenta India Ltd., Pune, India |
Yellow sticky traps | Ms. Pest Control of India, Bengaluru, India |
Blue sticky traps | |
Sleeve traps (Fero-T®) | |
Phthorimaea absoluta lures (TLM lure®) | |
Helicoverpa armigera lures (Helilure®) |
Treatments | Nymphs and Adults (Nos./Leaf) * Mean ± SE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leafhopper (A. biguttula) | Thrips (T. tabaci) | Whitefly (B. tabaci) | ||||||||||
L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | |
T1 | 3.1 ± 0.39 a | 3.3 ± 0.05 a | 1.3 ± 0.08 a | 1.9 ± 0.16 a | 0.8 ± 0.08 a | 0.1 ± 0.03 a | 0.0 ± 0.00 | 0.1 ± 0.02 a | 2.3 ± 0.14 a | 1.5 ± 0.10 a | 2.2 ± 0.14 a | 2.0 ± 0.16 a |
T2 | 4.5 ± 0.07 bc | 5.0 ± 0.20 c | 2.8 ± 0.26 c | 3.6 ± 0.17 c | 1.4 ± 0.03 b | 0.4 ± 0.06 b | 0.0 ± 0.00 | 0.3 ± 0.05 bc | 3.6 ± 0.15 b | 3.2 ± 0.12 c | 3.6 ± 0.18 cd | 3.6 ± 0.13 c |
T3 | 3.5 ± 0.03 ab | 4.0 ± 0.19 b | 1.6 ± 0.02 ab | 2.3 ± 0.13 ab | 0.9 ± 0.08 a | 0.3 ± 0.06 ab | 0.0 ± 0.00 | 0.1 ± 0.03 ab | 2.5 ± 0.19 a | 1.9 ± 0.16 ab | 2.7 ± 0.14 ab | 2.5 ± 0.10 ab |
T4 | 5.4 ± 0.41 cd | 6.0 ± 0.11 d | 3.7 ± 0.22 d | 4.5 ± 0.20 d | 1.8 ± 0.10 c | 0.7 ± 0.07 cd | 0.0 ± 0.00 | 0.4 ± 0.04 cd | 4.3 ± 0.16 b | 3.9 ± 0.13 d | 4.3 ± 0.17 de | 4.4 ± 0.19 d |
T5 | 5.9 ± 0.09 d | 6.4 ± 0.07 d | 5.0 ± 0.23 e | 5.6 ± 0.17 e | 1.9 ± 0.07 c | 0.9 ± 0.07 d | 0.0 ± 0.00 | 0.5 ± 0.04 d | 5.4 ± 0.06 c | 4.8 ± 0.17 e | 5.0 ± 0.17 e | 5.7 ± 0.26 e |
T6 | 3.9 ± 0.16 ab | 4.4 ± 0.03 b | 2.0 ± 0.10 b | 2.7 ± 0.13 b | 1.1 ± 0.11 ab | 0.5 ± 0.05 bc | 0.0 ± 0.00 | 0.2 ± 0.03 ab | 2.9 ± 0.06 a | 2.4 ± 0.07 b | 3.0 ± 0.26 abc | 2.8 ± 0.18 b |
F value | 17.39 | 97.57 | 113.58 | 77.87 | 29.42 | 31.83 | 17.09 | 52.75 | 87.30 | 39.17 | 71.94 | |
Trt, DF | 5, 15 | |||||||||||
(p < 0.05) | <0.0001 |
Treatments | Larvae (Nos./Plant) * Mean ± SE | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P. absoluta | L. trifolii | S. litura | H. armigera | |||||||||||||
L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | |
T1 | 3.62 ± 0.10 a | 2.2 ± 0.13 a | 1.6 ± 0.08 a | 1.4 ± 0.41 a | 1.5 ± 0.13 a | 0.7 ± 0.03 a | 0.9 ± 0.08 a | 1.2 ± 0.17 a | 0.5 ± 0.08 a | 0.3 ± 0.06 a | 0.2 ± 0.05 a | 0.4 ± 0.07 a | 0.7 ± 0.03 a | 0.2 ± 0.04 a | 0.4 ± 0.04 a | 0.9 ± 0.13 a |
T2 | 4.80 ± 0.18 c | 3.4 ± 0.10 c | 3.0 ± 0.04 c | 3.0 ± 0.17 c | 3.1 ± 0.28 bc | 1.8 ± 0.15 c | 2.2 ± 0.27 c | 2.7 ± 0.18 c | 1.3 ± 0.16 bc | 1.1 ± 0.08 b | 1.0 ± 0.09 c | 1.5 ± 0.20 c | 1.6 ± 0.16 c | 0.7 ± 0.03 c | 1.2 ± 0.12 cd | 2.2 ± 0.17 c |
T3 | 4.00 ± 0.11 ab | 2.6 ± 0.14 ab | 2.0 ± 0.05 ab | 1.8 ± 0.12 ab | 1.8 ± 0.14 a | 1.0 ± 0.10 ab | 1.4 ± 0.11 ab | 1.6 ± 0.13 ab | 0.8 ± 0.09 ab | 0.5 ± 0.06 a | 0.3 ± 0.04 ab | 0.6 ± 0.09 ab | 1.0 ± 0.05 ab | 0.3 ± 0.05 ab | 0.6 ± 0.07 ab | 1.3 ± 0.06 ab |
T4 | 5.92 ± 0.07 d | 4.3 ± 0.07 d | 3.7 ± 0.08 d | 3.9 ± 0.14 d | 3.9 ± 0.11 cd | 2.7 ± 0.13 d | 3.2 ± 0.18 c | 3.5 ± 0.31 c | 2.0 ± 0.16 c | 1.4 ± 0.08 bc | 1.6 ± 0.17 d | 2.3 ± 0.24 d | 2.2 ± 0.09 cd | 1.2 ± 0.04 d | 1.7 ± 0.16 de | 2.8 ± 0.14 cd |
T5 | 6.44 ± 0.13 d | 4.9 ± 0.08 e | 4.7 ± 0.11 e | 4.8 ± 0.18 e | 4.3 ± 0.23 d | 3.2 ± 0.07 d | 3.8 ± 0.23 c | 4.7 ± 0.13 d | 2.6 ± 0.11 d | 1.8 ± 0.07 c | 2.0 ± 0.13 d | 2.9 ± 0.13 e | 2.6 ± 0.12 d | 1.5 ± 0.04 d | 2.3 ± 0.30 e | 3.4 ± 0.21 d |
T6 | 4.28 ± 0.15 abc | 2.9 ± 0.13 b | 2.4 ± 0.17 b | 2.3 ± 0.09 b | 2.2 ± 0.27 b | 1.3 ± 0.09 b | 1.7 ± 0.22 bc | 2.0 ± 0.21 b | 1.1 ± 0.16 b | 0.6 ± 0.12 a | 0.6 ± 0.10 b | 0.9 ± 0.14 b | 1.2 ± 0.10 bc | 0.5 ± 0.09 b | 0.9 ± 0.05 bc | 1.6 ± 0.28 b |
F value | 61.80 | 117.75 | 114.83 | 83.39 | 49.23 | 106.09 | 59.75 | 58.70 | 27.49 | 39.16 | 60.54 | 84.42 | 49.31 | 88.88 | 38.07 | 47.98 |
Trt, DF | 5, 15 | |||||||||||||||
(p < 0.05) | <0.0001 |
Source | df | A. biguttula | T. tabaci | B. tabaci | P. absoluta | L. trifolii | S. litura | H. armigera | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | ||
Model | 35 | 56.59 | <0.0001 | 87.47 | <0.0001 | 38.59 | <0.0001 | 81.08 | <0.0001 | 42.54 | <0.0001 | 22.78 | <0.0001 | 38.61 | <0.0001 |
Location | 3 | 228.71 | <0.0001 | 833.32 | <0.0001 | 22.10 | <0.0001 | 337.92 | <0.0001 | 60.99 | <0.0001 | 28.49 | <0.0001 | 152.04 | <0.0001 |
Treatment | 5 | 245.01 | <0.0001 | 74.78 | <0.0001 | 250.44 | <0.0001 | 352.40 | <0.0001 | 249.16 | <0.0001 | 168.21 | <0.0001 | 169.49 | <0.0001 |
Treatment × Location | 15 | 3.47 | 0.0003 | 11.56 | <0.0001 | 1.13 | 0.3541 | 2.84 | 0.0021 | 0.79 | 0.6822 | 1.62 | <0.0949 | 0.82 | 0.6551 |
Treatments | Bacterial Leaf Spot * | Early Blight * | Fusarium Wilt * | Tomato Leaf Curl Virus * | Tomato Mosaic Virus * | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | L I | L II | L III | L IV | |
T1 | 1.3 ± 0.05 a | 1.5 ± 0.06 a | 0.9 ± 0.06 a | 0.8 ± 0.11 a | 3.1 ± 0.10 a | 2.4 ± 0.22 a | 2.1 ± 0.05 a | 1.6 ± 0.08 a | 2.4 ± 0.08 a | 2.5 ± 0.12 a | 0.8 ± 0.08 a | 2.0 ± 0.10 a | 2.1 ± 0.07 a | 1.6 ± 0.13 a | 1.0 ± 0.14 a | 0.9 ± 0.09 a | 1.4 ± 0.05 a | 1.1 ± 0.12 a | 0.8 ± 0.12 a | 0.7 ± 0.11 a |
T2 | 2.4 ± 0.15 c | 2.9 ± 0.07 c | 1.9 ± 0.14 c | 1.8 ± 0.04 c | 5.4 ± 0.07 d | 4.2 ± 0.24 c | 4.5 ± 0.16 c | 3.1 ± 0.09 c | 4.3 ± 0.12 c | 4.1 ± 0.06 c | 2.3 ± 0.05 d | 3.9 ± 0.09 d | 3.4 ± 0.05 c | 2.9 ± 0.12 c | 2.1 ± 0.04 c | 1.9 ± 0.07 c | 2.9 ± 0.08 c | 2.2 ± 0.14 c | 1.7 ± 0.08 c | 1.3 ± 0.10 b |
T3 | 1.6 ± 0.07 ab | 1.8 ± 0.15 ab | 1.1 ± 0.07 ab | 1.0 ± 0.09 ab | 3.4 ± 0.09 b | 2.7 ± 0.18 a | 2.4 ± 0.17 a | 1.9 ± 0.14 a | 2.9 ± 0.16 b | 4.1 ± 0.10 c | 1.3 ± 0.10 b | 2.4 ± 0.03 b | 2.4 ± 0.08 ab | 1.9 ± 0.14 a | 1.3 ± 0.04 ab | 1.2 ± 0.11 ab | 1.8 ± 0.13 a | 1.3 ± 0.07 a | 1.1 ± 0.15 ab | 0.8 ± 0.10 a |
T4 | 4.8 ± 0.07 d | 5.6 ± 0.16 d | 4.9 ± 0.15 d | 3.7 ± 0.09 d | 10.9 ± 0.07 e | 10.9 ± 0.27 d | 9.9 ± 0.13 d | 6.9 ± 0.05 d | 7.1 ± 0.06 d | 8.0 ± 0.13 d | 3.1 ± 0.09 e | 6.4 ± 0.09 e | 6.2 ± 0.07 d | 5.5 ± 0.12 d | 5.1 ± 0.12 d | 3.5 ± 0.13 d | 4.8 ± 0.15 d | 3.7 ± 0.06 d | 3.1 ± 0.11 d | 2.1 ± 0.06 c |
T5 | 5.9 ± 0.08 e | 6.4 ± 0.08 e | 5.9 ± 0.10 e | 4.6 ± 0.07 e | 11.9 ± 0.09 f | 12.3 ± 0.24 e | 11.4 ± 0.11 e | 7.7 ± 0.06 e | 8.3 ± 0.08 e | 8.1 ± 0.19 d | 6.3 ± 0.07 f | 7.9 ± 0.09 f | 7.3 ± 0.15 e | 6.6 ± 0.21 e | 6.1 ± 0.10 e | 4.1 ± 0.14 e | 5.8 ± 0.15 e | 4.8 ± 0.14 e | 3.8 ± 0.15 d | 2.6 ± 0.13 c |
T6 | 2.0 ± 0.18 b | 2.0 ± 0.04 b | 1.5 ± 0.12 bc | 1.3 ± 0.16 bc | 4.2 ± 0.09 c | 3.5 ± 0.26 b | 3.0 ± 0.15 b | 2.3 ± 0.11 b | 3.2 ± 0.08 b | 3.1 ± 0.26 b | 1.7 ± 0.09 c | 3.0 ± 0.14 c | 2.9 ± 0.10 b | 2.2 ± 0.09 b | 1.6 ± 0.12 bc | 1.5 ± 0.12 b | 2.3 ± 0.09 b | 1.7 ± 0.11 b | 1.5 ± 0.09 bc | 1.0 ± 0.11 ab |
F value | 279.59 | 310.06 | 237.92 | 120.47 | 1485.04 | 1779.90 | 855.65 | 450.17 | 327.95 | 588.90 | 270.19 | 750.95 | 459.95 | 745.14 | 264.93 | 179.10 | 210.42 | 203.51 | 106.10 | 41.07 |
Trt, DF | 5, 15 | |||||||||||||||||||
(p < 0.05) | <0.0001 |
Source | df | Bacterial Leaf Spot | Early Blight | Fusarium Wilt | Tomato Leaf Curl Virus | Tomato Mosaic Virus | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | ||
Model | 35 | 130.77 | <0.0001 | 590.86 | <0.0001 | 328.82 | <0.0001 | 218.88 | <0.0001 | 84.90 | <0.0001 |
Location | 3 | 100.48 | <0.0001 | 558.43 | <0.0001 | 784.44 | <0.0001 | 372.10 | <0.0001 | 225.88 | <0.0001 |
Treatment | 5 | 845.32 | <0.0001 | 3744.09 | <0.0001 | 1753.10 | <0.0001 | 1279.12 | <0.0001 | 439.67 | <0.0001 |
Treatment × Location | 15 | 2.51 | 0.0061 | 17.02 | <0.0001 | 23.71 | <0.0001 | 6.80 | 0.0001 | 3.80 | 0.0001 |
Source | df | Branches | Leaves (Trifoliate) | Height | Fruit | Yield | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F | ||
Model | 35 | 51.65 | <0.0001 | 219.11 | <0.0001 | 293.35 | <0.0001 | 85.72 | <0.0001 | 17.45 | <0.0001 |
Location | 3 | 171.11 | <0.0001 | 208.92 | <0.0001 | 329.24 | <0.0001 | 34.19 | <0.0001 | 42.58 | <0.0001 |
Treatment | 5 | 246.77 | <0.0001 | 1385.89 | <0.0001 | 1837.24 | <0.0001 | 569.88 | <0.0001 | 88.09 | <0.0001 |
Treatment × Location | 15 | 0.56 | 0.8931 | 6.35 | <0.0001 | 5.71 | <0.0001 | 2.62 | 0.0043 | 1.13 | 0.3539 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugam, S.P.; Murugan, M.; Shanthi, M.; Elaiyabharathi, T.; Angappan, K.; Karthikeyan, G.; Arulkumar, G.; Manjari, P.; Ravishankar, M.; Sotelo-Cardona, P.; et al. Evaluation of Integrated Pest and Disease Management Combinations against Major Insect Pests and Diseases of Tomato in Tamil Nadu, India. Horticulturae 2024, 10, 766. https://doi.org/10.3390/horticulturae10070766
Shanmugam SP, Murugan M, Shanthi M, Elaiyabharathi T, Angappan K, Karthikeyan G, Arulkumar G, Manjari P, Ravishankar M, Sotelo-Cardona P, et al. Evaluation of Integrated Pest and Disease Management Combinations against Major Insect Pests and Diseases of Tomato in Tamil Nadu, India. Horticulturae. 2024; 10(7):766. https://doi.org/10.3390/horticulturae10070766
Chicago/Turabian StyleShanmugam, Sankaran Pagalahalli, Marimuthu Murugan, Mookiah Shanthi, Thiyagarajan Elaiyabharathi, Kathithachalam Angappan, Gandhi Karthikeyan, Gopal Arulkumar, Palanisamy Manjari, Manickam Ravishankar, Paola Sotelo-Cardona, and et al. 2024. "Evaluation of Integrated Pest and Disease Management Combinations against Major Insect Pests and Diseases of Tomato in Tamil Nadu, India" Horticulturae 10, no. 7: 766. https://doi.org/10.3390/horticulturae10070766
APA StyleShanmugam, S. P., Murugan, M., Shanthi, M., Elaiyabharathi, T., Angappan, K., Karthikeyan, G., Arulkumar, G., Manjari, P., Ravishankar, M., Sotelo-Cardona, P., Oliva, R., & Srinivasan, R. (2024). Evaluation of Integrated Pest and Disease Management Combinations against Major Insect Pests and Diseases of Tomato in Tamil Nadu, India. Horticulturae, 10(7), 766. https://doi.org/10.3390/horticulturae10070766