Physiological, Biochemical, and Molecular Response in Siete Caldos Chili Pepper Plants (Capsicum frutescens) Exposed to Water Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining and Acclimatizing Seedlings
2.2. Application of Water Stress
2.3. Relative Water Content
2.4. Electrolyte Leakage and Membrane Stability Index
2.5. Total Chlorophyll Content
2.6. Proline Content in Leaf and Root
2.7. Determination of Enzymatic Activity of Catalase and Peroxidase
2.7.1. Total Protein Extraction and Quantification
2.7.2. Catalase Activity (CAT EC 1.11.1.6)
2.7.3. Peroxidase Activity (POX EC 1.11.1.11)
2.8. Gene Expression in Roots
2.8.1. Total RNA Extraction and First-Strand DNA (cDNA) Synthesis
2.8.2. Relative Gene Expression in Roots by RT-qPCR
2.9. Statistical Analysis
3. Results
3.1. Growth Characteristics in Response to Water Stress
3.2. Effect of Drought Stress Induced by Irrigation Suspension on the Physiological and Biochemical Parameters
3.3. Analysis of Stress-Related Gene Expression in Plants with Irrigation
4. Discussion
4.1. Effect of Drought Stress on Growth Parameters
4.2. Physiological and Biochemical Responses
4.3. Gene Regulation of Proline and Antioxidant Synthesis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okunlola, G.O.; Olatunji, O.A.; Akinwale, R.O.; Tariq, A.; Adelusi, A.A. Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Sci. Hortic. 2017, 224, 198–205. [Google Scholar] [CrossRef]
- Organización de las Naciones Unidas para la Alimentación y la Agricultura. (FAO) Día Mundial de Lucha Contra la Desertificación y la Sequía 2020: El Director General de la FAO Pide una Nueva Estrategia para Frenar la Pérdida de Suelo|Alianza Mundial por el Suelo. Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/es/c/1294379/ (accessed on 3 March 2024).
- Jalil, S.U.; Ansari, M.I. Stress implications and crop productivity. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses; Springer: Singapore, 2020; pp. 73–86. [Google Scholar] [CrossRef]
- Taiwo, A.F.; Daramola, O.; Sow, M.; Semwal, V.K. Ecophysiology and responses of plants under drought. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses; Springer: Singapore, 2020; pp. 231–268. [Google Scholar] [CrossRef]
- Mahmood, T.; Rana, R.M.; Ahmar, S.; Saeed, S.; Gulzar, A.; Khan, M.A.; Wattoo, F.M.; Wang, X.; Branca, F.; Mora-Poblete, F.; et al. Effect of drought stress on capsaicin and antioxidant contents in pepper genotypes at reproductive stage. Plants 2021, 10, 1286. [Google Scholar] [CrossRef] [PubMed]
- Naikwade, P.V. Plant Responses to Drought Stress: Morphological, Physiological, Molecular Approaches, and Drought Resistance. In Plant Metabolites under Environmental Stress; Apple Academic Press: Waretown, NJ, USA, 2023; pp. 149–183. [Google Scholar] [CrossRef]
- Abobatta, W.F. Drought adaptive mechanisms of plants—A review. Adv. Agric. Environ. Sci. Open Access 2019, 2, 42–45. [Google Scholar] [CrossRef]
- Parveen, A.; Rai, G.K.; Bagati, S.; Rai, P.K.; Singh, P. Morphological, Physiological, Biochemical and Molecular Responses of Plants to Drought Stress. In Abiotic Stress Tolerance Mechanisms in Plants; CRC Press: Boca Raton, FL, USA, 2021; pp. 321–339. [Google Scholar] [CrossRef]
- López-Serrano, L.; Penella, C.; Bautista, A.S.; López-Galarza, S.; Calatayud, A. Physiological changes of pepper accessions in response to salinity and water stress. Span. J. Agric. Res. 2017, 15, 15. [Google Scholar] [CrossRef]
- Jangid, K.K.; Dwivedi, P. Physiological Responses of Drought stress in Tomato: A Review. Int. J. Agric. Environ. Biotechnol. 2016, 9, 53. [Google Scholar] [CrossRef]
- Malika, L.Y.; Deshabandu, K.S.H.T.; De Costa, W.A.J.M.; Ekanayake, S.; Herath, S.; Weerakoon, W.M.W. Physiological traits determining tolerance to intermittent drought in the Capsicum annuum complex. Sci. Hortic. 2019, 246, 21–33. [Google Scholar] [CrossRef]
- Lim, C.W.; Bae, Y.; Lee, S.C. Differential role of Capsicum annuum fantastic four-like gene CaFAF1 on drought and salt stress responses. Environ. Exp. Bot. 2022, 199, 104887. [Google Scholar] [CrossRef]
- Momo, J.; Islam, K.; Kumar, N.; Ramchiary, N. Molecular Approaches for Breeding Abiotic Stress Tolerance Traits in Capsicum Species. In Genomic Designing for Abiotic Stress Resistant Vegetable Crops; Springer International Publishing: Cham, Switzerland, 2022; pp. 77–114. [Google Scholar] [CrossRef]
- Phimchan, P.; Techawongstien, S.; Chanthai, S.; Bosland, P.W. Impact of Drought Stress on the Accumulation of Capsaicinoids in Capsicum Cultivars with Different Initial Capsaicinoid Levels. HortScience 2012, 47, 1204–1209. [Google Scholar] [CrossRef]
- Widuri, L.I.; Lakitan, B.; Sakagami, J.; Yabuta, S.; Kartika, K.; Siaga, E. Short-term drought exposure decelerated growth and photosynthetic activities in chili pepper (Capsicum annuum L.). Ann. Agric. Sci. 2020, 65, 149–158. [Google Scholar] [CrossRef]
- Mardani, S.; Tabatabaei, S.H.; Pessarakli, M.; Zareabyaneh, H. Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. J. Plant Nutr. 2017, 40, 1453–1464. [Google Scholar] [CrossRef]
- Zhou, R.; Kong, L.; Yu, X.; Ottosen, C.O.; Zhao, T.; Jiang, F.; Wu, Z. Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiol. Plant. 2019, 41, 20. [Google Scholar] [CrossRef]
- Rai, G.K.; Parveen, A.; Jamwal, G.; Basu, U.; Kumar, R.R.; Rai, P.K.; Sharma, J.P.; Alalawy, A.I.; Al-Duais, M.A.; Hossain, M.A.; et al. Leaf Proteome Response to Drought Stress and Antioxidant Potential in Tomato (Solanum lycopersicum L.). Atmosphere 2021, 12, 1021. [Google Scholar] [CrossRef]
- Forlani, G.; Trovato, M.; Funck, D.; Signorelli, S. Regulation of Proline Accumulation and Its Molecular and Physiological Functions in Stress Defence. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants: Recent Advances and Future Perspectives; Springer: Cham, Switzerland, 2019; pp. 73–97. [Google Scholar] [CrossRef]
- Hossain, A.; Garai, S.; Mondal, M.; Hamed Abdel Latef, A.A. The Key Roles of Proline against Heat, Drought and Salinity-Induced Oxidative Stress in Wheat (Triticum aestivum L.). In Organic Solutes, Oxidative Stress, and Antioxidant Enzymes Under Abiotic Stressors; Springer: Cham, Switzerland, 2021; pp. 171–190. [Google Scholar] [CrossRef]
- Mohammadi Alagoz, S.; Asgari Lajayer, B.; Ghorbanpour, M. Proline and soluble carbohydrates biosynthesis and their roles in plants under abiotic stresses. In Plant Stress Mitigators; Academic Press: Cambridge, MA, USA, 2023; pp. 169–185. [Google Scholar] [CrossRef]
- Bandurska, H.; Niedziela, J.; Pietrowska-Borek, M.; Nuc, K.; Chadzinikolau, T.; Radzikowska, D. Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol. Biochem. 2017, 118, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Y.; Yadav, V.; Zhao, W.; He, Y.; Zhang, X.; Wei, C. Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic. Plant J. 2022, 8, 615–626. [Google Scholar] [CrossRef]
- Patanè, C.; Scordia, D.; Testa, G.; Cosentino, S.L. Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Sci. 2016, 249, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Fiasconaro, M.L.; Lovato, M.E.; Antolín, M.C.; Clementi, L.A.; Torres, N.; Gervasio, S.; Martín, C.A. Role of proline accumulation on fruit quality of pepper (Capsicum annuum L.) grown with a K-rich compost under drought conditions. Sci. Hortic. 2019, 249, 280–288. [Google Scholar] [CrossRef]
- División de Estadística de la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAOSTAT). Crops and Livestock Products. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 3 March 2024).
- Aguilar-Meléndez, A.; Lira Noriega, A. ¿Dónde crecen los chiles en México? In Los Chiles Que le dan Sabor al Mundo; Veracruz University: Veracruz, México, 2018; pp. 75–92. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. Preparing the nutrient solution. Water-Cult. Method Grow. Plants Soil 1950, 347, 29–31. [Google Scholar]
- Luna-Flores, W. Efecto del estrés hídrico sobre el crecimiento y eficiencia del uso del agua en plántulas de tres especies arbóreas caducifolias. Rev. Terra Latinoam. 2012, 30, 343–353. Available online: https://www.terralatinoamericana.org.mx/index.php/terra/article/view/1090 (accessed on 25 June 2023).
- Jothimani, K.; Arulbalachandran, D. Physiological and biochemical studies of black gram (Vigna mungo L.) Hepper) under polyethylene glycol induced drought stress. Biocatal. Agric. Biotechnol. 2020, 29, 101777. [Google Scholar] [CrossRef]
- Restrepo, H.; Gómez, M.I.; Garzón, A.; Alzate, F.; López, J. Respuesta bioquímica de plántulas de maíz (Zea mays L.) a diferentes condiciones de temperaturas nocturnas. Rev. Colomb. Cienc. Hortícolas 2013, 7, 252–262. [Google Scholar] [CrossRef]
- Semida, W.M.; Abdelkhalik, A.; Rady MO, A.; Marey, R.A.; Abd El-Mageed, T.A. Exogenously applied proline enhances growth and productivity of drought stressed onion by improving photosynthetic efficiency, water use efficiency and up-regulating osmoprotectants. Sci. Hortic. 2020, 272, 109580. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Bloom, P.R. Extinction Coefficients of Chlorophyll a and b in N,N-Dimethylformamide and 80% Acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Escalante-Magaña, C.A. Tesis que Presenta Camilo Andres Escalante Magaña En opción al título de Doctorado en Ciencias (Ciencias Biológicas: Opción Bioquímica y Biología Molecular; Centro de Investigación Científica de Yucatán: Mérida, México, 2020. [Google Scholar]
- Suárez, D.F.; Mattos, A.D.P.; Broti Rissato, B.; Schwan-Estrada KR, F.; Suárez, D.F.; Mattos A do, P.; Broti Rissato, B.; Schwan-Estrada, K.R.F. Activación de mecanismos de defensa en maíz pira mediante el uso del abono orgánico Microgeo®. Rev. Mex. De Cienc. Agrícolas 2020, 11, 965–977. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, R.; Nuckles, E.M.; Kuć, J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 1982, 20, 73–82. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Nieto-Garibay, A.; Barraza, A.; Caamal-Chan, G.; Murillo-Amador, B.; Troyo-Diéguez, E.; Burgoa-Cruz, C.A.; Jaramillo-Limón, J.N.; Loera-Muro, A. Habanero pepper (Capsicum chinense) adaptation to water-deficit stress in a protected agricultural system. Funct. Plant Biol. 2022, 49, 295–306. [Google Scholar] [CrossRef]
- Jin, J.H.; Zhang, H.X.; Ali, M.; Wei, A.M.; Luo, D.X.; Gong, Z.H. The CaAP2/ERF064 Regulates Dual Functions in Pepper: Plant Cell Death and Resistance to Phytophthora capsici. Genes 2019, 10, 541. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Lu, J.P.; Zhai, Y.F.; Chai, W.G.; Gong, Z.H.; Lu, M.H. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015, 15, 151. [Google Scholar] [CrossRef] [PubMed]
- Caamal-Chan, M.G.; Loera-Muro, A.; Romero-Geraldo RD, J.; Ramírez-Serrano, R. Bacterial Strains from Saline Environment Modulate the Expression of Saline Stress-Responsive Genes in Pepper (Capsicum annuum). Plants 2023, 12, 3576. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Teniente, L.; de Dalia Durán-Flores, F.; Chapa-Oliver, A.M.; Torres-Pacheco, I.; Cruz-Hernández, A.; González-Chavira, M.M.; Ocampo-Velázquez, R.V.; Guevara-González, R.G. Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int. J. Mol. Sci. 2013, 14, 10178–10196. [Google Scholar] [CrossRef] [PubMed]
- Sziderics, A.H.; Rasche, F.; Trognitz, F.; Sessitsch, A.; Wilhelm, E. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can. J. Microbiol. 2007, 53, 1195–1202. [Google Scholar] [CrossRef]
- Wan, H.; Yuan, W.; Ruan, M.; Ye, Q.; Wang, R.; Li, Z.; Zhou, G.; Yao, Z.; Zhao, J.; Liu, S.; et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun. 2011, 416, 24–30. [Google Scholar] [CrossRef]
- Lugojan, C.; Ciulca, S. Evaluation of relative water content in winter wheat. J. Hortic. For. Biotechnol. 2011, 15, 173–177. [Google Scholar]
- Kamatchi KA, M.; Anitha, K.; Kumar, K.A.; Senthil, A.; Kalarani, M.K.; Djanaguiraman, M. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiol. Rep. 2024, 29, 28–36. [Google Scholar] [CrossRef]
- Khan, T.A.; Saleem, M.; Fariduddin, Q. Differential Drought Stress Tolerance in Five Varieties of Tomato (Solanum lycopersicum L.): An Evaluation of Photosynthesis and Antioxidant System. J. Soil Sci. Plant Nutr. 2023, 23, 2810–2831. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan MA, R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Bhargava, S.; Sawant, K. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed. 2013, 132, 21–32. [Google Scholar] [CrossRef]
- Shirvani, H.; Mehrabi, A.A.; Farshadfar, M.; Safari, H.; Arminian, A.; Fatehi, F.; Pouraboughadareh, A.; Poczai, P. Investigation of the morphological, physiological, biochemical, and catabolic characteristics and gene expression under drought stress in tolerant and sensitive genotypes of wild barley [Hordeum vulgare subsp. spontaneum (K. Koch) Asch. & Graebn.]. BMC Plant Biol. 2024, 24, 214. [Google Scholar] [CrossRef]
- Viswanath, K.K.; Varakumar, P.; Pamuru, R.R.; Basha, S.J.; Mehta, S.; Rao, A.D. Plant Lipoxygenases and Their Role in Plant Physiology. J. Plant Biol. 2020, 63, 83–95. [Google Scholar] [CrossRef]
- Licausi, F.; Ohme-Takagi, M.; Perata, P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytol. 2013, 199, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.R.; Rohman, M.M.; Monsur, M.B.; Hasanuzzaman, M.; Hassan, L. Screening and Assessment of Selected Chilli (Capsicum annuum L.) Genotypes for Drought Tolerance at Seedling Stage. Phyton-Int. J. Exp. Bot. 2021, 90, 1425–1443. [Google Scholar] [CrossRef]
- Abbas, K.; Li, J.; Gong, B.; Lu, Y.; Wu, X.; Lü, G.; Gao, H. Drought Stress Tolerance in Vegetables: The Functional Role of Structural Features, Key Gene Pathways, and Exogenous Hormones. Int. J. Mol. Sci. 2023, 24, 13876. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Yu, X.; Ottosen, C.O.; Rosenqvist, E.; Zhao, L.; Wang, Y.; Yu, W.; Zhao, T.; Wu, Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017, 17, 24. [Google Scholar] [CrossRef]
- Lestari, P.; Syukur, M.; Trikoesoemaningtyas Widiyono, W.; Muchdar Davis, L.O.M. The Effect of Mild and Severe Drought on Genie Chili (Capsicum annuum L. var. genie) Leaf Cell Growth. AIP Conf. Proc. 2023, 2606, 040010. [Google Scholar] [CrossRef]
- Sivakumar, R.; Srividhya, S. Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Adv. Hortic. Sci. 2016, 30, 3–11. [Google Scholar]
- Shavrukov, Y. Pathway to the Molecular Origins of Drought Escape and Early Flowering Illuminated via the Phosphorylation of SnRK2-Substrate 1 in Arabidopsis. Plant Cell Physiol. 2024, 65, 179–180. [Google Scholar] [CrossRef]
- Sakya, A.T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B.H. Physiological characters and tomato yield under drought stress. IOP Conf. Ser. Earth Environ. Sci. 2018, 200, 012043. [Google Scholar] [CrossRef]
- Sahitya, U.L.; Krishna MS, R.; Suneetha, P. Integrated approaches to study the drought tolerance mechanism in hot pepper (Capsicum annuum L.). Physiol. Mol. Biol. Plants 2019, 25, 637–647. [Google Scholar] [CrossRef]
- Singh, J.; Thakur, J.K. Photosynthesis and abiotic stress in plants. In Biotic and Abiotic Stress Tolerance in Plants; Springer: Singapore, 2018; pp. 27–46. [Google Scholar] [CrossRef]
- Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia 2022, 2, 180–197. [Google Scholar] [CrossRef]
- Waqas, M.A.; Kaya, C.; Riaz, A.; Farooq, M.; Nawaz, I.; Wilkes, A.; Li, Y. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Front. Plant Sci. 2019, 10, 1336. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Kamrun, N.; Masayuki, F.; Hirosuke, O.; Islam, T.M. Approaches for Enhancing Abiotic Stress Tolerance in Plants. In Approaches for Enhancing Abiotic Stress Tolerance in Plants; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Khan, R.; Zhou, P.; Ma, X.; Zhou, L.; Wu, Y.; Ullah, Z.; Wang, S. Transcriptome Profiling, Biochemical and Physiological Analyses Provide New Insights towards Drought Tolerance in Nicotiana tabacum L. Genes 2019, 10, 1041. [Google Scholar] [CrossRef]
- Kopta, T.; Sekara, A.; Pokluda, R.; Ferby, V.; Caruso, G. Screening of Chilli Pepper Genotypes as a Source of Capsaicinoids and Antioxidants under Conditions of Simulated Drought Stress. Plants 2020, 9, 364. [Google Scholar] [CrossRef]
- Janiak, A.; Kwaśniewski, M.; Szarejko, I. Gene expression regulation in roots under drought. J. Exp. Bot. 2016, 67, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Kordrostami, M.; Mohamadhasani, F.; Chaeikar, S.S. Antioxidant gene expression analysis and evaluation of total phenol content and oxygen-scavenging system in tea accessions under normal and drought stress conditions. BMC Plant Biol. 2021, 21, 494. [Google Scholar] [CrossRef]
- Zameer, R.; Fatima, K.; Azeem, F.; Algwaiz HI, M.; Sadaqat, M.; Rasheed, A.; Batool, R.; Shah, A.N.; Zaynab, M.; Shah, A.A.; et al. Genome-Wide Characterization of Superoxide Dismutase (SOD) Genes in Daucus carota: Novel Insights Into Structure, Expression, and Binding Interaction With Hydrogen Peroxide (H2O2) Under Abiotic Stress Condition. Front. Plant Sci. 2022, 13, 870241. [Google Scholar] [CrossRef]
- Bian, S.; Jiang, Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery. Sci. Hortic. 2009, 120, 264–270. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Sun, K.; Chen, Y.; Chen, X.; Li, X. Exogenous Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving Antioxidant Defense in Tea Plant (Camellia sinensis L.) O. Kuntze. Molecules 2019, 24, 1826. [Google Scholar] [CrossRef] [PubMed]
- Dobrá, J.; Vanková, R.; Havlová, M.; Burman, A.J.; Libus, J.; Štorchová, H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J. Plant Physiol. 2011, 168, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Pirona, R.; Frugis, G.; Locatelli, F.; Mattana, M.; Genga, A.; Baldoni, E. Transcriptomic analysis reveals the gene regulatory networks involved in leaf and root response to osmotic stress in tomato. Front. Plant Sci. 2023, 14, 1155797. [Google Scholar] [CrossRef]
- Najafi, S.; Sorkheh, K.; Nasernakhaei, F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci. Rep. 2018, 8, 11576. [Google Scholar] [CrossRef]
Gene of Interest | Oligo’s Name | Oligo Sequence | Reference |
---|---|---|---|
LOX2 | CaLox2-F | 5′-CGAGCTGTAGTTACGGTAAGGAACAAGAACAAGGAAGATCTG-3′ | [42] |
CaLox2-R | 5′-GTGTTTGGATCGATGTCGGTGCTGATGAGTTCTAAGGCG-3′ | ||
AP2 | CaAP2/ERF064 | 5′-CAACTCCTTCTTCTTGCTCTTC-3′ | [43] |
CaAP2/ERR064 | 5′- CGCCTCCTAACACCTCGGTA-3′ | ||
SOD | CaSOD(Mn)-F | 5′-CTCTGCCATAGACACCAACTT-3′ | [44] |
CaSOD(Mn)-R | 5′-CCAAGTTCGGTCCTTTAATAA-3′ | ||
CaSOD(Cu,Zn)-F | 5′-GTCCTTAGCAGCAGTGAATGTGTTAGTGGCACCATCCTC-3′ | [45] | |
CaSOD(Cu,Zn)-R | 5′-GCCATGAAGTCCAGGTTTTAGGCCAGAGACATTTCCGGTAACTG-3′ | ||
CAT | CaCAT-F | 5′-GTCCATGAGCGTGGAAGCCCCGAAT-3′ | [46] |
CaCAT-R | 5′-GTCCATGAGCGTGGAAGCCCCGAAT-3′ | ||
P5CS | P5CSARF | 5′-GCTGCTCAACAAGCTGGATA-3′ | [47] |
P5CSARR | 5′-AGCAAGCTCCGTCCTCTTTA-3′ | ||
Ubiquitin | CaUBI-3-F | 5′-TGTCCATCTGCTCTCTGTTG-3′ | [48] |
CaUBI-3-R | 5′-CACCCCAAGCACAATAAGAC-3′ |
Treatment | Shoots | Root | Number of Floral Buds |
---|---|---|---|
Height (cm) | Length (cm) | ||
WW 0 d | 13.96 ± 1.8 aD | 10.30 ± 1.2 aF | 0 |
IS 0 d | 13.91 ± 1.8 aD | 10.24 ± 0.9 aF | 0 |
WW 3 d | 15.31 ± 2.8 aCD | 12.86 ± 2.8 aE | 0 |
IS 3 d | 14.59 ± 1.6 aD | 14.86 ± 3.9 aDE | 0 |
WW 8 d | 20.25 ± 1.5 aB | 16.17 ± 1.4 bCD | 0 bD |
IS 8 d | 16.87 ± 1.6 bC | 19.28 ± 1.8 aB | 12 aB |
WW 14 d | 22.68 ± 1.5 aA | 17.97 ± 0.8 bBC | 4 bC |
IS 14 d | 18.63 ± 0.4 bB | 21.66 ± 1.6 aA | 34 aA |
WW 15 d | 22.54 ± 1.0 aA | 17.86 ± 0.6 bBC | 4 bC |
RPs 15 d | 19.73 ± 1.0 bB | 21.93 ± 1.59 aA | 34 aA |
Treatment | Aerial Part | Root | ||||
---|---|---|---|---|---|---|
RWC | Electrolyte | MSI | RWC | Electrolyte | MSI | |
WW 0 d | 86.02 ± 0.13 aB | 19.08 ± 0.53 aE | 80.91 ± 0.53 aA | 85.81 ± 0.20 aA | 46.73 ± 0.40 aE | 53.26 ± 0.40 aAB |
IS 0 d | 86.03 ± 0.14 aB | 19.07 ± 0.38 aE | 80.92 ± 0.38 aA | 85.98 ± 0.14 aA | 46.66 ± 0.60 aE | 53.33 ± 0.60 aAB |
WW 3 d | 86.08 ± 0.15 aB | 19.03 ± 0.68 bE | 80.96 ± 0.68 aA | 85.96 ± 0.12 aA | 46.55 ± 0.77 bE | 53.44 ± 0.77 aAB |
IS 3 d | 79.64 ± 0.22 bC | 29.11 ± 0.43 aC | 70.88 ± 0.43 bC | 77.55 ± 0.43 bC | 51.26 ± 0.97 aC | 48.73 ± 0.97 bC |
WW 8 d | 86.09 ± 0.28 aB | 19.06 ± 0.12 bE | 80.93 ± 0.12 aA | 85.88 ± 0.16 aA | 46.55 ± 0.06 bE | 53.44 ± 0.06 aAB |
IS 8 d | 75.33 ± 0.25 bD | 40.70 ± 0.24 aB | 59.29 ± 0.24 bD | 71.99 ± 0.30 bD | 63.69 ± 0.12 aB | 36.30 ± 0.12 bD |
WW 14 d | 86.10 ± 0.26 aB | 19.04 ± 0.23 bE | 80.95 ± 0.23 aA | 86.05 ± 0.38 aA | 45.55 ± 0.59 bE | 54.31 ± 0.59 aA |
IS 14 d | 51.36 ± 0.98 bE | 58.01 ± 1.14 aA | 41.98 ± 1.14 bE | 54.96 ± 0.98 bE | 74.59 ± 0.98 aA | 25.40 ± 1.10 bE |
WW 15 d | 88.31 ± 0.32 aA | 19.05 ± 0.17 bE | 80.94 ± 0.17 aA | 85.90 ± 0.28 aA | 45.65 ± 0.87 bE | 54.34 ± 0.87 aA |
RPs 15 d | 84.78 ± 0.55 bB | 25.01 ± 1.38 aD | 74.99 ± 1.38 bB | 81.51 ± 1.54 bB | 48.58 ± 0.79 aD | 51.41 ± 0.79 bB |
Treatment | Total Chlorophyll | Proline (µmol·gFW·mL−1) | |
---|---|---|---|
(µg·mL−1) | Leaf | Root | |
WW 0 d | 44.27 ± 0.64 aD | 35.26 ± 1.23 aG | 26.14 ± 0.74 aG |
IS 0 d | 44.23 ± 0.55 aD | 35.21 ± 1.05 aG | 26.19 ± 0.71 aG |
WW 3 d | 50.78 ± 0.60 aC | 35.35 ± 1.04 bG | 27.34 ± 1.38 bG |
IS 3 d | 31.67 ± 0.61 bE | 505.49 ± 2.95 aD | 371.04 ± 0.88 aD |
WW 8 d | 61.63 ± 0.58 aB | 40.30 ± 0.63 bF | 35.25 ± 1.01 bF |
IS 8 d | 22.63 ± 0.82 bG | 778.65 ± 2.76 aC | 530.65 ± 3.34 aC |
WW 14 d | 73.99 ± 0.80 aA | 44.40 ± 1.16 bE | 40.49 ± 1.27 bE |
IS 14 d | 14.01 ± 0.59 bH | 1489.27 ± 3.82 aA | 1219.76 ± 5.37 aA |
WW 15 d | 74.08 ± 0.55 aA | 44.90 ± 1.14 bE | 40.54 ± 1.37 bE |
RPs 15 d | 28.31 ± 0.37 bF | 950.13 ± 3.87 aB | 698.22 ± 3.49 aB |
Treatment | Catalase (U∙mg protein−1) | Peroxidase (U∙mg protein−1) | ||
---|---|---|---|---|
Leaf | Root | Leaf | Root | |
WW 0 d | 10.62 ± 0.12 aG | 13.11 ± 0.10 aF | 2.15 ± 0.06 aG | 6.41 ± 0.02 aG |
IS 0 d | 10.73 ± 0.06 aG | 13.15 ± 0.08 aF | 2.16 ± 0.04 aG | 6.44 ± 0.01 aG |
WW 3 d | 10.88 ± 0.08 bG | 13.35 ± 0.04 bF | 2.23 ± 0.05 bG | 6.56 ± 0.14 bG |
IS 3 d | 15.48 ± 0.16 aD | 16.82 ± 0.10 aC | 9.49 ± 0.06 aD | 19.51 ± 0.26 aD |
WW 8 d | 11.23 ± 0.10 bF | 14.69 ± 0.04 bE | 2.84 ± 0.08 bF | 7.90 ± 0.08 bF |
IS 8 d | 19.57 ± 0.08 aC | 20.83 ± 0.06 aB | 13.43 ± 0.15 aC | 32.45 ± 0.25 aC |
WW 14 d | 13.28 ± 0.10 bE | 15.60 ± 0.14 bD | 5.28 ± 0.14 bE | 10.22 ± 0.08 bE |
IS 14 d | 28.18 ± 0.13 aA | 32.28 ± 0.15 aA | 20.13 ± 0.08 aA | 63.22 ± 0.43 aA |
WW 15 d | 13.36 ± 0.06 bE | 15.54 ± 0.06 bD | 5.30 ± 0.03 bE | 10.33 ± 0.06 bE |
RPs 15 d | 26.50 ± 0.08 aB | 31.58 ± 0.10 aA | 18.38 ± 0.22 aB | 56.27 ± 1.19 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trejo-Paniagua, B.O.; Caamal-Chan, M.G.; Cruz-Rodríguez, R.I.; Lam-Gutiérrez, A.; Ruiz-Lau, N. Physiological, Biochemical, and Molecular Response in Siete Caldos Chili Pepper Plants (Capsicum frutescens) Exposed to Water Deficit. Horticulturae 2024, 10, 558. https://doi.org/10.3390/horticulturae10060558
Trejo-Paniagua BO, Caamal-Chan MG, Cruz-Rodríguez RI, Lam-Gutiérrez A, Ruiz-Lau N. Physiological, Biochemical, and Molecular Response in Siete Caldos Chili Pepper Plants (Capsicum frutescens) Exposed to Water Deficit. Horticulturae. 2024; 10(6):558. https://doi.org/10.3390/horticulturae10060558
Chicago/Turabian StyleTrejo-Paniagua, Blanca Olivia, María Goretty Caamal-Chan, Rosa Isela Cruz-Rodríguez, Anayancy Lam-Gutiérrez, and Nancy Ruiz-Lau. 2024. "Physiological, Biochemical, and Molecular Response in Siete Caldos Chili Pepper Plants (Capsicum frutescens) Exposed to Water Deficit" Horticulturae 10, no. 6: 558. https://doi.org/10.3390/horticulturae10060558
APA StyleTrejo-Paniagua, B. O., Caamal-Chan, M. G., Cruz-Rodríguez, R. I., Lam-Gutiérrez, A., & Ruiz-Lau, N. (2024). Physiological, Biochemical, and Molecular Response in Siete Caldos Chili Pepper Plants (Capsicum frutescens) Exposed to Water Deficit. Horticulturae, 10(6), 558. https://doi.org/10.3390/horticulturae10060558