Study on Spectral Response of Saffron (Crocus sativus L.) at Different Leaf Ages and Evaluation of Photosynthetic Energy Efficiency of Narrow-Band LED Spotlights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Methodology of Photosynthetic Spectral Response Based on PPFD and Irradiance
2.3. Narrow-Band LED Spotlights and Testing Platform
2.4. Photosynthesis Measurements
2.5. Optical Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Leaf Optical Characteristic at Different Leaf Ages
3.2. Leaf Action Spectrum at Different Leaf Ages
3.3. Leaf Quantum Yield at Different Leaf Ages
3.4. Assessment of Photosynthetic Energy Efficiency for Narrow-Band LED Spotlights
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, P.R. Crocus sativus L. (saffron) for cancer chemoprevention: A mini review. J. Tradit. Complement. Med. 2015, 5, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Moratalla-López, N.; Bagur, M.J.; Lorenzo, C.; Martínez-Navarro, M.E.; Salinas, M.R.M.; Alonso, G.L. Bioactivity and bioavailability of the major metabolites of Crocus sativus L. flower. Molecules 2019, 24, 2827. [Google Scholar] [CrossRef] [PubMed]
- Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. 2020, 272, 109560. [Google Scholar] [CrossRef]
- Bagur, M.J.; Salinas, G.L.A.; Jiménez-Monreal, A.M.; Chaouqi, S.; Llorens, S.; Martínez-Tomé, M.; Alonso, G.L. Saffron: An old medicinal plant and a potential novel functional food. Molecules 2018, 23, 30. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, L.; Kalbasi-Ashtari, A.; Hamedi, M.; Ghorbani, F. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocus sativus) along with its color properties and structural stability. J. Food Drug Anal. 2015, 23, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Khorramdel, S.; Nasrabadi, S.E.; Mahmoodi, G. Evaluation of mother corm weights and foliar fertilizer levels on saffron (Crocus sativus L.) growth and yield components. J. Appl. Res. Med. Aroma. 2015, 2, 9–14. [Google Scholar] [CrossRef]
- Koocheki, A.; Seyyedi, S.M.; Eyni, M.J. Irrigation levels and dense planting affect flower yield and phosphorus concentration of saffron corms under semi-arid region of Mashhad, Northeast Iran. Sci. Hortic. 2014, 180, 147–155. [Google Scholar] [CrossRef]
- Yarami, N.; Sepaskhah, A.R. Saffron response to irrigation water salinity, cow manure and planting method. Agric. Water Manag. 2015, 150, 57–66. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Xu, J.X.; Yang, Z.; Zhang, Y.C. Effects of ambient temperature on flower initiation and flowering in saffron (Crocus sativus L.). Sci. Hortic. 2021, 279, 109859. [Google Scholar] [CrossRef]
- Zhou, T.; Qiu, X.; Zhao, L.; Yang, W.; Wen, F.; Wu, Q.; Yan, J.; Xu, B.; Chen, J.; Ma, Y.; et al. Optimal light intensity and quality increased the saffron daughter corm yield by inhibiting the degradation of reserves in mother corms during the reproductive stage. Ind. Crops Prod. 2022, 176, 114396. [Google Scholar] [CrossRef]
- Renau-Morata, B.; Nebauer, S.G.; Sánchez, M.; Molina, R.V. Effect of corm size, water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). Ind. Crops Prod. 2012, 39, 40–46. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic. 2016, 198, 277–283. [Google Scholar] [CrossRef]
- Chen, X.; Xue, X.; Guo, W.; Wang, L.; Qiao, X. Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Sci. Hortic. 2016, 200, 111–118. [Google Scholar] [CrossRef]
- Keller, M. Photosynthesis and respiration. In The Science of Grapevines: Anatomy and Physiology; Academic Press: Cambridge, MA, USA, 2010; pp. 107–123. [Google Scholar] [CrossRef]
- Moradi, S.; Kafi, M.; Aliniaeifard, S.; Salami, S.A.; Shokrpour, M.; Pedersen, C.; Moosavi-Nezhad, M.; Wróbel, J.; Kalaji, H.M. Blue light improves photosynthetic performance and biomass partitioning toward harvestable organs in saffron (Crocus sativus L.). Cells 2021, 10, 1994. [Google Scholar] [CrossRef] [PubMed]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971/1972, 9, 191–216. [Google Scholar]
- Paradiso, R.; Meinen, E.; Snel, J.F.H.; Visser, P.D.; Ieperen, W.V.; Hogewoning, S.W.; Marcelis, L.F.M. Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose. Sci. Hortic. 2011, 127, 548–554. [Google Scholar] [CrossRef]
- Zhen, S.; Haidekker, M.; Iersel, M.W. Far-red light enhances photochemical efficiency in a wavelength-dependent manner. Physiol. Plant. 2019, 167, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kang, W.H.; Park, K.S.; Son, J.E. Spectral dependence of electrical energy-based photosynthetic efficiency at single leaf and canopy levels in green- and red-leaf lettuces. Hortic. Environ. Biotechnol. 2017, 58, 111–118. [Google Scholar] [CrossRef]
- Wu, B.; Rufyikiri, A.; Orsat, V.; Lefsrud, M.G. Re-interpreting the photosynthetically action radiation (PAR) curve in plants. Plant Sci. 2019, 289, 110272. [Google Scholar] [CrossRef]
- Inada, K. Action spectra for photosynthesis in higher plants. Plant Cell Physiol. 1976, 17, 355–365. [Google Scholar]
- Balegh, S.E.; Biddulph, O. The photosynthetic action spectrum of the bean plant. Plant Physiol. 1970, 46, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, S.; Mortensen, L. Spectral response of photorespiration effect of plant age and chlorophyll content in spruce. Z. Pflanzenphysiol. 1978, 89, 433–441. [Google Scholar] [CrossRef]
- Evans, J.R. The dependence of quantum yield on wavelength and growth irradiance. Aust. J. Plant Physiol. 1987, 14, 69–79. [Google Scholar] [CrossRef]
- Liu, J.; Iersel, M.V. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.Y.; Gao, D.; Pei, W.Z.; Zhang, X.; Li, F.S.; Han, Q.Y.; Zhang, S.D. Photosynthetic spectral response curves of saffron leaves. Appl. Opt. 2021, 60, 10207–10213. [Google Scholar] [CrossRef]
- Kohler, A.E.; Lopez, R.G. Duration of light-emitting diode (LED) supplemental lighting providing far-red radiation during seedling production influences subsequent time to flower of long-day annuals. Sci. Hortic. 2021, 281, 109956. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, 99010. [Google Scholar] [CrossRef] [PubMed]
- Singsaas, E.L.; Ort, D.R.; Delucia, E.H. Variation in measured values of photo-synthetic quantum yield in ecophysiological studies. Oecologia 2001, 128, 15–23. [Google Scholar] [CrossRef]
- Paradiso, R.; Visser, P.H.B.; Arena, C.; Marcelis, L.F.M. Light response of photosynthesis and stomatal conductance of rose leaves in the canopy profile: The effect of lighting on the adaxial and the abaxial sides. Funct. Plant Biol. 2020, 47, 639–650. [Google Scholar] [CrossRef]
- Steele, M.R.; Gitelson, A.A.; Rundquist, D.C.; Merzlyak, M.N. Nondestructive estimation of anthocyanin content in grapevine leaves. Am. J. Enol. Vitic. 2009, 60, 87–92. [Google Scholar] [CrossRef]
- Wujeska-Klause, A.; Ctous, K.Y.; Ghannoum, O.; Ellsworth, D.S. Leaf age and eCO2 both influence photosynthesis by increasing light harvesting in mature Eucalyptus tereticornis at EucFACE. Environ. Exp. Bot. 2019, 167, 103857. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Stutte, G.W.; Edney, S. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef]
- Yeh, N.; Chung, J.P. High-brightness LEDs–Energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180. [Google Scholar] [CrossRef]
Researcher | Plant | Light Source | Filtering Technology | Peak Wavelength (nm) | Interval (nm) | Band Width (nm) | Light Intensity |
---|---|---|---|---|---|---|---|
McCree [16] | 22 crops | Xenon lamp | Monochromator | 350−750 | 25 | 25 | 30 W m−2@650 nm |
Paradiso et al. [17] | Rose | Tungsten halogen lamp | Interference filter | 406−720 | Approximately 20 | 10@460−720, 20@406, 427 & 445 | 30 & 60 μmol m−2 s−1 |
Inada [21] | 26 herb crops & 7 arbores | Xenon lamp | Interference filter | 344−758 | Approximately 10−40 | 8.5−17@400−700, 10−21@others | 1.5−2.5 mW cm−2@344 & 368 nm, 3 mW cm−2@others |
Nilsen et al. [23] | Spruce | Xenon lamp | Interference filter | 463, 517, 557, 579, 605, 637, 672, 687, 704 | Unequal | / | 150 μmol m−2 s−1 |
Evans [24] | Pea & Spinach | Xenon lamp | Interference filter | 400−700 | Approximately 20−25 | / | 0−100 μmol m−2 s−1 |
Ji et al. [26] | Saffron | Xenon lamp | Interference filter | 380−760 | 20 | 10 | 100 μmol m−2 s−1 |
Lee et al. [19] | Lettuce | LED luminaire | / | 400−700 | 10, 20, 30 or 40 | 10 | 150 μmol m−2 s−1 |
This work | Saffron | LED spotlight | Interference filter | 380−780 | 20 | 10 | 100 μmol m−2 s−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, D.; Yuan, Q.; Pei, W.; Zhang, X.; Li, F.; Han, Q.; Zhang, S. Study on Spectral Response of Saffron (Crocus sativus L.) at Different Leaf Ages and Evaluation of Photosynthetic Energy Efficiency of Narrow-Band LED Spotlights. Horticulturae 2024, 10, 559. https://doi.org/10.3390/horticulturae10060559
Gao D, Yuan Q, Pei W, Zhang X, Li F, Han Q, Zhang S. Study on Spectral Response of Saffron (Crocus sativus L.) at Different Leaf Ages and Evaluation of Photosynthetic Energy Efficiency of Narrow-Band LED Spotlights. Horticulturae. 2024; 10(6):559. https://doi.org/10.3390/horticulturae10060559
Chicago/Turabian StyleGao, Dan, Qing Yuan, Weizhong Pei, Xue Zhang, Fusheng Li, Qiuyi Han, and Shanduan Zhang. 2024. "Study on Spectral Response of Saffron (Crocus sativus L.) at Different Leaf Ages and Evaluation of Photosynthetic Energy Efficiency of Narrow-Band LED Spotlights" Horticulturae 10, no. 6: 559. https://doi.org/10.3390/horticulturae10060559
APA StyleGao, D., Yuan, Q., Pei, W., Zhang, X., Li, F., Han, Q., & Zhang, S. (2024). Study on Spectral Response of Saffron (Crocus sativus L.) at Different Leaf Ages and Evaluation of Photosynthetic Energy Efficiency of Narrow-Band LED Spotlights. Horticulturae, 10(6), 559. https://doi.org/10.3390/horticulturae10060559