Variations in Flower Color of Mutant Chrysanthemums
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Culture
2.2. Planting In Vitro Explants on Nutrient Medium
2.3. Rooting and Acclimatization Stages
2.4. Observations of Mutants
2.5. Statistical Analysis
3. Results
3.1. Color Distribution of the Mutant Population
3.2. The Comparison between the Control Group and the Mutant Population
3.3. Cluster of the Mutant Population
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, N.O. Chrysanthemum. In Flower Breeding and Genetics; Anderson, N.O., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 389–437. [Google Scholar] [CrossRef]
- Miler, N.; Jędrzejczyk, I.; Trafara, P.; Winiecki, J. Effect of high-energy ionizing radiation on the DNA content and genetic variation in chrysanthemum plants regenerated from irradiated ovaries. Acta Sci. Pol. Hortorum Cultus 2023, 22, 117–134. [Google Scholar] [CrossRef]
- Eisa, E.A.; Tilly-Mándy, A.; Honfi, P.; Shala, A.Y.; Gururani, M.A. Chrysanthemum: A comprehensive review on recent developments on in vitro regeneration. Biology 2022, 11, 1774. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.W. Crysanthemums. In Breeding New Plants and Flowers; The Crowood Press: Wiltshire, UK, 2002; p. 144. [Google Scholar]
- Xu, Y.; Liao, B.; Ostevik, K.L.; Zhou, H.; Wang, F.; Wang, B.; Xia, H. The maternal donor of chrysanthemum cultivars revealed by comparative analysis of the chloroplast genome. Front. Plant Sci. 2022, 13, 923442. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.P.; Lin, K.H.; Shih, M.C.; Chen, C.L.; Lu, C.P. Optimization of aqueous extraction of antioxidants from chrysanthemum (C. morifolium Ramat and C. indicum L.) flowers and evaluation of their protection from glycoxidation damage on human αA-crystallins. Exp. Eye Res. 2023, 235, 109629. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Dongliang Chen, D.; Cheng, X.; Hua Liu, H.; Li, Y.; Huang, C. SSR analysis of genetic relationship and classification in chrysanthemum germplasm collection. Hortic. Plant J. 2018, 4, 73–82. [Google Scholar] [CrossRef]
- Miler, N.; Kulus, D. Microwave treatment can induce chrysanthemum phenotypic and genetic changes. Sci. Hortic. 2018, 227, 223–233. [Google Scholar] [CrossRef]
- Nakano, M.; Taniguchi, K.; Masuda, Y.; Kozuka, T.; Aruga, Y.; Han, J.; Motohara, K.; Nakata, M.; Sumitomo, K.; Hisamatsu, T.; et al. A Pure line derived from a self-compatible chrysanthemum seticuspe mutant as a model strain in the genus chrysanthemum. Plant Sci. 2019, 287, 110174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wen, Z.; Meng, J.; Cheng, T.; Zhang, Q.; Sun, l. The genomics of ornamental plants: Current status and opportunities. Ornam. Plant Res. 2022, 2, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Luo, Y.; Gao, B.; Sun, J.; Lu, W.; Liu, J.; Chen, P.; Zhang, Y.; Yu, L.L. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019, 286, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Yang, L.; Wen, X.; Hong, Y.; Song, X.; Zhang, M.; Dai, S. Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Front. Plant Sci. 2016, 7, 186000. [Google Scholar] [CrossRef]
- Ryu, J.; Nam, B.; Kim, B.R.; Kim, S.H.; Jo, Y.D.; Ahn, J.W.; Kim, J.B.; Jin, C.H.; Han, A.R. Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules 2019, 24, 3003. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tian, Y.; Gao, K.; Li, J.; Li, Y.; Wang, J.; Deng, C.; Zhang, F.; Kong, K.; Fan, G.; et al. Genetic and QTL analysis of flower color and pigments in small-flowered chrysanthemum based on high-density genetic map. Ornam. Plant Res. 2023, 3, 17. [Google Scholar] [CrossRef]
- Mekapogu, M.; Kwon, O.K.; Song, H.Y.; Jung, J.A. Towards the improvement of ornamental attributes in chrysanthemum: Recent progress in biotechnological advances. Int. J. Mol. Sci. 2022, 23, 12284. [Google Scholar] [CrossRef] [PubMed]
- Din, A.; Qadri, Z.A.; Wani, M.A.; Rather, Z.A.; Iqbal, S.; Malik, S.A.; Hussain, P.R.; Rafiq, S.; Nazki, I.T. Congenial In Vitro γ-ray-Induced Mutagenesis Underlying the Diverse Array of Petal Colours in Chrysanthemum (Dendranthema grandiflorum kitam) cv. “Candid”. Biol. Life Sci. Forum 2021, 4, 21. [Google Scholar] [CrossRef]
- Mekapogu, M.; Vasamsetti, B.M.K.; Kwon, O.K.; Ahn, M.S.; Lim, S.H.; Jung, J.A. Anthocyanins in floral colors: Biosynthesis and regulation in chrysanthemum flowers. Int. J. Mol. Sci. 2020, 21, 6537. [Google Scholar] [CrossRef]
- Nakano, M.; Hirakawa, H.; Fukai, E.; Toyoda, A.; Kajitani, R.; Minakuchi, Y.; Itoh, T.; Higuchi, Y.; Kozuka, T.; Bono, H.; et al. A chromosome-level genome sequence of chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Commun. Biol. 2021, 4, 1167. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Li, Y.; Wang, J.; Qu, J.; Chen, Y.; Chen, X.; Huang, H.; Dai, S. Flower color classification and correlation between color space values with pigments in potted multiflora chrysanthemum. Sci. Hortic. 2021, 283, 110082. [Google Scholar] [CrossRef]
- Ohmiya, A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed. Sci. 2018, 68, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Bado, S.; Forster, B.P.; Maghuly, F. Physical and chemicals mutagenesis in plant breeding. In Mutation Breeding for Sustainable Food Production and Climate Resilience; Penna, S., Jain, S.M., Eds.; Springer: Singapore, 2023; p. 97. [Google Scholar] [CrossRef]
- Udage, A. Introduction to plant mutation breeding: Different approaches and mutagenic agents. J. Agric. Sci. Sri Lanka 2021, 16, 466. [Google Scholar] [CrossRef]
- Bezie, Y.; Tilahun, T.; Atnaf, M.; Taye, M. The potential applications of site-directed mutagenesis for crop improvement: A review. J. Crop Sci. Biotechnol. 2021, 24, 229–244. [Google Scholar] [CrossRef]
- Datta, S.K. Breeding of ornamentals: Success and technological status. Nucleus 2021, 65, 107–128. [Google Scholar] [CrossRef]
- Datta, S.K. Introduction/Review. In Induced Mutation Breeding; Springer: Singapore, 2023; p. 71. [Google Scholar] [CrossRef]
- Melsen, K.; Van De Wouw, M.; Contreras, R. Mutation Breeding in Ornamentals. Am. Soc. Hortic. Sci. Mutat. Breed. Ornam. 2021, 56, 1154–1165. [Google Scholar] [CrossRef]
- Sawada, Y.; Sato, M.; Okamoto, M.; Masuda, J.; Yamaki, S.; Tamari, M.; Tanokashira, Y.; Kishimoto, S.; Ohmiya, A.; Abe, T.; et al. Metabolome-based discrimination of chrysanthemum cultivars for the efficient generation of flower color variations in mutation breeding. Metabolomics 2019, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Anne, S.; Hee Lim, J. Variability of chrysanthemum cultivars induced by gamma irradiation. Hortic. Sci. Technol. 2021, 39, 660–672. [Google Scholar] [CrossRef]
- Din, A.; Qadri, Z.A.; Wani, M.; Iqbal, S.; Malik, S.; Bhat, Z.A.; Banday, N. Developing an efficient in vitro callusing and regeneration protocol in Dendranthema × grandiflorum Kitam. J. Crop Sci. Biotechnol. 2022, 25, 393–405. [Google Scholar] [CrossRef]
- Haspolat, G.; Kunter, B.; Kantoglu, Y. Determination of mutagenic-sensitivity and induced variability in the mutant populations of ‘Bacardi’ chrysanthemum cultivar. Genetika 2022, 54, 161–172. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–479. [Google Scholar] [CrossRef]
- Anderson, N.O.; Ascher, P.T. Inheritance of seed set, germination and day neutrality/heat delay insensitivity of garden chrysanthemums (Dendranthema × grandiflora) under glasshouse and field conditions. J. Am. Soc. Hortic. Sci. 2004, 129, 509–516. [Google Scholar] [CrossRef]
- The Royal Horticultural Society, London, in Association with the Flower Council of Holland. R.H.S. Colour Chart. London: The Society. 1986. Available online: https://www.rhs.org.uk/ (accessed on 5 March 2024).
- Thao, L.; Dung, N.; Tham, N. Study on Chrysanthemum breeding by gamma (co60) irradiation on callus of 4 exotic varieties. Int. J. Agric. Technol. 2015, 11, 1813–1822. [Google Scholar]
- Wu, J.; Zhang, J.; Lan, F.; Fan, W.; Li, W. Morphological, cytological, and molecular variations induced by gamma rays in ground-grown chrysanthemum ‘Pinkling’. Can. J. Plant Sci. 2019, 100, 68–77. [Google Scholar] [CrossRef]
- Chowdhury, J.; Hoque, M.I.; Sarker, R.H. Evaluation of the Effect of Different Doses of Gamma Radiation to Induce Variation in in vitro Raised Plants of Chrysanthemum. Plant Tissue Cult. Biotech. 2023, 33, 155–165. [Google Scholar] [CrossRef]
- Sakamoto, K.; Nishi, M.; Ishiji, K.; Takatori, Y.; Chiwata, R. Induction of flower-colour mutation by synchrotron-light irradiation in spray chrysanthemum. Acta Hortic. 2019, 1237, 73–78. [Google Scholar] [CrossRef]
- Anitha, G.; Shiragur, M.; Patil, B.C.; Nishani, S.; Seetharamu, G.K.; Ramanagouda, S.H.; Naika, M.B. Mutation studies in chrysanthemum cultivar Poornima white. J. Pharmacogn. Phytochem. 2021, 10, 1235–1239. [Google Scholar]
- Soliman, T.M.; Lv, S.; Yang, H.; Hong, B.; Ma, N.; Zhao, L. Isolation of flower color and shape mutations by gamma radiation of Chrysanthemum morifolium Ramat cv. Youka. Euphytica 2014, 199, 317–324. [Google Scholar] [CrossRef]
- Puripunyavanich, V.; Piriyaphattarakit, A.; Chanchula, N.; Taychasinpitak, T. Mutation induction of in vitro Chrysanthemum by gamma irradiation. Chiang Mai J. Sci. 2019, 46, 609–617. [Google Scholar]
Genotype 1 | Genotype 2 | Distance |
---|---|---|
M38 | M1 | 73.18 |
M3 | M7 | 44.67 |
M4 | M12 | 30.45 |
M14 | M20 | 23.01 |
M11 | M15 | 19.71 |
M4 | M21 | 14.51 |
M36 | M54 | 12.83 |
M13 | CONTROL | 12.58 |
M10 | M42 | 8.09 |
M37 | M68 | 5.45 |
M53 | M72 | 2.83 |
Eigenvalue | Proportion | Cumulative | |
---|---|---|---|
PC 1 | 2.6279 | 0.263 | 0.263 |
PC 2 | 1.4048 | 0.140 | 0.403 |
PC 3 | 1.2211 | 0.122 | 0.525 |
PC 4 | 1.1082 | 0.111 | 0.636 |
PC 5 | 0.9547 | 0.095 | 0.732 |
PC 6 | 0.7058 | 0.071 | 0.802 |
PC 7 | 0.6974 | 0.070 | 0.872 |
PC 8 | 0.6162 | 0.062 | 0.934 |
PC 9 | 0.3508 | 0.035 | 0.969 |
PC 10 | 0.3132 | 0.031 | 1 |
PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | |
---|---|---|---|---|---|
Plant Height (cm) | 0.403 | 0.329 | −0.182 | −0.127 | 0.163 |
Plant Diameter (cm) | 0.200 | 0.163 | −0.391 | −0.626 | 0.100 |
Flower Diameter (cm) | 0.064 | −0.629 | −0.283 | 0.029 | −0.138 |
Number of Flowers | 0.276 | −0.121 | 0.443 | −0.221 | −0.610 |
Number of Ray Flowers | 0.083 | −0.553 | −0.053 | −0.476 | 0.165 |
Number of Flower Colors | −0.100 | −0.015 | −0.615 | 0.195 | −0.571 |
Number of Leaves | 0.364 | 0.222 | −0.303 | 0.094 | −0.079 |
Leaf Length (cm) | 0.408 | −0.237 | 0.038 | 0.233 | 0.338 |
Leaf Width (cm) | 0.433 | −0.183 | −0.065 | 0.458 | 0.110 |
Stem Weight (g) | 0.463 | 0.103 | 0.244 | −0.071 | −0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haspolat, G. Variations in Flower Color of Mutant Chrysanthemums. Horticulturae 2024, 10, 385. https://doi.org/10.3390/horticulturae10040385
Haspolat G. Variations in Flower Color of Mutant Chrysanthemums. Horticulturae. 2024; 10(4):385. https://doi.org/10.3390/horticulturae10040385
Chicago/Turabian StyleHaspolat, Gulden. 2024. "Variations in Flower Color of Mutant Chrysanthemums" Horticulturae 10, no. 4: 385. https://doi.org/10.3390/horticulturae10040385
APA StyleHaspolat, G. (2024). Variations in Flower Color of Mutant Chrysanthemums. Horticulturae, 10(4), 385. https://doi.org/10.3390/horticulturae10040385