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Abstract: The induction of variation in chrysanthemums using gamma radiation under in vitro
conditions is an effective technique in ornamental plants. The purpose of this study is to obtain
new mutants by isolating desirable properties from the three-colored single chrysanthemum mutant
using in vitro cultures. Bud explants were cultured four times, the plantlets were acclimatized, and
520 plants were planted in outdoor conditions. Observations of the mutants were collected during
flowering time, and 97 of the mutants were compared to the control group. Plants with pink, white,
and chimeric flowers were obtained. Mutant plants with white flowers constituted the majority of
the population followed by plants with variegated flower colors. The population is divided into
six clusters, based on the plant height, plant diameter, flower number, flower diameter, number of
flower colors, ray flowers’ number, leaves’ number, stem weight, and lengths and widths of leaves.
The population decreased in plant height, flower number, and stem weight, while other features
increased compared to the control group. Thus, a new population with similar characteristics to
the parent plant was obtained from a single mutant. Chrysanthemum plants exposed to mutagens
showed major changes in flower parts as well as other parts of the plant.

Keywords: chrysanthemum; mutant; in vitro; color; variation

1. Introduction

Chrysanthemums originate from China and are considered one of the most significant
cut flowers in the world [1,2]. In addition to their ornamental uses, chrysanthemum
flowers offer nutritional and medicinal value due to their high antioxidant content [3–6].
Chrysanthemum morifolium Ramat (Dendranthema × grandiflora Tzvelv = Chrysanthemum ×
grandiflorum Ramat) is the most commercially significant ornamental species with most
cultivars being autohexaploid and self-incompatible, which presents challenges for modern
breeding [7–9].

Individuals in the genus Chrysanthemum have a wide range of flowers which are
used in floriculture. They have a unique capitulum that consists of disc and ray florets, and
clear distinctions can be observed between the two florets. The visual color of ray flowers
is referred to as flower color and is a crucial feature of these plants, and they are available
in an abundance of color and form [10–14].

Improving and innovating chrysanthemums by modifying their ornamental attributes
such as floral color, shape, plant type, flowering time, and vase life, while also enhancing
their ability to tolerate biotic and abiotic stress, is the main purpose of chrysanthemum
breeding [15]. Breeders have placed a strong emphasis on manipulating floral color with
a wide range of colors in the ray florets, as it is a major factor that influences customer
selection [16,17]. Older colors, including yellow, pink, and white, are attributed to the
presence of carotenoids and anthocyanins or the absence of these pigments. However,
modern flowers have been bred to display a wider range of colors such as purplish red,
orange, scarlet, and deep red by increasing the pigment content or by combining different
pigments [18–20].

Mutation breeding in plants has proven to be a successful breeding method as mutants
can also be produced directly [21–23]. Using novel breeding methods such as chimera
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management and in vitro mutation results in targeted modifications which have enhanced
and changed the procedures as needed [24]. Numerous new and promising plant species,
including chrysanthemums, have benefited from mutation procedures using ionizing ra-
diation and other mutagens [25]. Chrysanthemums are the plants with the most mutant
variations developed by mutation breeding among vegetatively propagated crops [26].
Chemical agents, gamma and X-rays, and other radiation sources are used as mutagens
in studies carried out in chrysanthemum mutation breeding [8]. As a result of increased
exposure to irradiation, more mutations in flower color have occurred in chrysanthemums,
while the vegetative growth of all cultivars has only been minimally altered [27,28]. Al-
though polyploids with significant genetic heterogeneity make up the majority of cultivated
chrysanthemum varieties, mutants with related flower shapes, floral sizes, and colors are
commonly observed. Radiation can easily activate associated floral colors in chimeric
tissues and isolate them using in vitro techniques [29].

Mutation breeding is useful for developing new ornamental plants with visible
changes in color, shape, and size. By exposure to a mutagen dose, plant height variations
and significant variations in floral parts and leaves were observed on chrysanthemums.
Additionally, gamma radiation is an effective mutagen when applied to in vitro bud ex-
plants for creating new types. The results of in vitro treatments with mutagenic gamma
radiation show that the method of induced homogeneous mutation is an effective approach
for chrysanthemum breeding. Selected mutants can be propagated vegetatively to obtain
new plants with desirable traits that will be well received. Numerous experiments using
tissue culture techniques for mutation breeding resulted in similar results, and diversity
has been achieved with novel genotypes possessing the desired characteristics [30].

The present study aimed to create a new population from a single mutant plant with
different flower types and three different colors. These three flower colors were isolated
from the single mutant using tissue culture methods. The mutant had more ray flowers
and was obtained by irradiating the in vitro bud explants of a white chrysanthemum
variety with gamma rays. This aimed to isolate distinct colors from the single mutant and
create a new population from the clones of this parent mutant plant. With this goal, rapid
propagation techniques of tissue culturing were used to create mutant plants from this
single mutant. In this way, morphological observations were made and compared to the
control plants focused on the possibilities of obtaining new candidate varieties by selecting
individuals with superior characteristics among the mutant population.

2. Materials and Methods

Materials from the single mutant plant of Chrysanthemum morifolium (Ramat.) (Den-
dranthema × grandiflora Tzelev.)‚ variety ‘Bacardi’, were propagated from the bud explants
by tissue culture (Figure 1). The in vitro plantlets of the control plant were irradiated
with 20 Gy (Gray) of cobalt 60 (Co60) gamma source at the Energy, Nuclear and Mining
Research Association, Nuclear Energy Research Institute. Then, they were subcultured
four times till the M1V4 (Mutation 1: Vegetation 4) growing period and then planted in
outdoor conditions after acclimatization. This part was the study’s initial section, which
was published in a different journal [30].
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Figure 1. Summary of the study.

The research was conducted from 2022 to 2023. One of the mutants among the
60,000 mutants showed an increase in the number of ray flower rows (daisy-eyed double
flower head type) and had pink, white, and pink and white variegated (multicolored
chimeric) flowers (Figure 2). This mutant was selected and propagated by tissue cul-
ture. After four subcultures were complete, rooted plantlets were transferred to outdoor
conditions by acclimatization and 520 mutants were planted in an open field (Figure 1).
The 97 mutants with desirable features that bloomed earlier than others in the mutant
population were marked in November 2022. Morphological observations of the mutants
confirming their stable status as well as control plants were recorded in November 2023
when they were in full bloom. Plant height, plant diameter, flower number, number of ray
flowers, number of flower colors, number of leaves, stem weight, and lengths and widths
of leaves are among the attributes that were observed.
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2.1. Tissue Culture

To prepare explants, the lateral buds were washed with running tap water with a
few drops of dishwashing detergent for 60 min. The explants were surface sterilized in
70 percent (v/v) ethanol (EtOH) for one minute after three rounds of rinsing with distilled
water. Next, three rinses were performed with a 25% hydrogen peroxide (H2O2) solution
for the next 10 min, followed by autoclaved distilled water for five minutes each [30].

2.2. Planting In Vitro Explants on Nutrient Medium

The nodes of the sterilized shoot explants were planted on MS (Murashige and
Skoog) [31] with 3% sucrose, 0.7% agar, and 1 mg/L BAP (benzylaminopurine) in glass
tubes. The culture media with the pH adjusted to 5.8 was autoclaved at 121 ◦C for
15 min. The cultured explants were grown in the climate room under a 16 h photoperiod
(30 mol/m2 s1). The nodes of the shoot explants were subcultured after one month [30].

2.3. Rooting and Acclimatization Stages

After four subcultures, the shoots longer than 1 cm were transferred to the plant
growth regulator-free MS medium for rooting. The roots appeared 4 weeks later, and
the rooted 3 cm long shoots were moved to the acclimatization stage. Rooted plantlets
were removed from glass tubes and their roots were cleaned of the agar-based nutrient
medium to acclimate them to the outside environment. The plants were transplanted into
plastic vials containing a 3:1 mixture of peat and perlite placed in boxes and covered with
transparent wrapping paper. The vials were kept for one week at 22 ◦C under cool white
light with a 16 h photoperiod (30 mol/ m2 s1) in the climate room. Tiny holes were pierced
daily on the transparent wrapping paper, as they hardened during the week. The plantlets
that had hardened off were placed in the greenhouse for one week and then planted in soil
in an open field in June 2022 [30].

2.4. Observations of Mutants

The observations of the mutants were collected by taking into account the plant height
(cm; from the soil surface to the uppermost part of the plant), plant diameter (cm; the
widest aboveground plant width) [32], number of leaves, leaf length (cm; the longest part
of leaves), leaf width (cm; the widest part of leaves), number of flowers per plant, flower
width (cm; the widest part of the flower head), number of flower colors each plant, number
of ray florets, and stem weight in early November 2023 during anthesis. Somatic mutations
of the flower color variegations chimeras were recorded as variegated or multicolored. The
color variations from white to pink of ray florets were determined according to the Royal
Horticultural Society (RHS) Color Chart cards [33].

2.5. Statistical Analysis

Morphological measurements were performed on 97 mutants and a control group
(mean of 10 control plants). Based on these measurements, changing ratios and clusters
were created according to the plant height, plant diameter, flower diameter, number of
flowers, number of ray flowers, number of flower colors, flower color, number of leaves,
leaf length, leaf width, and stem weight. Changing ratios of mutant genotypes according
to the control group were calculated with Formula (1):

% Change =
Genotype − Control

Control
× 100 (1)

The genetic closeness in terms of morphological features was determined using the
MINITAB 20 software program. A hierarchical cluster dendrogram was created to analyze
the distance and similarity between mutant populations. The core algorithm was used to
calculate the similarity matrix between the mutants.
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3. Results

While the flower head type of the control plants was semi-double, the mutant’s flower
head type was daisy-eyed double due to the increased number of ray flower rows. In
the mutant group, there were six ray floret rows, compared to three in the control group,
resulting in a change in flower head type. In addition to the change in flower head type,
we also observed some changes in the variation in flower colors.

3.1. Color Distribution of the Mutant Population

The mutant population presented a distribution of pink, white, and pink and white
variegated (multicolored) flowers despite maintaining the same type of flower heads.
Ray floret color variations from white to pink were identified using the RHS Color Chart
cards. While the pink color was 69A, the white one was NN155A [33]. The majority of the
population consisted of white-colored mutant plants, followed by plants with variegated
colored flowers. In some mutants, variegated flowers as well as pink or white flowers
have been observed on the same plant. There was only one mutant plant in the population
which had white, pink, and variegated flowers like the parent mutant plant (Figure 3). The
number of flower colors on a plant varied from 1 to 3 and increased by 23% according to
the control group (Figure 4).

Figure 3. Color distribution in flowers of mutant genotypes.

3.2. The Comparison between the Control Group and the Mutant Population

The population showed increasing and decreasing properties compared to the control
plants in terms of plant height, plant diameter, flower diameter, number of flowers, number
of ray flowers, number of flower colors, number of leaves, leaf length, leaf width, and stem
weight. All characteristics of the mutant population increased except for the plant height,
the number of flowers, and stem weight, which decreased compared to the control group
(Figure 4).

According to the control plants, the plant height decreased by 3% (Figure 4). The
tallest mutant plant was coded M31 mutant, and the shortest one was M38 (Figure 5). Plant
diameter increased by 69% (Figure 4). The widest plant was M1 followed by the control
group, and M32 was the narrowest plant in the population (Figure 6). Flower numbers
differed from 5 to 40 flowers (Figure 7), and the flower number decreased by 23% compared
to the control plants (Figure 4).



Horticulturae 2024, 10, 385 6 of 14

Figure 4. Changing ratios of the population compared to the control plants.
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Flower diameter increased by 25% compared to the control plants (Figure 4). The
widest flower was observed on the M52 mutant; the control plants and the mutants
M25–M41 had the same flower diameters (Figure 8). The M38 mutant formed the greatest
amount of ray flowers, whereas the control group formed the fewest (Figure 9), and the
number of ray florets increased by 31% compared to the control group (Figure 4). The
number of leaves increased by 11% compared to the control group (Figure 4). M24 was
the mutant with the maximum number of leaves, whereas M11 had the minimum leaf
number (Figure 10). Leaf length increased by 31% compared to the control group (Figure 4).
While the longest leaves were observed in the mutant plant coded M37, the mutant plant
numbered M84 was the plant with the shortest leaves (Figure 11).
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In comparison to the control group, the mutant plant coded M39 had the widest leaves,
whereas the mutant plant coded M84 had narrowest leaves (Figure 12). The difference in
leaf diameter was 34% according to the control group (Figure 4).
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The M74-coded mutant plant had the lightest stem weight, while the M17-coded
mutant plant had a heavier stem than the control group (Figure 13). Compared to the
mutant population in the control group, stem weights decreased by 7% (Figure 4).
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3.3. Cluster of the Mutant Population

Cluster analysis was performed on plant height, plant diameter, flower diameter,
number of flowers, number of ray flowers, flower colors, number of flower colors, number
of leaves, leaf length, leaf width, and stem weight. We obtained six groups; control plants
and the only mutant with three colors (pink, white, and variegated) were located in the first
group among 43 genotypes. There were 6 genotypes in the second group and 33 genotypes
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in the third group. The shortest plant (M38) was the only mutant in the fourth group,
11 genotypes were located in the fifth group, and the multi-flowered plants (M7 and M11)
formed the sixth group. Both pink-flowered mutant genotypes and the pink and variegated
flowered plants were observed in the first and third groups (Figures 14 and 15). According
to the correlation matrix, the similarity ratio was 97.2% between the closest mutants M53
and M72 (Table 1).

Figure 14. Dendrogram of mutant genotypes.
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Table 1. Distance between the genotypes according to the cluster groups.

Genotype 1 Genotype 2 Distance

M38 M1 73.18
M3 M7 44.67
M4 M12 30.45
M14 M20 23.01
M11 M15 19.71
M4 M21 14.51
M36 M54 12.83
M13 CONTROL 12.58
M10 M42 8.09
M37 M68 5.45
M53 M72 2.83
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In the principal component analysis, eigenvalues are shown in the scree plot. As
can be seen from the figure, there are four components with eigenvalues greater than 1
(Figure 16).
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The first four principal components were determined to be responsible for 0.636 of
the total variance in the principal component analysis (Table 2). The first group constitutes
0.263 of the total variation, and plant height, number of leaves, leaf length, and width were
more effective in the formation of this group in a positive direction (Table 3).

Table 2. Eigenvalue, variation percentage, and cumulative variation percentage values obtained as a
result of principal component analysis in observed mutant genotypes.

Eigenvalue Proportion Cumulative

PC 1 2.6279 0.263 0.263
PC 2 1.4048 0.140 0.403
PC 3 1.2211 0.122 0.525
PC 4 1.1082 0.111 0.636
PC 5 0.9547 0.095 0.732
PC 6 0.7058 0.071 0.802
PC 7 0.6974 0.070 0.872
PC 8 0.6162 0.062 0.934
PC 9 0.3508 0.035 0.969

PC 10 0.3132 0.031 1

In the second main component, while plant height, plant diameter, number of leaves,
and stem weight had a positive effect, the number of flowers, number of flower colors,
number of ray flowers, flower diameter, leaf length, and leaf width had a negative effect.
Although the number of flowers, leaf length, and stem weight had a positive effect on the
formation of the third group, the other traits had the opposite impact on it. The creation
of the fourth group was positively impacted by flower diameter, the number of flower
colors, the number of leaves, leaf length, and leaf width, whereas the other factors had the
opposite effect (Table 3).

As a result of the analysis, plant height, leaf number, leaf length, and stem weight
were determined as traits with high factor coefficients on the first PC component. It was
determined that flower diameter and the number of ray flowers were important in the
second PC component. The prominent features of the third PC component were the number
of flowers and the number of flower colors. The features of the fourth PC component were
the plant diameter and leaf width (Table 3).
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Table 3. PC component and factor coefficients obtained as a result of principal component analysis in
the observed mutant genotypes.

PC 1 PC 2 PC 3 PC 4 PC 5

Plant Height (cm) 0.403 0.329 −0.182 −0.127 0.163
Plant Diameter (cm) 0.200 0.163 −0.391 −0.626 0.100

Flower Diameter (cm) 0.064 −0.629 −0.283 0.029 −0.138
Number of Flowers 0.276 −0.121 0.443 −0.221 −0.610

Number of Ray Flowers 0.083 −0.553 −0.053 −0.476 0.165
Number of Flower Colors −0.100 −0.015 −0.615 0.195 −0.571

Number of Leaves 0.364 0.222 −0.303 0.094 −0.079
Leaf Length (cm) 0.408 −0.237 0.038 0.233 0.338
Leaf Width (cm) 0.433 −0.183 −0.065 0.458 0.110
Stem Weight (g) 0.463 0.103 0.244 −0.071 −0.293

4. Discussion

The market for ornamental plants is always in need of new commercial varieties and
mutation breeding is frequently utilized to quickly achieve alterations that are significant
to the market. Through this work, flowers from the semi-double white control group were
used to create new daisy-eyed double white and pink mutants with more ray flowers. By
using tissue culture methods, the mother mutant’s various colored flowers were separated
and propagated rapidly.

Studies on the effects of mutation breeding in chrysanthemums have revealed that
the results provide comparable changes in plants. The calli of chrysanthemum varieties
were exposed to cobalt-60 gamma rays to modify the morphology of the original varieties.
Advantageous mutant lines were obtained with the lower stem, shorter growth process,
smaller leaves, changes in flower color, and larger blooms [34]. In the present study, in
addition to the color changes in flowers, an increase in flower diameter and decreases in
plant height were observed, while leaf size increased compared to the control group.

It was indicated that when treated with gamma rays, differences were generated in
the form and color of the flowers like the yellow–white chimera, the deeper color, the
pink–white color, and the dark purple color. The flower variations were the changes in the
flower head diameter, ray flower number, flowering time, flower type, and flower color [35].
Our study’s findings showed a rise in the diameter of the flower head and the number of
ray flowers, and we also obtained pink and white chimeric flowers which were compatible
with the findings of the mentioned study. While the transformation from white to yellow
was observed more depending on the carotenoid content, the transformation from white
to pink was also recorded due to anthocyanin formation. Additionally, it was discovered
that plants exposed to varying levels of gamma radiation showed changes in flower color,
form, and shape [36]. Comparably to this research, the present research’s wide spectrum
of mutants with floral patterns was observed when we compared the control plants. We
have seen distinct variations in plant height, plant width, leaf number, leaf size, number of
flower colors, and flower head size. With the increase in the number of ray flowers, the
flower form turned into a daisy-eyed double. Among other traits, the highest increase was
recorded in plant diameter compared to control group plants.

However, other types of mutagens, such as microwave radiation or synchrotron light
irradiation, may also be helpful for the chrysanthemum variants. After being exposed to
microwave radiation (MW), the explants of the chrysanthemum variety showed longer
stems with bigger flowers [8]. It was discovered that synchrotron light irradiation caused
changes in mutants that displayed a range of color patterns, including a paler and darker
shade of colors than the original flowers [37]. We attained similar results in the present
study such as alterations in the plant height and flower characteristics of the plants. Even
if the mutagen changes, distinct variations in the flowers and other characteristics of the
plant can be used in the creation of novel types. The benefit of utilizing tissue culture
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methods on mutants is the ability to quickly and easily develop new plants with the desired
characteristics.

It was stated that treatment of gamma irradiation caused a reduction in floral size
and an increase in flower yield in small-sized plants [38]. In the present study, while plant
height was shortened, plant diameter and flower sizes increased compared to the control
group. When we look at the findings of a different study in which a white chrysanthemum
variety was irradiated by gamma radiation, the irradiated plants differed from control
plants in plant height, number of leaves, leaf length and width, number of flowers, and
flower diameter. The first of the selected three mutants had tubular ray florets and the
others both had yellow flowers, while one of them had spoon ray florets and the other one
had flat-shaped ray florets [39]. In this study, based on the control group, changes were
detected in the previously mentioned characteristics such as plant height, number of leaves,
leaf length and width, number of flowers, and flower diameter. In contrast to the described
study, the flowers in the present study displayed pink and white variegation instead of
yellow, and the ray florets did not exhibit any changes in morphology.

Consistent with the findings of previous research, it was discovered that the flower
colors of mutants exposed to gamma radiation differed from the original varieties. While
the original variety had pink–orange flowers, the mutants were discovered to have entirely
pink ray flowers. The second mutant had fewer yellow shade ray florets than the original
pink–orange variety, while the third mutant had more yellow ray florets in the center of the
flower than the original pink–yellow variety. The fourth mutant had a mutation in flower
morphology that resulted in multiple ray florets [40]. In addition to modifications in other
parts of the mutants, we also noticed differences in color and ray floret number between
the mutant group and the control group. Further support for future research is provided by
the fact that the control and mutant plants produced results that were equivalent in terms
of flower color, plant heights, flower head size, number of ray florets, number of leaves,
leaf size, and stem weight.

These kinds of variances can be used to create distinctive and desirable properties
that will appeal to producers and customers both. The reason why height and number of
flowers in plants and stem weight decreased while other traits were increased compared to
the control group was due to the effect of applied gamma rays and somatic variations in
tissue cultures. In addition, too many flowers and extreme flower height values that are
too short or too tall are already undesirable in cut flower cultivation. Considering that up
to five stems are placed in bouquets, developing more flowering plants is not suitable for
commercial use. On the other hand, short–tall and multi-flowered plants come to the fore
in outdoor and potted use. It is an appropriate and desired feature to evaluate such plants
in terms of their usage.

5. Conclusions

Our research points to great potential for expanding the understanding of breeding
mutant chrysanthemums and creating new possibilities for the creation of new distinct
genotypes with improved functional qualities as well as attractiveness. We can optimize
the potential of these mutants and significantly impact the floriculture market by carefully
choosing or breeding them in addition to continuing research on mutants and utilizing
them as new varieties. These findings provide opportunities for further research into the
fundamental mechanisms generating mutant populations that give rise to these variations.
Results from in vitro treatments using mutagenic gamma radiation show that this method
is effective in observing mutations in chrysanthemums.
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