Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Color Analysis of Banana Peel and Pulp
2.3. Banana Texture Profile Analysis
2.4. Banana Flour Preparation
2.5. Basic Components Analysis
2.6. Analysis of Total Starch and Resistant Starch Contents
2.7. Free Sugar Content Determination
2.8. Vitamin Content Determination via High-Performance Liquid Chromatography (HPCL)
2.8.1. Ascorbic Acid (Vitamin C)
2.8.2. Thiamin (Vitamin B1), Riboflavin (Vitamin B2), and Pyridoxine (Vitamin B6)
2.9. Minerals Contents Determination
2.10. Determination of Brown Pigment Enzyme Activity
2.10.1. Polyphenol Oxidase (PPO) Activity
2.10.2. Peroxidase Activity
2.11. Oxalic Acid and Tannin Content Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Basic Components of Bananas
3.2. Variation of Banana Color Analysis
3.2.1. Banana Appearance (Peel) Color Changes
3.2.2. Banana Pulp Color Change
3.3. Banana Texture Variation
3.4. Variation of Total Starch and Resistant Starch Content during Ripening
3.5. Free Sugar Content
3.6. Changes in Vitamins Content during Banana Ripening
3.7. Changes in the Minerals Content of Bananas during Ripening
3.8. Changes in Oxalic Acid and Tannin Content of Bananas during Ripening
3.9. Changes in PPO and Peroxidase Activities during Banana Ripening
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keivani Rad, N.; Mohri, M.; Seifi, H.A.; Haghparast, A. Supplementation of overripe pulp extract and green peel extract or powder of banana fruit peel (musa. Cavendish) to diets of neonatal dairy calves: Effects on haematological, immunological and performance characteristics. Vet. Med. Sci. 2021, 7, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Anyasi, T.A.; Jideani, A.I.O.; Mchau, G.A. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars. Food Sci. Nutr. 2015, 3, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S. Chapter 3—Nutritional and biochemical composition of banana (musa spp.) cultivars. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 49–81. [Google Scholar]
- Lopes, S.; Moresco, R.; Peruch, L.A.M.; Rocha, M.; Maraschin, M. UV-Vis spectrophotometry and chemometrics as tools for recognition of the biochemical profiles of organic banana peels (musa sp.) according to the seasonality in southern Brazil. In Proceedings of the 11th International Conference on Practical Applications of Computational Biology & Bioinformatics, Porto, Portugal, 21–23 June 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 289–296. [Google Scholar]
- Mukherjee, S.; Dey, P.K.; Mitra, A. Application of anantmul (Hemidesmus indicus) root extract improves postharvest shelf-life of dessert banana. Postharvest Biol. Technol. 2023, 199, 112290. [Google Scholar] [CrossRef]
- Kumar, P.S.; Thayumanavan, S.; Pushpavalli, S.; Saraswathi, M.S.; Backiyarani, S.; Mohanasundaram, A.; Uma, S. Comparing physico-chemical characteristics, antioxidant properties, glycemic response, and volatile profiles of eleven banana varieties. Int. J. Food Sci. Technol. 2023, 58, 2893–2908. [Google Scholar] [CrossRef]
- Owoeye, O.R.; Oluwole, A.M.; Jolayemi, O.S.; Oluwalana, I.B. Linear and nonlinear regression modeling of the chemical, physical and quality variations in cardaba banana (Musa acuminata x balbisiana—ABB) during ripening. J. Food Meas. Charact. 2023, 17, 12–23. [Google Scholar] [CrossRef]
- Saha, K.K.; Zude-Sasse, M. Estimation of chlorophyll content in banana during shelf life using LiDAR laser scanner. Postharvest Biol. Technol. 2022, 192, 112011. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Bioactive compounds in banana and their associated health benefits—A review. Food Chem. 2016, 206, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sheng, O.; Yin, Z.; Huang, W.; Chen, M.; Du, M.; Kong, Q.; Fernie, A.R.; Yi, G.; Yan, S. Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chem. 2023, 403, 134380. [Google Scholar] [CrossRef]
- Arora, A.; Choudhary, D.; Agarwal, G.; Singh, V.P. Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. Int. J. Food Sci. Technol. 2008, 43, 1913–1921. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.-U.-N.; Bozdar, B.; et al. Micronutrients and their effects on horticultural crop quality, productivity and sustainability. Sci. Hortic. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Assunção, A.G.L.; Cakmak, I.; Clemens, S.; González-Guerrero, M.; Nawrocki, A.; Thomine, S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. J. Exp. Bot. 2022, 73, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Melse-Boonstra, A. Bioavailability of micronutrients from nutrient-dense whole foods: Zooming in on dairy, vegetables, and fruits. Front. Nutr. 2020, 7, 101. [Google Scholar] [CrossRef]
- Devarajan, R.; Jayaraman, J.K.; Somasundaram, S.M.; Ragupathy, S.; Raman, P.; Sathiamoorthy, K.; Subbaraya, U. Genetic diversity in fresh fruit pulp mineral profile of 100 Indian Musa accessions. Food Chem. 2021, 361, 130080. [Google Scholar] [CrossRef] [PubMed]
- Watharkar, R.B.; Pu, Y.; Ismail, B.B.; Srivastava, B.; Srivastav, P.P.; Liu, D. Change in physicochemical characteristics and volatile compounds during different stage of banana (Musa nana lour vs. Dwarf cavendish) ripening. J. Food Meas. Charact. 2020, 14, 2040–2050. [Google Scholar] [CrossRef]
- Freeland-Graves, J.H.; Sachdev, P.K.; Binderberger, A.Z.; Sosanya, M.E. Global diversity of dietary intakes and standards for zinc, iron, and copper. J. Trace Elem. Med. Biol. 2020, 61, 126515. [Google Scholar] [CrossRef] [PubMed]
- do Prado Ferreira, M.; Teixeira Tarley, C.R. Assessment of in vitro bioacessibility of macrominerals and trace elements in green banana flour. J. Food Compos. Anal. 2020, 92, 103586. [Google Scholar] [CrossRef]
- Khoza, M.; Kayitesi, E.; Dlamini, B.C. Physicochemical characteristics, microstructure and health promoting properties of green banana flour. Foods 2021, 10, 2894. [Google Scholar] [CrossRef] [PubMed]
- Ofori, K.F.; Antoniello, S.; English, M.M.; Aryee, A.N.A. Improving nutrition through biofortification–A systematic review. Front. Nutr. 2022, 9, 1043655. [Google Scholar] [CrossRef] [PubMed]
- Samanros, A.; Lin, J. Physicochemical properties and in vitro digestibility of starches from different Taiwanese banana cultivars. Int. Food Res. J. 2021, 28, 1257–1267. [Google Scholar] [CrossRef]
- Borges, C.V.; Maraschin, M.; Coelho, D.S.; Leonel, M.; Gomez, H.A.G.; Belin, M.A.F.; Diamante, M.S.; Amorim, E.P.; Gianeti, T.; Castro, G.R.; et al. Nutritional value and antioxidant compounds during the ripening and after domestic cooking of bananas and plantains. Food Res. Int. 2020, 132, 109061. [Google Scholar] [CrossRef]
- Costa, B.N.S.; Costa, I.D.J.S.; de Souza, G.A.; de Abreu, R.A.A.; de Melo, E.T.; Pio, L.A.S.; Pasqual, M. Different types of soil mulches in the leaf anatomy and physiology of ‘brs platina’ banana in a non-irrigated management. Sci. Hortic. 2022, 292, 110605. [Google Scholar] [CrossRef]
- Lu, W.-C.; Cheng, Y.-T.; Lai, C.-J.; Chiang, B.-H.; Huang, P.-H.; Li, P.-H. Mathematical modeling of modified atmosphere package/LDPE film combination and its application to design breathing cylinders for extending the shelf life of green asparagus. Chem. Biol. Technol. Agric. 2023, 10, 60. [Google Scholar] [CrossRef]
- Cheng, Y.-T.; Huang, P.-H.; Chan, Y.-J.; Chen, S.-J.; Lu, W.-C.; Li, P.-H. A new strategy to design novel modified atmosphere packaging formulation maintains the qualities of postharvest strawberries (Fragaria ananassa) during low-temperature storage. J. Food Saf. 2023, 43, e13082. [Google Scholar] [CrossRef]
- Lu, W.-C.; Chan, Y.-J.; Chen, S.-J.; Mulio, A.T.; Wang, C.-C.R.; Huang, P.-H.; Li, P.-H. Using calcined oyster shell powder as a natural preservative for extending the quality of black king fish (Rachycentron canadum) fillets. J. Food Process Pres. 2022, 46, e17262. [Google Scholar] [CrossRef]
- Maduwanthi, S.; Marapana, R. Biochemical changes during ripening of banana: A review. Int. J. Food Sci. Nutr. 2017, 2, 166–170. [Google Scholar]
- Symmank, C.; Zahn, S.; Rohm, H. Visually suboptimal bananas: How ripeness affects consumer expectation and perception. Appetite 2018, 120, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, J.; Maertens, M.; Colen, L. The role of food standards in trade and development. In Food Safety, Market Organization, Trade and Development; Hammoudi, A., Grazia, C., Surry, Y., Traversac, J.-B., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 133–149. [Google Scholar]
- Argumedo, A.; Song, Y.; Khoury, C.K.; Hunter, D.; Dempewolf, H.; Guarino, L.; de Haan, S. Biocultural diversity for food system transformation under global environmental change. Front. Sustain. Food Syst. 2021, 5, 685299. [Google Scholar] [CrossRef]
- PBMH-PIF. Banana musa spp.: Normas de Classificação. 2006. Available online: https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=879920&biblioteca=vazio&busca=PROGRAMA%20BRASILEIRO%20PARA%20A%20MODERNIZAÇÃO%20DA%20HORTICULTURA%20&%20PRODUÇÃO%20INTEGRADA%20DE%20FRUTAS&qFacets=PROGRAMA%20BRASILEIRO%20PARA%20A%20MODERNIZAÇÃO%20DA%20HORTICULTURA%20&%20PRODUÇÃO%20INTEGRADA%20DE%20FRUTAS&sort=&paginacao=t&paginaAtual=1 (accessed on 11 March 2023).
- Cheng, Y.; Huang, P.; Chan, Y.; Chiang, P.; Lu, W.; Hsieh, C.; Liang, Z.; Yan, B.; Wang, C.R.; Li, P. Investigate the composition and physicochemical properties attributes of banana starch and flour during ripening. Carbohydr. Polym. Technol. Appl. 2024, 7, 100446. [Google Scholar] [CrossRef]
- Huang, P.-H.; Chiu, C.-S.; Lu, W.-C.; Li, P.-H. Effect of compositions on physicochemical properties and rheological behavior of gelatinized adzuki-bean cake (yokan). LWT 2022, 168, 113870. [Google Scholar] [CrossRef]
- AACC. AACC Approved Methods of Analysis, 11th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2010. [Google Scholar]
- Nielsen, S.S. Phenol-sulfuric acid method for total carbohydrates. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Springer: Boston, MA, USA, 2010; pp. 47–53. [Google Scholar]
- Gentili, A.; Caretti, F. Chapter 19—Analysis of vitamins by liquid chromatography. In Liquid Chromatography, 2nd ed.; Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 571–615. [Google Scholar]
- Jorhem, L. Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL1 collaborative study. J. AOAC Int. 2019, 83, 1204–1211. [Google Scholar] [CrossRef]
- Sikora, M.; Świeca, M.; Franczyk, M.; Jakubczyk, A.; Bochnak, J.; Złotek, U. Biochemical properties of polyphenol oxidases from ready-to-eat lentil (Lens culinaris medik.) sprouts and factors affecting their activities: A search for potent tools limiting enzymatic browning. Foods 2019, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.J.; Parsonage, D. Measurement of peroxiredoxin activity. Curr. Protoc. Toxicol. 2011, 49, 7–10. [Google Scholar] [CrossRef]
- Karamad, D.; Khosravi-Darani, K.; Hosseini, H.; Tavasoli, S. Analytical procedures and methods validation for oxalate content estimation. Biointerface Res. Appl. Chem. 2019, 9, 4305–4310. [Google Scholar] [CrossRef] [PubMed]
- Verzele, M.; Delahaye, P. Analysis of tannic acids by high-performance liquid chromatography. J. Chromatogr. A 1983, 268, 469–476. [Google Scholar] [CrossRef]
- Oyeyinka, B.O.; Afolayan, A.J. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L. (plantain) fruit compartments. Plants 2019, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Agama-Acevedo, E.; Sañudo-Barajas, J.A.; Vélez De La Rocha, R.; González-Aguilar, G.A.; Bello-Peréz, L.A. Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA-J. Food 2016, 14, 117–123. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C.; et al. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Li, M.-C.; Chou, C.-F.; Hsu, S.-C.; Lin, J.-S. Physicochemical characteristics and resistant starch of different varieties of banana from Taiwan. Int. J. Food Prop. 2020, 23, 1168–1175. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, S.; Liao, Y.; Huang, B.; Du, B.; Zeng, W.; Jiang, Y.; Duan, X.; Yang, Z. Comparative analysis of pigments in red and yellow banana fruit. Food Chem. 2018, 239, 1009–1018. [Google Scholar] [CrossRef]
- Ningsih, R.; Rafi, M.; Tjahjoleksono, A.; Bintang, M.; Megia, R. Ripe pulp metabolite profiling of ten Indonesian dessert banana cultivars using UHPLC-Q-Orbitrap HRMS. Eur. Food Res. Technol. 2021, 247, 2821–2830. [Google Scholar] [CrossRef]
- Pereira, A.; Maraschin, M. Banana (musa spp.) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 2015, 160, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.; Jha, S.N.; Kaur, P.P.; Bhardwaj, R.; Singh, A.K.; Wadhawan, V. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening. J. Food Sci. Technol. 2014, 51, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Kudachikar, V.B.; Kulkarni, S.G.; Prakash, M.N. Effect of modified atmosphere packaging on quality and shelf life of ‘Robusta’ banana (musa sp.) stored at low temperature. J Food Sci. Technol. 2011, 48, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Seymour, G.B. Banana. In Biochemistry of Fruit Ripening; Seymour, G.B., Taylor, J.E., Tucker, G.A., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 83–106. [Google Scholar]
- Wu, M.-C.; Jiang, C.-M.; Huang, P.-H.; Wu, M.-Y.; Wang, Y.T. Separation and utilization of pectin lyase from commercial pectic enzyme via highly methoxylated cross-linked alcohol-insoluble solid chromatography for wine methanol reduction. J. Agric. Food Chem. 2007, 55, 1557–1562. [Google Scholar] [CrossRef] [PubMed]
- Biabiany, S.; Araou, E.; Cormier, F.; Martin, G.; Carreel, F.; Hervouet, C.; Salmon, F.; Efile, J.-C.; Lopez-Lauri, F.; D’Hont, A.; et al. Detection of dynamic qtls for traits related to organoleptic quality during banana ripening. Sci. Hortic. 2022, 293, 110690. [Google Scholar] [CrossRef]
- Chiang, P.-Y.; Li, P.-H.; Huang, C.-C.; Wang, C.-C.R. Changes in functional characteristics of starch during water caltrop (Trapa Quadrispinosa Roxb.) growth. Food Chem. 2007, 1, 376–382. [Google Scholar] [CrossRef]
- Nannyonga, S.; Bakalis, S.; Andrews, J.; Mugampoza, E.; Gkatzionis, K. Mathematical modelling of color, texture kinetics and sensory attributes characterisation of ripening bananas for waste critical point determination. J. Food Eng. 2016, 190, 205–210. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef] [PubMed]
- Cordenunsi-Lysenko, B.R.; Nascimento, J.R.O.; Castro-Alves, V.C.; Purgatto, E.; Fabi, J.P.; Peroni-Okyta, F.H.G. The starch is (not) just another brick in the wall: The primary metabolism of sugars during banana ripening. Front. Plant Sci. 2019, 10, 452915. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Foods 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Passo Tsamo, C.V.; Herent, M.-F.; Tomekpe, K.; Happi Emaga, T.; Quetin-Leclercq, J.; Rogez, H.; Larondelle, Y.; Andre, C. Phenolic profiling in the pulp and peel of nine plantain cultivars (musa sp.). Food Chem. 2015, 167, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Abib, B.; Qin, Z.; Ze, X.; Ali, S.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr. Res. Food Sci. 2023, 6, 100450. [Google Scholar] [CrossRef] [PubMed]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H.-P. Red meat, diseases, and healthy alternatives: A critical review. Crit. Rev. Food Sci. Nutr. 2018, 58, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kwock, C.K.; Yang, Y.J. The effect of the sodium to potassium ratio on hypertension prevalence: A propensity score matching approach. Nutrients 2016, 8, 482. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.; Chang, E.T. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv. Nutr. 2014, 5, 712–741. [Google Scholar] [CrossRef] [PubMed]
- Omidvari, M.; Abbaszadeh-Dahaji, P.; Hatami, M.; Kariman, K. Chapter 2—Biocontrol: A novel eco-friendly mitigation strategy to manage plant diseases. In Plant Stress Mitigators; Ghorbanpour, M., Shahid, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 27–56. [Google Scholar]
- Forster, M.P.; Rodríguez Rodríguez, E.; Díaz Romero, C. Differential characteristics in the chemical composition of bananas from tenerife (canary islands) and ecuador. J. Agric. Food Chem. 2002, 50, 7586–7592. [Google Scholar] [CrossRef] [PubMed]
- Nguyễn, H.V.H.; Savage, G.P. Oxalate content of New Zealand grown and imported fruits. J. Food Compos. Anal. 2013, 31, 180–184. [Google Scholar] [CrossRef]
- Ivanovski, O.; Drüeke, T.B. A new era in the treatment of calcium oxalate stones? Kidney Int. 2013, 83, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.K.; Nguyen, D.H.M.; Nguyen, H.V.H. Effects of processing on oxalate contents in plant foods: A review. J. Food Compos. Anal. 2022, 112, 104685. [Google Scholar] [CrossRef]
- Durdaği, S.; Al-Jalawee, A.H.H.; Yalçin, P.; Bozkurt, A.S.; Salcan, S. Morphological characterization and phase determination of kidney stones using X-ray diffractometer and scanning electron microscopy. Chin. J. Phys. 2023, 83, 379–388. [Google Scholar] [CrossRef]
- Wu, F.; Cheng, Y.; Zhou, J.; Liu, X.; Lin, R.; Xiang, S.; Liu, Z.; Wang, C. Zn2+ regulates human oxalate metabolism by manipulating oxalate decarboxylase to treat calcium oxalate stones. Int. J. Biol. Macromol. 2023, 234, 123320. [Google Scholar] [CrossRef] [PubMed]
- Zampini, A.; Nguyen, A.H.; Rose, E.; Monga, M.; Miller, A.W. Defining dysbiosis in patients with urolithiasis. Sci. Rep. 2019, 9, 5425. [Google Scholar] [CrossRef] [PubMed]
- Denaxa, N.-K.; Tsafouros, A.; Ntanos, E.; Roussos, P.A. Chapter 8—Role of glycine betaine in the protection of plants against environmental stresses. In Plant Stress Mitigators; Ghorbanpour, M., Adnan Shahid, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 127–158. [Google Scholar]
- Bolton, J.L.; Dunlap, T.L.; Dietz, B.M. Formation and biological targets of botanical o-quinones. Food Chem. Toxicol. 2018, 120, 700–707. [Google Scholar] [CrossRef] [PubMed]
Ripening Stage | Moisture | Crude Fiber | Crude Fat | Crude Protein | Ash | Total Starch | Resistant Starch | Free Sugars |
---|---|---|---|---|---|---|---|---|
% | mg Glucose/g Banana Pulp | |||||||
1 | 70.19 ± 1.01 d | 0.61 ± 0.09 a | 0.31 ± 0.03 a | 6.24 ± 0.10 a | 3.46 ± 0.18 cd | 76.17 ± 2.28 a | 33.23 ± 0.92 b | 19.75 ± 0.58 i |
2 | 71.56 ± 0.43 cd | 0.64 ± 0.05 a | 0.34 ± 0.02 a | 5.96 ± 0.12 abc | 3.64 ± 0.02 ab | 72.47 ± 0.54 a | 33.28 ± 1.32 b | 28.36 ± 0.08 h |
3 | 71.63 ± 0.82 cd | 0.62 ± 0.06 a | 0.33 ± 0.05 a | 5.14 ± 0.16 e | 3.04 ± 0.06 g | 68.04 ± 3.02 b | 36.05 ± 1.53 a | 52.34 ± 0.11 g |
4 | 72.77 ± 0.38 c | 0.61 ± 0.05 a | 0.30 ± 0.02 a | 5.48 ± 0.08 cde | 3.57 ± 0.06 bc | 56.87 ± 3.08 c | 19.54 ± 0.41 c | 183.09 ± 0.06 f |
5 | 71.61 ± 0.57 cd | 0.68 ± 0.09 a | 0.36 ± 0.07 a | 5.73 ± 0.07 bcd | 3.75 ± 0.03 a | 53.81 ± 2.33 d | 13.32 ± 0.75 d | 272.31 ± 0.03 e |
6 | 72.28 ± 0.44 c | 0.63 ± 0.04 a | 0.35 ± 0.03 a | 5.53 ± 0.19 cde | 3.26 ± 0.02 ef | 45.02 ± 2.10 e | 9.22 ± 1.38 e | 316.65 ± 0.22 d |
7 | 75.59 ± 0.27 ab | 0.59 ± 0.07 a | 0.39 ± 0.04 a | 6.14 ± 0.20 ab | 3.17 ± 0.05 fg | 41.31 ± 0.07 e | 9.09 ± 1.41 e | 323.95 ± 0.09 c |
8 | 74.84 ± 0.48 a | 0.51 ± 0.06 a | 0.41 ± 0.07 a | 5.68 ± 0.17 bcd | 3.44 ± 0.04 cd | 33.94 ± 0.53 f | 5.74 ± 0.56 f | 361.05 ± 0.04 b |
9 | 76.81 ± 0.16 a | 0.58 ± 0.08 a | 0.38 ± 0.06 a | 5.29 ± 0.13 de | 3.35 ± 0.06 de | 32.04 ± 1.23 f | 5.81 ± 0.55 f | 373.90 ± 0.05 a |
Ripening Stage | Peel | Pulp Surface | Pulp Cutting Surface | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | White Index (WI) Value | L* | a* | b* | WI Value | L* | a* | b* | WI Value | |
1 | 51.76 h | −11.32 h | 34.39 h | 39.68 g | 87.29 a | 0.81 e | 16.38 g | 79.25 a | 84.81 a | 1.26 g | 18.13 i | 76.31 a |
2 | 57.01 g | −11.22 h | 35.15 g | 43.34 e | 85.29 c | 1.15 c | 19.74 b | 75.36 d | 81.18 d | 1.53 f | 20.89 g | 71.84 d |
3 | 59.52 e | −9.35 g | 36.64 f | 44.61 c | 87.08 b | 0.59 g | 16.63 f | 78.93 b | 81.78 c | 2.29 c | 19.15 h | 73.47 b |
4 | 58.88 f | −7.73 f | 43.53 c | 39.62 h | 86.43 b | 0.91 d | 18.62 d | 76.94 c | 83.46 b | 1.05 h | 21.57 f | 72.80 c |
5 | 68.98 c | 0.58 e | 41.86 e | 47.89 a | 83.51 e | 1.11 c | 18.49 e | 75.20 d | 76.18 e | 1.75 e | 23.64 d | 66.39 e |
6 | 69.63 b | 4.63 c | 49.22 a | 41.98 f | 83.36 e | 0.77 f | 19.26 c | 74.53 e | 74.77 f | 2.81 b | 22.11 e | 66.34 e |
7 | 70.07 a | 3.36 d | 43.34 d | 47.22 b | 82.40 e | 0.72 f | 18.58 d | 74.40 f | 74.88 f | 2.08 d | 24.71 c | 64.70 f |
8 | 66.03 d | 7.35 b | 44.48 b | 43.55 d | 83.70 d | 1.33 b | 19.82 b | 74.30 g | 75.59 g | 2.79 b | 27.43 b | 63.18 g |
9 | 43.60 i | 9.50 a | 24.33 i | 37.85 i | 78.14 f | 1.58 a | 24.41 a | 67.19 h | 65.57 h | 3.86 a | 31.07 a | 53.46 h |
Ripening Stage | Firmness (N) | Fractur Ability | Adhesiveness (g·sec) | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience |
---|---|---|---|---|---|---|---|---|
1 | 6069.00 ± 154.50 a | N.D. | −4.43 ± 2.11 a | 0.77 ± 0.03 a | 0.11 ± 0.01 a | 686.85 ± 30.98 a | 497.00 ± 26.19 a | 0.03 ± 0.00 a |
2 | 5240.00 ± 145.30 b | −20.00 ± 1.86 ab | 0.77 ± 0.03 a | 0.09 ± 0.01 a | 519.49 ± 41.27 b | 469.23 ± 73.02 a | 0.02 ± 0.00 a | |
3 | 5169.00 ± 187.40 b | −5.24 ± 4.10 bc | 0.53 ± 0.07 b | 0.12 ± 0.02 a | 575.35 ± 62.71 b | 486.59 ± 42.39 a | 0.04 ± 0.01 a | |
4 | 1343.00 ± 57.80 c | −63.37 ± 5.62 d | 0.53 ± 0.06 b | 0.09 ± 0.02 a | 135.02 ± 1.57 c | 54.46 ± 5.42 b | 0.03 ± 0.00 a | |
5 | 760.00 ± 29.90 d | −82.29 ± 9.59 e | 0.67 ± 0.05 ab | 0.10 ± 0.01 a | 74.99 ± 5.90 d | 41.86 ±4.30 b | 0.02 ± 0.00 a | |
6 | 720.00 ± 23.40 d | −48.95 ± 6.86 cd | 0.57 ± 0.02 b | 0.09 ± 0.00 a | 68.55 ± 3.04 d | 38.69 ± 2.24 b | 0.02 ± 0.00 a | |
7 | 680.00 ± 13.10 d | −60.33 ± 5.43 d | 0.56 ± 0.04 b | 0.11 ± 0.02 a | 69.76 ± 3.93 d | 40.33 ± 2.42 b | 0.03 ± 0.00 a | |
8 | 585.00 ± 20.00 de | −55.80 ± 5.19 d | 0.57 ± 0.04 b | 0.11 ± 0.01 a | 62.35 ± 5.94 d | 31.41 ± 3.62 b | 0.03 ± 0.00 a | |
9 | 494.00 ± 19.60 e | −35.88 ± 5.57 bc | 0.65 ± 0.03 ab | 0.11 ± 0.01 a | 60.77 ± 4.54 d | 37.55 ± 1.16 b | 0.02 ± 0.00 a |
Ripening Stage | Vitamin | Bioactive Component | ||||||
---|---|---|---|---|---|---|---|---|
C Ascorbic Acid | B1 Thiamine | B2 Riboflavin | B6 Pyridoxal | Oxalic Acid | Tannic Acid | Polyphenol Oxidase Activity | Peroxidase Activity | |
(μg/g Banana Pulp) | U | |||||||
1 | 284.54 ± 28.22 b | 0.76 ± 0.03 abc | 3.88 ± 0.12 ab | 47.20 ± 0.47 ab | 22963.61 ± 521.26 a | 455.54 ± 25.25 b | 2.54 ± 0.06 g | 3.90 ± 0.08 a |
2 | 286.50 ± 8.21 b | 0.85 ± 0.01 a | 4.24 ± 0.14 ab | 49.93 ± 0.64 ab | 13260.61 ± 368.29 b | 592.03 ± 22.48 a | 3.71 ± 0.08 f | 3.30 ± 0.06 b |
3 | 295.63 ± 22.14 b | 0.70 ± 0.03 abc | 4.17 ± 0.08 ab | 44.62 ± 1.36 ab | 11662.37 ± 275.43 c | 339.13 ± 9.87 c | 5.50 ± 0.13 e | 1.80 ± 0.07 c |
4 | 345.41 ± 23.15 a | 0.57 ± 0.03 bc | 3.80 ± 0.09 ab | 47.07 ± 0.34 ab | 335.95 ± 9.78 d | 301.19 ± 11.56 cd | 6.00 ± 0.11 ed | 1.80 ± 0.04 c |
5 | 332.85 ± 19.62 ab | 0.74 ± 0.04 abc | 4.30 ± 1.24 a | 52.18 ± 3.50 a | 128.00 ± 5.22e | 292.46 ± 8.99 d | 5.83 ± 0.09 e | 1.60 ± 0.05 d |
6 | 326.36 ± 14.94 ab | 0.80 ± 0.05 c | 3.67 ± 0.05 ab | 41.05 ± 0.72 b | 97.49 ± 3.04 f | 241.81 ± 10.40 e | 6.37 ± 0.18 d | 1.40 ± 0.06 e |
7 | 355.95 ± 10.25 a | 0.79 ± 0.03 ab | 3.74 ± 0.14 ab | 46.42 ± 0.86 ab | 86.48 ± 2.19 g | 186.91 ± 6.24 f | 9.50 ± 0.16 c | 0.70 ± 0.02 f |
8 | 355.02 ± 20.31 a | 0.81 ± 0.04 ab | 4.00 ± 0.04 ab | 48.25 ± 0.61 ab | 13.93 ± 0.56 h | 157.49 ± 6.86 g | 24.50 ± 0.31 b | 0.80 ± 0.04 f |
9 | 107.40 ± 13.85 c | 0.89 ± 0.04 a | 3.47 ± 0.13 b | 51.80 ± 0.80 a | 13.75 ± 0.29 h | 159.84 ± 4.08 g | 17.33 ± 0.12 a | 0.50 ± 0.03 g |
Ripening Stage | K | Na | Mg | Fe | Ca | P |
---|---|---|---|---|---|---|
mg/100 g Banana Pulp Weight | ||||||
1 | 933.57 ± 10.12 ab | 0.42 ± 0.05 a | 59.36 ± 2.70 a | 0.59 ± 0.08 a | 28.35 ± 1.20 a | 57.81 ± 2.00 a |
2 | 893.95 ± 14.32 abc | 0.44 ± 0.08 a | 64.86 ± 3.40 a | 0.61 ± 0.07 a | 25.83 ± 1.10 a | 58.39 ± 3.10 a |
3 | 915.64 ± 15.20 ab | 0.43 ± 0.06 a | 73.30 ± 5.80 a | 0.60 ± 0.06 a | 28.06 ± 1.20 a | 58.52 ± 2.40 a |
4 | 923.22 ± 15.14 ab | 0.53 ± 0.15 a | 68.87 ± 4.20 a | 0.62 ± 0.10 a | 27.00 ± 1.30 a | 62.78 ± 2.60 a |
5 | 852.24 ± 13.21 c | 0.54 ± 0.03 a | 68.75 ± 5.30 a | 0.63 ± 0.10 a | 28.61 ± 1.40 a | 64.71 ± 3.50 a |
6 | 889.39 ± 20.87 bc | 0.50 ± 0.03 a | 60.87 ± 3.40 a | 0.63 ± 0.08 a | 25.20 ± 1.30 a | 59.86 ± 2.90 a |
7 | 887.76 ± 16.31 bc | 0.55 ± 0.08 a | 61.73 ± 2.50 a | 0.62 ± 0.09 a | 26.39 ± 1.40 a | 60.75 ± 1.60 a |
8 | 946.69 ± 18.53 a | 0.53 ± 0.07 a | 63.70 ± 2.60 a | 0.62 ± 0.07 a | 27.86 ± 1.30 a | 61.97 ± 3.00 a |
9 | 909.14 ± 8.24 ab | 0.50 ± 0.00 a | 65.20 ± 3.40 a | 0.62 ± 0.09 a | 26.28 ± 1.50 a | 61.66 ± 2.10 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-H.; Cheng, Y.-T.; Lu, W.-C.; Chiang, P.-Y.; Yeh, J.-L.; Wang, C.-C.; Liang, Y.-S.; Li, P.-H. Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening. Horticulturae 2024, 10, 384. https://doi.org/10.3390/horticulturae10040384
Huang P-H, Cheng Y-T, Lu W-C, Chiang P-Y, Yeh J-L, Wang C-C, Liang Y-S, Li P-H. Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening. Horticulturae. 2024; 10(4):384. https://doi.org/10.3390/horticulturae10040384
Chicago/Turabian StyleHuang, Ping-Hsiu, Yu-Tsung Cheng, Wen-Chien Lu, Po-Yuan Chiang, Jui-Lin Yeh, Chiun-Chuang (Roger) Wang, Yu-Shen Liang, and Po-Hsien Li. 2024. "Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening" Horticulturae 10, no. 4: 384. https://doi.org/10.3390/horticulturae10040384
APA StyleHuang, P. -H., Cheng, Y. -T., Lu, W. -C., Chiang, P. -Y., Yeh, J. -L., Wang, C. -C., Liang, Y. -S., & Li, P. -H. (2024). Changes in Nutrient Content and Physicochemical Properties of Cavendish Bananas var. Pei Chiao during Ripening. Horticulturae, 10(4), 384. https://doi.org/10.3390/horticulturae10040384