Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Design
2.2. Fermentation Quality Analysis
2.3. Chemical Composition and Energy Analysis
2.4. Aerobic Stability Analysis
2.5. In Vitro Degradability Analysis
2.6. Statistical Analyses
3. Results
3.1. Fermentation Quality of Amaranth and Wheat Bran Mixed Silage
3.2. Chemical Composition of Amaranth and Wheat Bran Mixed Silage
3.3. Energy and In Vitro Digestibility of Amaranth and Wheat Bran Mixed Silage
3.4. Aerobic Stability of Amaranth and Wheat Bran Mixed Silage
4. Discussion
4.1. Effect of Moisture Content and Additives on the Fermentation Quality of AWB Mixed Silage
4.2. Effect of Moisture Content and Additives on Chemical Composition and In Vitro Digestibility of AWB Mixed Silage
4.3. Effect of Moisture Content and Additives on the Aerobic Stability of AWB Mixed Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbasi, D.; Rouzbehan, Y.; Rezaei, J. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. 2012, 171, 6–13. [Google Scholar] [CrossRef]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H. Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Anim. Feed Sci. Technol. 2009, 151, 153–160. [Google Scholar] [CrossRef]
- Rahjerdi, N.K.; Rouzbehan, Y.; Fazaeli, H.; Rezaei, J. Chemical composition, fermentation characteristics, digestibility, and degradability of silages from two amaranth varieties (kharkovskiy and sem), corn, and an amaranth-corn combination. J. Anim. Sci. 2015, 93, 5781–5790. [Google Scholar] [CrossRef]
- Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Sánchez-Urdaneta, A. Effect of the inclusion of Amaranthus dubius in diets on carcass characteristics and meat quality of fattening rabbits. J. Appl. Anim. Res. 2018, 46, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Ngugi, C.C.; Oyoo-Okoth, E.; Manyala, J.O.; Fitzsimmons, K.; Kimotho, A. Characterization of the nutritional quality of amaranth leaf protein concentrates and suitability of fish meal replacement in nile tilapia feeds. Aquac. Rep. 2017, 5, 62–69. [Google Scholar] [CrossRef]
- Rezaei, J.; Rouzbehan, Y.; Fazaeli, H.; Zahedifar, M. Effects of substituting amaranth silage for corn silage on intake, growth performance, diet digestibility, microbial protein, nitrogen retention and ruminal fermentation in fattening lambs. Anim. Feed Sci. Technol. 2014, 192, 29–38. [Google Scholar] [CrossRef]
- Guo, X.S.; Undersander, D.J.; Combs, D.K. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue. J. Dairy Sci. 2013, 96, 1735–1744. [Google Scholar] [CrossRef] [Green Version]
- Gül, S.; Coskuntuna, L.; Koç, F.; Özdüven, L. The effect of wheat bran added to canola silage on feed value and in vitro organic matter digestibility. Appl. Ecol. Environ. Res. 2019, 17, 10823–10829. [Google Scholar] [CrossRef]
- Tian, J.; Xu, N.; Liu, B.; Huan, H.; Gu, H.; Dong, C.; Ding, C. Interaction effect of silo density and additives on the fermentation quality, microbial counts, chemical composition and in vitro degradability of rice straw silage. Bioresour. Technol. 2020, 297, 122412. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Cherdthong, A. Strategic addition of different additives to improve silage fermentation, aerobic stability and in vitro digestibility of napier grasses at late maturity stage. Agriculture 2020, 10, 262. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Yang, H.; Na, R.S. The effects of stage of growth and additives with or without cellulase on fermentation and in vitro degradation characteristics of Leymus chinensis silage. Grass Forage Sci. 2016, 71, 595–606. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; Ma, G.; Jiang, X.; Yang, J.; Lv, J.; Zhang, Y. Cellulase interacts with lactic acid bacteria to affect fermentation quality, microbial community, and ruminal degradability in mixed silage of soybean residue and corn stover. Animals 2021, 11, 334. [Google Scholar] [CrossRef]
- Robinson, D. Compensatory Changes in the Partitioning of Dry Matter in Relation to Nitrogen Uptake and Optimal Variations in Growth. Ann. Bot. 1986, 58, 841–848. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, Y.; Hirakubo, T.; Fukui, H.; Matsuyama, H. Fermentation characteristics and microorganism composition of total mixed ration silage with local food by-products in different seasons. Anim. Sci. J. 2011, 82, 259–266. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Deriaz, R.E. Routine analysis of carbohydrates and lignin in herbage. J. Sci. Food Agric. 1961, 12, 152–160. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; and Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gao, J.L.; Wang, P.; Zhou, C.H.; Li, P.; Tang, H.Y.; Zhang, J.B.; Cai, Y.M. Chemical composition and in vitro digestibility of corn stover during field exposure and their fermentation characteristics of silage prepared with microbial additives. Asian-australas. J. Anim. Sci. 2019, 32, 1854–1863. [Google Scholar] [CrossRef] [Green Version]
- Kung, L.J.; Sheperd, A.C.; Smagala, A.M.; Endres, K.M.; Bessett, C.A.; Ranjit, N.K.; Glancey, J. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. J. Dairy Sci. 1998, 81, 1322–1330. [Google Scholar] [CrossRef]
- Longland, A.C.; Theodorou, M.K.; Sanderson, R.; Lister, S.J.; Powell, C.J.; Morris, P. Non-starch polysaccharide composition and in vitro fermentability of tropical forage legumes varying in phenolic content. Anim. Feed Sci. Technol. 1995, 55, 161–177. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef]
- Woolford, M.K. The detrimental effects of air on silage. J. Appl. Bacteriol. 1990, 68, 101–116. [Google Scholar] [CrossRef]
- Shao, T.; Zhang, Z.X.; Shimojo, M.; Wang, T.; Masuda, Y. Comparison of fermentation characteristics of italian ryegrass (Lolium multiflorum Lam.) and guineagrass (Panicum maximum Jacq.) during the early stage of ensiling. Asian-Australas. J. Anim. Sci. 2005, 18, 1727–1734. [Google Scholar] [CrossRef]
- Wan, J.C.; Xie, K.Y.; Wang, Y.X.; Liu, L.; Yu, Z.; Wang, B. Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage. Anim. Biosci. 2021, 34, 56–65. [Google Scholar] [CrossRef]
- Yang, X.; Li, J.; Yu, Z.; Yan, Y.; Zhang, X.; Yang, W.; Ma, X.; Huang, L.; Peng, Y. Influence of moisture content on the silage quality of Lolium multiflorum. J. Anim. Vet. Adv. 2014, 13, 702–705. [Google Scholar]
- Greenhill, W.L. Plant juices in relation to silage fermentation. III. effect of water activity of juice. Grass Forage Sci. 1964, 19, 336–339. [Google Scholar] [CrossRef]
- Tyrolova, Y.; Vyborna, A. The effects of wilting and biological and chemical additives on the fermentation process in field pea silage. Czech. J. Anim. Sci. 2011, 56, 427–432. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991. [Google Scholar]
- Marbun, T.D.; Lee, K.; Song, J.; Kwon, C.H.; Yoon, D.; Lee, S.M.; Kang, J.S.; Lee, C.H.; Cho, S.B.; Kim, E.J. Effect of lactic acid bacteria on the nutritive value and in vitro ruminal digestibility of maize and rice straw silage. Appl. Sci. 2020, 10, 7801. [Google Scholar] [CrossRef]
- Yi, Q.X.; Wang, P.; Tang, H.Y.; Yu, M.; Zhao, T.Y.; Sheng, Z.Y.; Luo, H.L. Fermentation Quality, in vitro digestibility, and aerobic stability of ensiling spent mushroom substrate with microbial additives. Animals 2023, 13, 920. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Nishino, N. Bacterial and fungal communities of wilted italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Lett. Appl. Microbiol. 2011, 52, 314–321. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Su, R.; Ni, K.; Wang, T.; Yang, X.; Zhang, J.; Liu, Y.; Shi, W.; Yan, L.; Jie, C.; Zhong, J. Effects of ferulic acid esterase-producing Lactobacillus fermentum and cellulase additives on the fermentation quality and microbial community of alfalfa silage. PeerJ 2019, 10, e7712. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Chen, L.J.; Han, L.J. The effect of an inoculant and enzymes on fermentation and nutritive value of sorghum straw silages. Bioresour. Technol. 2009, 100, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.B.; de Oliveira dos Santos, S.; Andréia Carvalho, B.F.; Schwan, R.F.; Carla Luiza da Silva, Á. Wild Lactobacillus hilgardii (CCMA 0170) strain modifies the fermentation profile and aerobic stability of corn silage. J. Appl. Anim. Res. 2018, 46, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.C.; Wang, X.K.; Li, D.X.; Lin, Y.L.; Yang, F.Y.; Ni, K.K. Impact of wilting and additives on fermentation quality and carbohydrate composition of mulberry silage. Asian-Australas. J. Anim. Sci. 2020, 33, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Yu, Y.; Yu, Z.; Shao, T.; Na, R.; Zhao, M. Effects of lactic acid bacteria inoculants and cellulase on fermentation quality and in vitro digestibility of Leymus chinensis silage. Grassl. Sci. 2014, 60, 199–205. [Google Scholar] [CrossRef]
- Sun, Z.H.; Liu, S.M.; Tayo, G.O.; Tang, S.X.; Tan, Z.L.; Lin, B.; He, Z.X.; Hang, X.F.; Zhou, Z.S.; Wang, M. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Anim. Feed Sci. Technol. 2009, 152, 219–231. [Google Scholar] [CrossRef]
- Rooke, J.A.; Armstrong, D.G. The importance of the form of nitrogen on microbial protein synthesis in the rumen of cattle receiving grass silage and continuous intrarumen infusions of sucrose. Br. J. Nutr. 1989, 61, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Bao, W.; Li, W.; Zhao, F.; Kwok, L.; Zhang, W.; Zhang, H. Changes in physico-chemical characteristics and viable bacterial communities during fermentation of alfalfa silages inoculated with Lactobacillus plantarum. World J. Microbiol. Biotechnol. 2021, 37, 127. [Google Scholar] [CrossRef]
- Patel, N.; Gangawane, A.K. Isolation of Potential Extracellular Cellulase Producer and Determination of Cellulase Production Efficiency with Various Raw Substrates. Int. J. Life Sci. Pharma Res. 2021, 11, 130–134. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D.; Li, Z.; Guo, X. Pretreatment of Pennisetum sinese silages with ferulic acid esterase-producing lactic acid bacteria and cellulase at two dry matter contents: Fermentation characteristics, carbohydrates composition and enzymatic saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Thip-Uten, S.; Cherdthong, A.; Khota, W. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Evaluation of the factors affecting silage intake of dairy cows: A revision of the relative silage dry-matter intake index. Animal 2007, 1, 758–770. [Google Scholar] [CrossRef] [Green Version]
- Morgavi, D.P.; Beauchemin, K.A.; Nsereko, V.L.; Rode, L.M.; Iwaasa, A.D.; Yang, W.Z.; McAllister, T.A.; Wang, Y. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum. J. Dairy Sci. 2000, 83, 1310–1321. [Google Scholar] [CrossRef]
- Nawaz, H.; Shahzad, N.; Saif-ur-Rehman, M.; Ali, M. Effect of feeding xylanase and cellulase treated oat silage on nutrient digestibility, growth performance and blood metabolites of nili ravi buffalo calves. Pak. J. Agric. Sci. 2016, 53, 999–1004. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Muck, R.E.; Weimer, P.J. Survival of silage inoculant lactic acid bacteria in rumen fluid. J. Appl. Microbiol. 2003, 94, 1066–1071. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Govea, F.E.; Muck, R.E.; Mertens, D.R.; Weimer, P.J. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim. Feed Sci. Technol. 2011, 163, 2–10. [Google Scholar] [CrossRef]
- Weinberg, Z.G.; Muck, R.E. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiol. Rev. 1996, 19, 53–68. [Google Scholar] [CrossRef]
- Yuan, X.; Guo, G.; Wen, A.; Desta, S.T.; Wang, J.; Wang, Y.; Shao, T. The effect of different additives on the fermentation quality, in vitro digestibility and aerobic stability of a total mixed ration silage. Anim. Feed. Sci. Technol. 2015, 207, 41–50. [Google Scholar] [CrossRef]
- Tao, L.; Zhou, H.; Zhang, N.; Si, B.; Tu, Y.; Ma, T.; Diao, Q. Effects of different source additives and wilt conditions on the pH value, aerobic stability, and carbohydrate and protein fractions of alfalfa silage. Anim. Sci. J. 2017, 88, 99–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Wang, S.; Zhao, J.; Li, J.; Shao, T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australas. J. Anim. Sci. 2020, 33, 1292–1300. [Google Scholar] [CrossRef] [Green Version]
- Filya, I. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 2003, 86, 3575–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, M.; Tapio, I.; Rinne, M. Preservation characteristics and bacterial communities of crimped ensiled barley grains modulated by moisture content and additive application. Front. Microbiol. 2022, 13, 1092062. [Google Scholar] [CrossRef] [PubMed]
- Pahlow, G.; Muck, R.; Driehuis, F.; Oude Elferink, S.; Spoelstra, S.F. Microbiology of Ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Ferrero, F.; Prencipe, S.; Spadaro, D.; Gullino, M.L.; Cavallarin, L.; Piano, S.; Tabacco, E.; Borreani, G. Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inocula. J. Dairy Sci. 2019, 102, 1176–1193. [Google Scholar] [CrossRef] [Green Version]
- Ohyama, Y.; McDonald, P. The effect of some additives on aerobic deterioration of silages. J. Sci. Food Agric. 1975, 26, 941–948. [Google Scholar] [CrossRef]
Item ‡ | Amaranth | Wheat Bran |
---|---|---|
Chemical composition and buffering capacity | ||
Dry matter (% FW) | 18.90 | 88.76 |
Organic matter (% DM) | 86.58 | 93.86 |
Crude protein (% DM) | 10.16 | 17.89 |
Neutral detergent fiber (% DM) | 67.32 | 56.28 |
Acid detergent fiber (% DM) | 39.87 | 15.04 |
Acid detergent lignin (% DM) | 10.83 | 6.94 |
Water-soluble carbohydrate (% DM) | 12.80 | 6.77 |
Buffering capacity (mEq kg−1 DM) | 331.14 | 113.30 |
Energy | ||
GE (MJ kg−1 DM) | 18.06 | 19.27 |
DE (MJ kg−1 DM) | 9.79 | 17.97 |
ME (MJ kg−1 DM) | 7.72 | 14.42 |
NEm (MJ kg−1 DM) | 5.23 | 11.09 |
NEl (MJ kg−1 DM) | 4.37 | 9.27 |
NEf (MJ kg−1 DM) | 2.62 | 8.50 |
Item ‡ | Moisture | Additives † | SEM | p-Value | Significance of Main Effects and Interactions | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | L | E | M | MC | A | MC × A | ||||
pH value | 60% | 3.88 b | 3.86 bA | 3.73 abA | 3.70 a | 0.050 | 0.016 | <0.001 | <0.001 | 0.856 |
65% | 3.91 b | 3.88 bAB | 3.79 aB | 3.79 a | 0.012 | <0.001 | ||||
70% | 3.95 b | 3.91 abB | 3.83 aC | 3.82 a | 0.033 | 0.010 | ||||
SEM | 0.037 | 0.010 | 0.011 | 0.058 | ||||||
p-value | 0.250 | 0.006 | <0.001 | 0.200 | ||||||
LA (%DM) | 60% | 7.74 B | 8.00 B | 8.33 | 9.20 | 0.739 | 0.292 | <0.001 | <0.001 | 0.306 |
65% | 5.97 aB | 6.66 abAB | 7.64 ab | 9.15 b | 0.885 | 0.033 | ||||
70% | 3.62 aA | 5.05 bA | 6.41 c | 7.44 c | 0.467 | <0.001 | ||||
SEM | 0.702 | 0.859 | 0.617 | 0.672 | ||||||
p-value | 0.003 | 0.038 | 0.053 | 0.065 | ||||||
AA (%DM) | 60% | 4.99 B | 3.94 B | 8.28 B | 9.22 B | 1.991 | 0.081 | <0.001 | <0.001 | 0.363 |
65% | 2.86 aAB | 3.90 abB | 5.76 bAB | 5.65 bAB | 0.623 | 0.004 | ||||
70% | 1.48 A | 1.48 A | 2.95 A | 2.81 A | 0.819 | 0.199 | ||||
SEM | 0.983 | 0.638 | 1.239 | 1.947 | ||||||
p-value | 0.032 | 0.013 | 0.015 | 0.045 | ||||||
PA (%DM) | 60% | 6.25 | 6.01 | 7.22 | 9.34 | 1.350 | 0.131 | 0.200 | 0.020 | 0.813 |
65% | 6.50 | 6.11 | 6.91 | 7.67 | 1.673 | 0.815 | ||||
70% | 4.51 | 4.95 | 7.28 | 7.03 | 1.078 | 0.072 | ||||
SEM | 1.590 | 1.317 | 1.245 | 1.379 | ||||||
p-value | 0.444 | 0.643 | 0.951 | 0.295 | ||||||
BA (%DM) | 60% | 0.71 ab | 0.96 bB | 0.40 abB | 0.17 a | 0.189 | 0.015 | <0.001 | 0.005 | 0.012 |
65% | 0.18 | 0.04 A | 0.12 A | 0.09 | 0.104 | 0.566 | ||||
70% | 0.17 | 0.19 A | 0.04 A | 0.06 | 0.121 | 0.534 | ||||
SEM | 0.230 | 0.120 | 0.048 | 0.110 | ||||||
p-value | 0.098 | 0.001 | 0.001 | 0.572 | ||||||
AN (%TN) | 60% | 1.68 bA | 1.57 bA | 1.59 bA | 1.38 aA | 0.046 | 0.001 | <0.001 | <0.001 | 0.032 |
65% | 1.88 bB | 1.63 aA | 1.64 aA | 1.56 aA | 0.039 | <0.001 | ||||
70% | 2.23 bC | 2.02 abB | 1.84 aB | 1.80 aB | 0.083 | 0.003 | ||||
SEM | 0.057 | 0.058 | 0.055 | 0.067 | ||||||
p-value | <0.001 | <0.001 | 0.009 | 0.002 |
Item ‡ | Moisture | Additives † | SEM | p-Value | Significance of Main Effects and Interactions | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | L | E | M | MC | A | MC × A | ||||
DM (%FW) | 60% | 36.73 bC | 36.32 bC | 35.60 aC | 35.59 aC | 0.166 | <0.001 | <0.001 | <0.001 | 0.792 |
65% | 32.36 bB | 32.24 bB | 31.52 aB | 31.41 aB | 0.114 | <0.001 | ||||
70% | 27.59 bA | 27.25 bA | 26.53 aA | 26.49 aA | 0.129 | <0.001 | ||||
SEM | 0.154 | 0.119 | 0.156 | 0.119 | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
OM (%DM) | 60% | 91.29 bC | 91.22 bC | 90.98 aC | 90.92 aC | 0.071 | 0.002 | <0.001 | <0.001 | 0.220 |
65% | 90.49 B | 90.43 B | 90.27 B | 90.29 B | 0.089 | 0.101 | ||||
70% | 89.56 abA | 89.71 bA | 89.25 aA | 89.37 aA | 0.104 | 0.010 | ||||
SEM | 0.109 | 0.047 | 0.086 | 0.101 | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
CP (%DM) | 60% | 21.58 aB | 21.81 aB | 22.33 bC | 22.39 bB | 0.161 | 0.002 | <0.001 | <0.001 | 0.279 |
65% | 21.44 aB | 21.56 abB | 21.77 abB | 21.85 bB | 0.111 | 0.023 | ||||
70% | 19.66 aA | 20.00 abA | 20.41 bA | 20.65 bA | 0.226 | 0.010 | ||||
SEM | 0.148 | 0.197 | 0.137 | 0.198 | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
NDF (%DM) | 60% | 62.80 b | 61.14 b | 57.22 aA | 54.51 aA | 1.000 | <0.001 | 0.001 | <0.001 | 0.390 |
65% | 63.48 b | 61.72 b | 59.63 abB | 57.28 aB | 1.311 | 0.008 | ||||
70% | 63.70 b | 62.51 ab | 60.20 abB | 59.04 aB | 1.156 | 0.014 | ||||
SEM | 1.554 | 1.137 | 0.848 | 0.991 | ||||||
p-value | 0.838 | 0.520 | 0.027 | 0.011 | ||||||
ADF (%DM) | 60% | 21.73 A | 21.32 A | 21.61 A | 20.46 A | 0.562 | 0.181 | <0.001 | 0.054 | 0.728 |
65% | 22.97 B | 24.10 B | 22.70 B | 22.05 A | 0.763 | 0.133 | ||||
70% | 26.92 C | 27.14 C | 26.48 C | 26.25 B | 0.935 | 0.773 | ||||
SEM | 0.354 | 0.690 | 0.382 | 1.271 | ||||||
p-value | <0.001 | <0.001 | <0.001 | 0.010 | ||||||
ADL (%DM) | 60% | 5.35 | 5.11 | 5.03 A | 4.69 A | 0.295 | 0.239 | 0.001 | 0.101 | 0.354 |
65% | 5.36 | 5.58 | 5.03 A | 4.83 A | 0.237 | 0.054 | ||||
70% | 6.01 | 5.42 | 5.80 B | 5.74 B | 0.415 | 0.580 | ||||
SEM | 0.470 | 0.301 | 0.220 | 0.247 | ||||||
p-value | 0.340 | 0.349 | 0.018 | 0.011 |
Item ‡ | Moisture | Additives † | SEM | p-Value | Significance of Main Effects and Interactions | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | L | E | M | MC | A | MC × A | ||||
GE (MJ kg−1 DM) | 60% | 18.48 aA | 19.18 bA | 19.49 cA | 19.35 bcA | 0.074 | <0.001 | <0.001 | <0.001 | <0.001 |
65% | 19.99 B | 19.75 B | 19.77 AB | 19.75 B | 0.197 | 0.578 | ||||
70% | 19.87 aB | 19.93 aB | 20.04 abB | 20.27 bC | 0.088 | 0.009 | ||||
SEM | 0.157 | 0.168 | 0.105 | 0.076 | ||||||
p-value | <0.001 | 0.010 | 0.006 | <0.001 | ||||||
DE (MJ kg −1 DM) | 60% | 15.38 aA | 16.14 bB | 16.67 bB | 16.24 b | 0.198 | 0.001 | <0.001 | 0.004 | 0.002 |
65% | 16.47 B | 15.96 B | 16.31 B | 16.22 | 0.208 | 0.173 | ||||
70% | 15.21 A | 15.23 A | 15.50 A | 15.75 | 0.268 | 0.222 | ||||
SEM | 0.148 | 0.237 | 0.240 | 0.265 | ||||||
p-value | <0.001 | 0.019 | 0.007 | 0.197 | ||||||
ME (MJ kg−1 DM) | 60% | 12.32 aA | 12.88 bB | 13.31 bB | 12.98 b | 0.149 | 0.001 | <0.001 | 0.004 | 0.003 |
65% | 13.16 B | 12.80 B | 13.00 B | 12.95 | 0.167 | 0.259 | ||||
70% | 12.12 A | 12.14 A | 12.39 A | 12.54 | 0.206 | 0.202 | ||||
SEM | 0.113 | 0.185 | 0.180 | 0.210 | ||||||
p-value | <0.001 | 0.014 | 0.006 | 0.139 | ||||||
NEm (MJ kg−1 DM) | 60% | 9.19 aB | 9.62 bB | 9.98 bB | 9.69 b | 0.133 | 0.002 | <0.001 | 0.007 | 0.008 |
65% | 9.78 C | 9.47 B | 9.66 B | 9.61 | 0.136 | 0.229 | ||||
70% | 8.84 A | 8.85 A | 9.07 A | 9.18 | 0.187 | 0.266 | ||||
SEM | 0.088 | 0.158 | 0.158 | 0.191 | ||||||
p-value | <0.001 | 0.006 | 0.003 | 0.072 | ||||||
NEl (MJ kg−1 DM) | 60% | 7.68 aB | 8.05 bB | 8.34 bB | 8.10 b | 0.110 | 0.002 | <0.001 | 0.006 | 0.007 |
65% | 8.18 C | 7.92 B | 8.07 B | 8.04 | 0.113 | 0.232 | ||||
70% | 7.39 A | 7.40 A | 7.58 A | 7.67 | 0.155 | 0.261 | ||||
SEM | 0.073 | 0.131 | 0.132 | 0.158 | ||||||
p-value | <0.001 | 0.006 | 0.003 | 0.069 | ||||||
NEf (MJ kg−1 DM) | 60% | 6.48 aB | 6.83 abB | 7.17 bB | 6.87 abB | 0.136 | 0.007 | <0.001 | 0.015 | 0.037 |
65% | 6.84 C | 6.55 B | 6.75 B | 6.70 B | 0.122 | 0.204 | ||||
70% | 5.84 A | 5.84 A | 6.05 A | 6.13 A | 0.195 | 0.378 | ||||
SEM | 0.078 | 0.156 | 0.159 | 0.198 | ||||||
p-value | <0.001 | 0.002 | 0.001 | 0.023 |
Item ‡ | Moisture | Additives † | SEM | p-Value | Significance of Main Effects and Interactions | |||||
---|---|---|---|---|---|---|---|---|---|---|
Control | L | E | M | MC | A | MC × A | ||||
IVDMD (%DM) | 60% | 65.85 C | 66.17 C | 65.94 C | 66.82 B | 0.433 | 0.184 | <0.001 | 0.123 | 0.575 |
65% | 64.90 B | 64.03 B | 65.10 B | 64.91 B | 0.353 | 0.063 | ||||
70% | 61.86 A | 61.68 A | 62.19 A | 62.37 A | 0.721 | 0.774 | ||||
SEM | 0.273 | 0.533 | 0.296 | 0.814 | ||||||
p-value | <0.001 | <0.001 | <0.001 | 0.005 | ||||||
IVOMD (%DM) | 60% | 69.71 C | 70.04 C | 69.81 C | 70.70 B | 0.437 | 0.183 | <0.001 | 0.121 | 0.569 |
65% | 68.75 B | 67.88 B | 68.96 B | 68.76 B | 0.356 | 0.061 | ||||
70% | 65.69 A | 65.51 A | 66.03 A | 66.20 A | 0.726 | 0.774 | ||||
SEM | 0.276 | 0.536 | 0.299 | 0.821 | ||||||
p-value | <0.001 | <0.001 | <0.001 | 0.005 | ||||||
IVCPD (%DM) | 60% | 65.18 aB | 65.48 abC | 65.93 bC | 66.16 bC | 0.231 | 0.011 | <0.001 | <0.001 | 0.539 |
65% | 64.76 abB | 64.59 aB | 65.11 bB | 65.12 bB | 0.125 | 0.006 | ||||
70% | 62.21 aA | 62.46 abA | 62.99 abA | 63.26 bA | 0.333 | 0.049 | ||||
SEM | 0.179 | 0.277 | 0.207 | 0.297 | ||||||
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||||||
IVNDFD (%DM) | 60% | 55.45 aC | 54.89 a | 58.61 b | 58.82 b | 1.266 | 0.026 | 0.001 | <0.001 | 0.045 |
65% | 49.96 aA | 52.57 a | 57.96 b | 57.67 b | 1.028 | <0.001 | ||||
70% | 52.62 aB | 54.33 ab | 56.35 b | 56.91 b | 1.060 | 0.013 | ||||
SEM | 0.728 | 1.029 | 1.478 | 1.127 | ||||||
p-value | 0.001 | 0.140 | 0.354 | 0.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Q.; Wang, P.; Yu, M.; Zhao, T.; Li, X.; Tang, H. Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage. Fermentation 2023, 9, 711. https://doi.org/10.3390/fermentation9080711
Yi Q, Wang P, Yu M, Zhao T, Li X, Tang H. Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage. Fermentation. 2023; 9(8):711. https://doi.org/10.3390/fermentation9080711
Chicago/Turabian StyleYi, Qixuan, Peng Wang, Meng Yu, Tianyue Zhao, Xinxin Li, and Hongyu Tang. 2023. "Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage" Fermentation 9, no. 8: 711. https://doi.org/10.3390/fermentation9080711
APA StyleYi, Q., Wang, P., Yu, M., Zhao, T., Li, X., & Tang, H. (2023). Effects of Additives on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Amaranth (Amaranthus hypochondriacus) and Wheat Bran Mixed Silage. Fermentation, 9(8), 711. https://doi.org/10.3390/fermentation9080711