Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review
Abstract
:1. Introduction
2. Sources of Baijiu Trace Components
2.1. Production Technology
2.2. Raw Materials and Ingredients
2.3. Environment of Fermentation
2.4. Starter Culture
2.5. Tools and Containers
2.6. Process of Storage
2.7. Distillation
2.8. Water
3. Trace Components in Baijiu
3.1. Alcohol Components in Baijiu
3.2. Acid Components in Baijiu
3.3. Ester Components in Baijiu
3.4. Nitrogen Compounds in Baijiu
3.5. Sulfur Compounds in Baijiu
4. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, W.L.; Qian, M.C. Characterization of aroma compounds of Chinese “Wuliangye” and “Jiannanchun” liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-W.; Han, B.-Z. Baijiu (白酒), Chinese liquor: History, classification and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Zhao, D.; Sun, B. Research Progress on the Profile of Trace Components in Baijiu. Food Rev. Int. 2021, 39, 1666–1693. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Wei, Y.; Zou, W.; Shen, C.H.; Yang, J.G. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Tian, W.; Zhao, D. Research progress of trace components in sesame-aroma type of baijiu. Food Res. Int. 2020, 137, 109695. [Google Scholar] [CrossRef]
- Wu, Y.S.; Hou, Y.X.; Chen, H.; Wang, J.S.; Zhang, C.S.; Zhao, Z.G.; Ao, R.; Huang, H.; Hong, J.X.; Zhao, D.R.; et al. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef]
- Wang, R.M. Liquor Blending Technology; Chemical Industry Press: Beijing, China, 2007. [Google Scholar]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef]
- Wang, X.; Fan, W.; Xu, Y. Comparison on aroma compounds in Chinese soy sauce and strong aroma type liquors by gas chromatography–olfactometry, chemical quantitative and odor activity values analysis. Eur. Food Res. Technol. 2014, 239, 813–825. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Rao, Z.; Si, G.; Zhang, X.; Gao, C.; Ye, M.; Zhou, P. Sesame flavour baijiu: A review. J. Inst. Brew. 2020, 126, 224–232. [Google Scholar] [CrossRef]
- Fang, C.; Du, H.; Jia, W.; Xu, Y. Compositional Differences and Similarities between Typical Chinese Baijiu and Western Liquor as Revealed by Mass Spectrometry-Based Metabolomics. Metabolites 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roerecke, M.; Rehm, J. Alcohol consumption, drinking patterns, and ischemic heart disease: A narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers. BMC Med. 2014, 12, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roerecke, M.; Rehm, J. Cause-specific mortality risk in alcohol use disorder treatment patients: A systematic review and meta-analysis. Int. J. Epidemiol. 2014, 43, 906–919. [Google Scholar] [CrossRef] [PubMed]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef]
- Jacobus, J.; Tapert, S.F. Neurotoxic effects of alcohol in adolescence. Annu. Rev. Clin. Psychol. 2013, 9, 703–721. [Google Scholar] [CrossRef] [Green Version]
- Smith-Warner, S.A.; Spiegelman, D.; Yaun, S.S.; van den Brandt, P.A.; Folsom, A.R.; Goldbohm, R.A.; Graham, S.; Holmberg, L.; Howe, G.R.; Marshall, J.R.; et al. Alcohol and breast cancer in women: A pooled analysis of cohort studies. JAMA 1998, 279, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, H.F.J. Alcohol and Human Health: What Is the Evidence? Annu. Rev. Food Sci. Technol. 2020, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Djousse, L.; Arnett, D.K.; Eckfeldt, J.H.; Province, M.A.; Singer, M.R.; Ellison, R.C. Alcohol consumption and metabolic syndrome: Does the type of beverage matter? Obes. Res. 2004, 12, 1375–1385. [Google Scholar] [CrossRef]
- Wu, C.; Xing, X.; Liu, G.; Su, D.; Li, A.; Gui, S.; Lu, W.; Liang, J. Effects of Nongxiangxing baijiu (Chinese liquor) on mild alcoholic liver injury revealed by non-target metabolomics using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Biosci. Bioeng. 2022, 134, 62–69. [Google Scholar] [CrossRef]
- Fang, C.; Du, H.; Xiaojiao, Z.; Zhao, A.; Jia, W.; Xu, Y. Flavor compounds in fermented Chinese alcoholic beverage alter gut microbiota and attenuate ethanol-induced liver damages. bioRxiv 2018. [Google Scholar] [CrossRef]
- Fan, W.L.; Xu, Y.; Qian, M. Current Practice and Future Trends of Aroma and Flavor Research in Chinese Baijiu. Acs Sym. Ser. 2019, 1321, 145–175. [Google Scholar]
- Qian, Y.L.; An, Y.; Chen, S.; Qian, M.C. Characterization of Qingke Liquor Aroma from Tibet. J. Agric. Food Chem. 2019, 67, 13870–13881. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhao, S.; Chen, S.; Han, X.; Yang, Q.; Zhang, L.; Xia, X.; Tu, J.; Hu, Y. Tetramethylpyrazine in Chinese baijiu: Presence, analysis, formation, and regulation. Front. Nutr. 2022, 9, 1004435. [Google Scholar] [CrossRef]
- Herderich, M.J.; Fedrizzi, B.; Ugliano, M.; Siebert, T.; Jeffery, D.W. The good, the bad, and the unknown: Analysis and formation of key sulfur aroma compounds in wine. Abstr. Pap. Am. Chem. Soc. 2009, 238, 167. [Google Scholar]
- Song, X.B.; Zhu, L.; Jing, S.; Li, Q.; Ji, J.; Zheng, F.P.; Zhao, Q.Z.; Sun, J.Y.; Chen, F.; Zhao, M.M.; et al. Insights into the Role of 2-Methyl-3-furanthiol and 2-Furfurylthiol as Markers for the Differentiation of Chinese Light, Strong, and Soy Sauce Aroma Types of Baijiu. J. Agric. Food Chem. 2020, 68, 7946–7954. [Google Scholar] [CrossRef]
- Sun, H.; Ni, B.; Yang, J.; Qin, Y. Nitrogenous compounds and Chinese baijiu: A review. J. Inst. Brew. 2022, 128, 5–14. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Sun, B. Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J. Food Compos. Anal. 2021, 103, 104079. [Google Scholar] [CrossRef]
- Cheng, M.; Wu, J.; Wang, H.; Xue, L.; Tan, Y.; Ping, L.; Li, C.; Huang, N.; Yao, Y.; Ren, L.; et al. Effect of Maotai liquor in inducing metallothioneins and on hepatic stellate cells. World J. Gastroenterol. 2002, 8, 520–523. [Google Scholar] [CrossRef]
- Wang, H.; Narsing Rao, M.P.; Cheng, M.; Xian, M.; Zhou, Y.; Zhou, L.; Cao, H.; Li, W.-J.; Sibirny, A.; Wang, F.; et al. Regulatory effect of moderate Jiang-flavour baijiu (Chinese liquor) dosage on organ function and gut microbiota in mice. J. Biosci. Bioeng. 2023, 135, 298–305. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, M.L.; Zhang, G.H.; Zhai, R.W.; Huang, N.H.; Li, C.X.; Luo, T.Y.; Lu, S.; Yu, Z.Q.; Yao, Y.M.; et al. Epidemiological and histopathological study of relevance of Guizhou Maotai liquor and liver diseases. World J. Gastroenterol. 2002, 8, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wang, J.; Shi, J.; Du, J.; Zhou, Y.; Huang, M.; Sun, B. Automatic and Intelligent Technologies of Solid-State Fermentation Process of Baijiu Production: Applications, Challenges, and Prospects. Foods 2021, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Xiang, L.; Yu, Y.; Chen, X.; Wu, Q.; Zhao, K.; Yang, Z.; Xiong, X.; Huang, X.; Zheng, Q. Solid-state fermentation with pretreated rice husk: Green technology for the distilled spirit (Baijiu) production. Environ. Technol. Innov. 2020, 20, 101049. [Google Scholar] [CrossRef]
- Du, P.; Zhou, J.; Zhang, L.; Zhang, J.; Li, N.; Zhao, C.; Tu, L.; Zheng, Y.; Xia, T.; Luo, J.; et al. GC × GC-MS analysis and hypolipidemic effects of polyphenol extracts from Shanxi-aged vinegar in rats under a high fat diet. Food Funct. 2020, 11, 7468–7480. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H.; Wu, Y.; Zhao, D. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- He, X.; Yangming, H.; Gorska-Horczyczak, E.; Wierzbicka, A.; Jelen, H.H. Rapid analysis of Baijiu volatile compounds fingerprint for their aroma and regional origin authenticity assessment. Food Chem. 2021, 337, 128002. [Google Scholar] [CrossRef]
- Wang, L. Research trends in Jiang-flavor baijiu fermentation: From fermentation microecology to environmental ecology. J. Food Sci. 2022, 87, 1362–1374. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, S.; Yong, X.; Zhao, T.; Liu, J. Research progress on small peptides in Chinese Baijiu. J. Funct. Foods 2020, 72, 104081. [Google Scholar] [CrossRef]
- Ge, X.; Wu, Q.; Wang, Z.; Gao, S.; Wang, T. Sulfur Isotope and Stoichiometry–Based Source Identification of Major Ions and Risk Assessment in Chishui River Basin, Southwest China. Water 2021, 13, 1231. [Google Scholar] [CrossRef]
- Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal ions in biological catalysis: From enzyme databases to general principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218. [Google Scholar] [CrossRef]
- Xing-Lin, H.; De-Liang, W.; Wu-Jiu, Z.; Shi-Ru, J. The production of the Chinese baijiu from sorghum and other cereals. J. Inst. Brew. 2017, 123, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, X.; Liu, Y.; Yang, H. Characterization of Key Aroma Compounds in Xiaoqu Liquor and Their Contributions to the Sensory Flavor. Beverages 2020, 6, 42. [Google Scholar] [CrossRef]
- Xi, B.; Veeranki, S.P.; Zhao, M.; Ma, C.; Yan, Y.; Mi, J. Relationship of Alcohol Consumption to All-Cause, Cardiovascular, and Cancer-Related Mortality in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Clay, K.L.; Murphy, R.C.; Watkins, W.D. Experimental methanol toxicity in the primate: Analysis of metabolic acidosis. Toxicol. Appl. Pharmacol. 1975, 34, 49–61. [Google Scholar] [CrossRef]
- Sui, J.; Tan, T.L.; Zhang, J.; Ching, C.B.; Chen, W.N. iTRAQ-coupled 2D LC-MS/MS analysis on protein profile in vascular smooth muscle cells incubated with S- and R-enantiomers of propranolol: Possible role of metabolic enzymes involved in cellular anabolism and antioxidant activity. J. Proteome Res. 2007, 6, 1643–1651. [Google Scholar] [CrossRef]
- Wang, K.; Pan, Y.M.; Wang, H.S.; Zhang, Y.; Lei, Q.; Zhu, Z.R.; Li, H.Y.; Liang, M. Antioxidant activities of Liquidambar formosana Hance leaf extracts. Med. Chem. Res. 2010, 19, 166–176. [Google Scholar] [CrossRef]
- Lv, B.; Bian, M.; Huang, X.; Sun, F.; Gao, Y.; Wang, Y.; Fu, Y.; Yang, B.; Fu, X. n-Butanol Potentiates Subinhibitory Aminoglycosides against Bacterial Persisters and Multidrug-Resistant MRSA by Rapidly Enhancing Antibiotic Uptake. ACS Infect. Dis. 2022, 8, 373–386. [Google Scholar] [CrossRef]
- Peneda, J.; Baptista, A.; Lopes, J.M. Interaction of the constituents of alcoholic beverages in the promotion of liver damage. Acta Med. Port. 1994, 7 (Suppl. S1), S51–S55. [Google Scholar]
- Haseba, T.; Tomita, Y.; Kurosu, M.; Ohno, Y. Dose and time changes in liver alcohol dehydrogenase (ADH) activity during acute alcohol intoxication involve not only class I but also class III ADH and govern elimination rate of blood ethanol. Leg. Med. 2003, 5, 202–211. [Google Scholar] [CrossRef]
- Beisswenger, T.B.; Holmquist, B.; Vallee, B.L. chi-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: Implications and inferences. Proc. Natl. Acad. Sci. USA 1985, 82, 8369–8373. [Google Scholar] [CrossRef]
- Haseba, T.; Duester, G.; Shimizu, A.; Yamamoto, I.; Kameyama, K.; Ohno, Y. In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Bba-Mol. Basis Dis. 2006, 1762, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Tian, X.F.; He, S.G.; Wei, Y.L.; Peng, B.; Wu, Z.Q. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules 2018, 23, 1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedlund, S.G.; Kiessling, K.H. The Physiological Mechanism Involved in Hangover 1. The Oxidation of Some Lower Aliphatic Fusel Alcohols and Aldehydes in Rat Liver and their Effect on the Mitochondrial Oxidation of Various Substrates. Acta Pharmacol. Et. Toxicol. 2009, 27, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, W. Glycerol:—Behavior in the Animal Organism—(A Review of the Literature). Am. Ind. Hyg. Assoc. Q. 1940, 1, 60–67. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Heicke, B.; Zahn, R.K. Biological activity of β-phenylethanol and its derivates. Biochim. Biophys. Acta (BBA)—Nucleic Acids Protein Synth. 1971, 240, 506–514. [Google Scholar] [CrossRef]
- Duan, L.; Shi, Y.; Jiang, R.; Yang, Q.; Wang, Y.; Liu, P.; Duan, C.; Yan, G. Effects of Adding Unsaturated Fatty Acids on Fatty Acid Composition of Saccharomyces cerevisiae and Major Volatile Compounds in Wine. S. Afr. J. Enol. Vitic. 2015, 36, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Sagratini, G.; Maggi, F.; Caprioli, G.; Cristalli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME-GC-MS and HPLC-MS. Food Chem. 2012, 132, 1592–1599. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.C.; de Revel, G. Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography-mass spectrometry. Food Chem. 2010, 121, 1236–1245. [Google Scholar] [CrossRef]
- Zhang, W.-x.; Qiao, Z.-w.; Shigematsu, T.; Tang, Y.-q.; Hu, C.; Morimura, S.; Kida, K. Analysis of the Bacterial Community in Zaopei During Production of Chinese Luzhou-flavor Liquor. J. Inst. Brew. 2005, 111, 215–222. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Lee, C.-H. Lactic acid fermented foods and their benefits in Asia. Food Control 1997, 8, 259–269. [Google Scholar] [CrossRef]
- Pothu, R.; Gundeboyina, R.; Boddula, R.; Perugopu, V.; Ma, J. Recent advances in biomass-derived platform chemicals to valeric acid synthesis. New J. Chem. 2022, 46, 5907–5921. [Google Scholar] [CrossRef]
- Xie, G.; Zhong, W.; Zheng, X.; Li, Q.; Qiu, Y.; Li, H.; Chen, H.; Zhou, Z.; Jia, W. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J. Proteome Res. 2013, 12, 3297–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andoh, A.; Tsujikawa, T.; Fujiyama, Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr. Pharm. Des. 2003, 9, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qin, D.; Wu, Z.; Sun, B.; Sun, X.; Huang, M.; Sun, J.; Zheng, F. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem. 2019, 284, 100–107. [Google Scholar] [CrossRef]
- Oh, J.; Choi, E.; Kim, J.; Kim, H.; Lee, S.; Sung, G.H. Efficacy of Ethyl Acetate Fraction of Cordyceps militaris for Cancer-Related Fatigue in Blood Biochemical and H-1-Nuclear Magnetic Resonance Metabolomic Analyses. Integr. Cancer Ther. 2020, 19, 1534735420932635. [Google Scholar] [CrossRef]
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta 2010, 1801, 1175–1183. [Google Scholar] [CrossRef]
- Moreira, T.F.M.; de Oliveira, A.; da Silva, T.B.V.; Dos Santos, A.R.; Goncalves, O.H.; Gonzalez, R.D.; Droval, A.A.; Leimann, F.V. Hydrogels based on gelatin: Effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity. Lwt-Food Sci. Technol. 2019, 103, 69–77. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, S.; Cao, X.; Wang, S.; Chang, Y.; Ouyang, H.; He, J. Multi-component pharmacokinetic study of prunus mume fructus extract after oral administration in rats using UPLC-MS/MS. Front. Pharmacol. 2022, 13, 954692. [Google Scholar] [CrossRef]
- Belury, M.A.; Clark, B.C.; McGrath, R.; Cawthon, P.M. Linoleic Acid Intake and Physical Function: Pilot Results from the Health ABC Energy Expenditure Sub-Study. Adv. Geriatr. Med. Res. 2022, 4, 220001. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Mistry, H.; Kaur, G.; Aggarwal, D.; Garg, V.K.; Mittal, S.; Yerer, M.B.; Sak, K.; Khan, M.A. Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets. Anti-Cancer Agents Med. Chem. 2022, 22, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Kanellos, P.T.; Kaliora, A.C.; Gioxari, A.; Christopoulou, G.O.; Kalogeropoulos, N.; Karathanos, V.T. Absorption and bioavailability of antioxidant phytochemicals and increase of serum oxidation resistance in healthy subjects following supplementation with raisins. Plant Foods Hum. Nutr. 2013, 68, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Naowaboot, J.; Piyabhan, P.; Tingpej, P.; Munkong, N.; Parklak, W.; Pannangpetch, P. Anti-insulin resistant effect of ferulic acid on high fat diet-induced obese mice. Asian Pac. J. Trop. Biomed. 2018, 8, 604. [Google Scholar] [CrossRef]
- Yan, S.; Wang, S.; Wei, G.; Zhang, K. Investigation of the main parameters during the fermentation of Chinese Luzhou-f lavour liquor. J. Inst. Brew. 2015, 121, 145–154. [Google Scholar] [CrossRef]
- Wu, Q.; Kong, Y.; Xu, Y. Flavor Profile of Chinese Liquor Is Altered by Interactions of Intrinsic and Extrinsic Microbes. Appl. Env. Microbiol. 2016, 82, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, B.; Sun, Z.; Tan, W.; Zheng, J.; Zhu, W. Effects of modernized fermentation on the microbial community succession and ethyl lactate metabolism in Chinese baijiu fermentation. Food Res. Int. 2022, 159, 111566. [Google Scholar] [CrossRef]
- Black, P.N.; DiRusso, C.C. Transmembrane movement of exogenous long-chain fatty acids: Proteins, enzymes, and vectorial esterification. Microbiol. Mol. Biol. Rev. 2003, 67, 454–472. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Jiang, Y.; Zhou, L.; Gao, J. Optimization and kinetic study of immobilized lipase-catalyzed synthesis of ethyl lactate. Biocatal. Biotransform. 2010, 28, 279–287. [Google Scholar] [CrossRef]
- Volkov, A.; Liavonchanka, A.; Kamneva, O.; Fiedler, T.; Goebel, C.; Kreikemeyer, B.; Feussner, I. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 2010, 285, 10353–10361. [Google Scholar] [CrossRef] [Green Version]
- Hori, H.; Fujii, W.; Hatanaka, Y.; Suwa, Y. Effects of fusel oil on animal hangover models. Alcohol. Clin. Exp. Res. 2003, 27, 37S–41S. [Google Scholar] [CrossRef] [PubMed]
- Kosuge, T.; Kamiya, H. Discovery of a pyrazine in a natural product: Tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature 1962, 193, 776. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Yu, A.-N. Effects of reaction parameters on generation of volatile compounds from the Maillard reaction between L-ascorbic acid and glycine. Int. J. Food Sci. Technol. 2016, 51, 1349–1359. [Google Scholar] [CrossRef]
- Tan, Z.-W.; Yu, A.-N. Volatiles from the Maillard reaction of L-ascorbic acid with L-glutamic acid/L-aspartic acid at different reaction times and temperatures. Asia-Pac. J. Chem. Eng. 2012, 7, 563–571. [Google Scholar] [CrossRef]
- Yu, A.-N.; Zhang, A.-D. The effect of pH on the formation of aroma compounds produced by heating a model system containing l-ascorbic acid with l-threonine/l-serine. Food Chem. 2010, 119, 214–219. [Google Scholar] [CrossRef]
- Adams, A.; Polizzi, V.; van Boekel, M.; De Kimpe, N. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal. J. Agric. Food Chem. 2008, 56, 2147–2153. [Google Scholar] [CrossRef]
- Van Lancker, F.; Adams, A.; De Kimpe, N. Formation of pyrazines in Maillard model systems of lysine-containing dipeptides. J. Agric. Food Chem. 2010, 58, 2470–2478. [Google Scholar] [CrossRef]
- Scalone, G.L.L.; Lamichhane, P.; Cucu, T.; De Kimpe, N.; De Meulenaer, B. Impact of different enzymatic hydrolysates of whey protein on the formation of pyrazines in Maillard model systems. Food Chem. 2019, 278, 533–544. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Q.; Jiang, X.; Wang, Z.; Tang, J.; Xu, Y. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making. Int. J. Food Microbiol. 2017, 250, 59–67. [Google Scholar] [CrossRef]
- Huang, M.; Huo, J.; Wu, J.; Zhao, M.; Sun, J.; Zheng, F.; Sun, X.; Li, H. Structural characterization of a tetrapeptide from Sesame flavor-type Baijiu and its interactions with aroma compounds. Food Res. Int. 2019, 119, 733–740. [Google Scholar] [CrossRef]
- Wu, J.; Huo, J.; Huang, M.; Zhao, M.; Luo, X.; Sun, B. Structural Characterization of a Tetrapeptide from Sesame Flavor-Type Baijiu and Its Preventive Effects against AAPH-Induced Oxidative Stress in HepG2 Cells. J. Agric. Food Chem. 2017, 65, 10495–10504. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Wang, H.; Yuan, H.; Zhang, W.; Tang, Y.; Kida, K. Characterization of the microbial community in three types of fermentation starters used for Chinese liquor production. J. Inst. Brew. 2015, 121, 620–627. [Google Scholar] [CrossRef]
- Olofsson, K.; Bertilsson, M.; Liden, G. A short review on SSF—An interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 2008, 1, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Wang, Q.; Zhou, S.; Xu, S.; Yao, K. Tetramethylpyrazine: A review on its mechanisms and functions. Biomed. Pharmacother. 2022, 150, 113005. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Wong, E.A.; Webb, K.E., Jr. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci. 2008, 86, 2135–2155. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sha, S.; Qian, M.; Xu, Y. Characterization of Volatile Sulfur Compounds in Moutai Liquors by Headspace Solid-Phase Microextraction Gas Chromatography-Pulsed Flame Photometric Detection and Odor Activity Value. J. Food Sci. 2017, 82, 2816–2822. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luesma, E.; Ferreira, V. Reductive off-odors in wines: Formation and release of H(2)S and methanethiol during the accelerated anoxic storage of wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Characterization of volatile sulfur compounds in soy sauce aroma type Baijiu and changes during fermentation by GC x GC-TOFMS, organoleptic impact evaluation, and multivariate data analysis. Food Res. Int. 2020, 131, 109043. [Google Scholar] [CrossRef]
- Niu, Y.; Yao, Z.; Xiao, Q.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of the key aroma compounds in different light aroma type Chinese liquors by GC-olfactometry, GC-FPD, quantitative measurements, and aroma recombination. Food Chem. 2017, 233, 204–215. [Google Scholar] [CrossRef]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the key odorants in light aroma type Chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef]
- Song, X.; Zhu, L.; Wang, X.; Zheng, F.; Zhao, M.; Liu, Y.; Li, H.; Zhang, F.; Zhang, Y.; Chen, F. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chem. 2019, 297, 124959. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Guo, R.; Liu, M.; Shen, C.; Sun, X.; Zhao, M.; Sun, J.; Li, H.; Zheng, F.; Huang, M.; et al. Characterization of key odorants causing the roasted and mud-like aromas in strong-aroma types of base Baijiu. Food Res. Int. 2019, 125, 108546. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef]
- Sha, S.; Chen, S.; Qian, M.; Wang, C.; Xu, Y. Characterization of the Typical Potent Odorants in Chinese Roasted Sesame-like Flavor Type Liquor by Headspace Solid Phase Microextraction-Aroma Extract Dilution Analysis, with Special Emphasis on Sulfur-Containing Odorants. J. Agric. Food Chem. 2017, 65, 123–131. [Google Scholar] [CrossRef]
- Fan, H.; Fan, W.; Xu, Y. Characterization of key odorants in Chinese chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef]
- Fan, W.; Shen, H.; Xu, Y. Quantification of volatile compounds in Chinese soy sauce aroma type liquor by stir bar sorptive extraction and gas chromatography-mass spectrometry. J. Sci. Food Agric. 2011, 91, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Poisson, L.; Schmalzried, F.; Davidek, T.; Blank, I.; Kerler, J. Study on the role of precursors in coffee flavor formation using in-bean experiments. J. Agric. Food Chem. 2009, 57, 9923–9931. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.F.E.; Ong, X.L.; Chow, P.Y.E. Antioxidant action and effectiveness of sulfur-containing amino acid during deep frying. J. Food Sci. Technol. 2020, 57, 1150–1157. [Google Scholar] [CrossRef]
- Bhadra, S.; Zhang, Z.; Zhou, W.; Ochieng, F.; Rockwood, G.A.; Lippner, D.; Logue, B.A. Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography-mass spectroscopy. J. Chromatogr. A 2019, 1591, 71–78. [Google Scholar] [CrossRef]
Aroma Compounds | Aroma Threshold (µg/L) | OAV | Aroma Characteristics | References |
---|---|---|---|---|
Formic acid | 1000 | — | It smells sour, with irritation and bitterness in the mouth. | [9] |
Acetic acid | 160,000 | 1–11.4 | It has a sour, refreshing, sweet taste and pungent feeling. | [7] |
Propionic acid | 18,100 | 0.59–3 | It smells sour and tastes mild and astringent. | [7] |
butanoic acid | 964 | 30–410.94 | It smells of oil and mud. | [7] |
Valeric acid | 389 | 3–447 | It has a fatty odor similar to that of butyric acid. | [7] |
Caproic acid | 2520 | 6.95–146 | The taste is soft, with a strong fatty odor in excess. | [7] |
Heptanoic acid | 13,800 | 0.59–2 | It has a strong fatty odor and a pungent taste. | [7] |
Octanoic acid | 2700 | 1–10 | It has a fatty odor and a faint pungent smell. | [7] |
Lauric acid | 9154 | — | It has an aroma of laurel oil and a slightly sweet taste in the mouth. | [9] |
Lactic acid | 350,000 | — | It smells sour and astringent in excess. | [9] |
Succinic acid | 3 | — | It smells sour and umami. | [9] |
Citric acid | 6 | — | It has a citrus aroma. | [9] |
Oleic acid | 1000 | — | It has a rancid smell. | [9] |
Linoleic acid | — | — | It has an odor of soybean oil and cottonseed oil. | |
Cinnamic acid | — | — | Almost no smell. |
Aroma Compounds | Aroma Threshold (µg/L) | OAV | Aroma Characteristics | References |
---|---|---|---|---|
Ethyl Formate | 150,000 | — | Has a peach-like aroma with a spicy and astringent taste on the palate. | [9] |
Ethyl acetate | 32,600 | 1–105 | It has banana and apple aromas and tastes spicy and bitter. | [8] |
Isoamyl acetate | 230 | — | It has an aroma similar to that of pear, apple, and banana. | |
Ethyl propionate | 19,000 | 115 | It has a pineapple aroma and a slightly bitter taste in the mouth. | [8] |
Ethyl Butyrate | 82 | 21–7634 | It has a pineapple and jiaoni aroma and excessive fat odor. | [8] |
Isoamyl butyrate | — | — | It has a pineapple-like aroma. | |
Ethyl valerate | 27 | 0.1–5369 | It has a pineapple-like aroma and tastes spicy. | [8] |
Ethyl nonanoate | 3150 | 1 | It has a fruity aroma and a sweet taste in the mouth. | [8] |
Ethyl caprate | 1120 | 1–7 | It has a rose-like fragrance. | [8] |
Ethyl lactate | 128,000 | 1–167 | It has a faint fragrance and a slightly sweet taste and will have a bitter taste in excess. | [8] |
Ethyl laurate | 500 | 1–4 | It has a strong fruit aroma. | [8] |
Ethyl myristate | 500 | 1 | It tastes like celery or butter. | [8] |
Ethyl palmitate | 140,000 | — | It has the sour smell of fat. | [9] |
Ethyl oleate | 1000 | — | It has the sour smell of fat. | [9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, P.; Jiao, G.; Zhang, Z.; Wang, J.; Li, P.; Dong, J.; Wang, R. Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review. Fermentation 2023, 9, 658. https://doi.org/10.3390/fermentation9070658
Du P, Jiao G, Zhang Z, Wang J, Li P, Dong J, Wang R. Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review. Fermentation. 2023; 9(7):658. https://doi.org/10.3390/fermentation9070658
Chicago/Turabian StyleDu, Peng, Guanhua Jiao, Ziyang Zhang, Junqing Wang, Piwu Li, Jinkai Dong, and Ruiming Wang. 2023. "Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review" Fermentation 9, no. 7: 658. https://doi.org/10.3390/fermentation9070658
APA StyleDu, P., Jiao, G., Zhang, Z., Wang, J., Li, P., Dong, J., & Wang, R. (2023). Relationship between Representative Trace Components and Health Functions of Chinese Baijiu: A Review. Fermentation, 9(7), 658. https://doi.org/10.3390/fermentation9070658