Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winery Characteristics and Yeast Isolation
2.2. Yeast Identification and Molecular Discrimination at the Strain Level
2.3. Yeast Characterization
2.4. Microvinification
2.5. Chemical Analysis
2.5.1. Common Parameters
2.5.2. Phenolic Composition of Wines
2.5.3. Analysis of Aromatic Volatile Compounds
2.5.4. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Yeast Isolation and Identification
3.2. Characterization of S. cerevisiae Yeasts
3.3. Correlation Analysis
3.4. Physico-Chemical Characteristics of the Microvinified Cabernet Sauvignon Wines
3.5. Wine Volatile Compounds
3.6. Sensory Profile of Cabernet Sauvignon Wines
3.7. Multivariate Data Analysis of Cabernet Sauvignon Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From vineyard soil to wine fermentation: Microbiome approximations to explain the “Terroir” concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef] [Green Version]
- del Estado, J. Ley 6/2015 De 12 de Mayo, de Denominaciones de Origen e Indicaciones Geográficas Protegidas de Ámbito Territorial Supraautonómico. Boletín Of. Del Estado 2015, 114, 41158–41188. [Google Scholar]
- OIV. Resolution OIV/VITI 333/2010, Definition of Vitivinicultural “TERROIR”. 2010. Available online: https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (accessed on 10 June 2023).
- Ut, C.; Berbegal, C.; Lizama, V.; Polo, L.; García, M.J.; Andrés, L.; Pardo, I.; Álvarez, I. Isolation and characterisation of autochthonous Saccharomyces cerevisiae from ‘Pago’ Merlot wines of Utiel-Requena (Spain) Origin. Aust. J. Grape Wine Res. 2021, 28, 330–346. [Google Scholar] [CrossRef]
- Berbegal, C.; Polo, L.; Lizama, V.; Álvarez, I.; Ferrer, S.; Pardo, I.; García-Esparza, M.J. Influence of native S. cerevisiae strains on the final characteristics of “Pago” Garnacha wines from East Spain. Beverages 2023, 9, 17. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F. Yeast Ecology of wine production. In Yeasts in the Production of Wine; Romano, P., Ciani, M., Fleet, G.H., Eds.; Springer: New York, NY, USA, 2019; pp. 1–42. ISBN 978-1-4939-9782-4. [Google Scholar]
- Mas, A.; Guillamón, J.M.; Beltran, G. Editorial: Non-Conventional Yeast in the Wine industry. Front. Microbiol. 2016, 7, 1494. [Google Scholar] [CrossRef] [Green Version]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Holt, H.; Cozzolino, D.; McCarthy, J.; Abrahamse, C.; Holt, S.; Solomon, M.; Smith, P.; Chambers, P.J.; Curtin, C. Influence of yeast strain on Shiraz wine quality indicators. Int. J. Food Microbiol. 2013, 165, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Benito, S.; Loira, I.; Palomero, F.; González, M.C.; Suárez-Lepe, J.A. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. Int. J. Food Microbiol. 2012, 159, 47–53. [Google Scholar] [CrossRef]
- Ilieva, F.; Petrov, K.; Veličkovska, S.K.; Gunova, N.; Dimovska, V.; Rocha, J.M.F.; Esatbeyoglu, T. Influence of autochthonous and commercial yeast strains on fermentation and quality of wines produced from Vranec and Cabernet Sauvignon grape varieties from Tikveš Wine-Growing Region, Republic of North Macedonia. Appl. Sci. 2021, 11, 6135. [Google Scholar] [CrossRef]
- Álvarez-Pérez, J.M.; Campo, E.; San-Juan, F.; Coque, J.J.R.; Ferreira, V.; Hernández-Orte, P. Sensory and chemical characterisation of the aroma of Prieto Picudo rosé wines: The differential role of autochthonous yeast strains on aroma profiles. Food Chem. 2012, 133, 284–292. [Google Scholar] [CrossRef]
- Chambers, P.J.; Pretorius, I.S. Fermenting Knowledge: The History of Winemaking, Science and Yeast Research. EMBO Rep. 2010, 11, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, F.; Kostadinović Veličkovska, S.; Dimovska, V.; Mirhosseini, H.; Spasov, H. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties. Food Chem. 2017, 216, 309–315. [Google Scholar] [CrossRef]
- Nikolaou, E.; Soufleros, E.H.; Bouloumpasi, E.; Tzanetakis, N. Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiol. 2006, 23, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Sannino, C.; Francesca, N.; Guarcello, R.; Moschetti, G. Yeast ecology of vineyards within Marsala wine area (western sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. J. Biosci. Bioeng. 2012, 114, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.Y.; Chen, J.Y.; Reeves, M.; Han, B.Z. Aromatic and sensorial profiles of young Cabernet Sauvignon wines fermented by different Chinese autochthonous Saccharomyces cerevisiae Strains. Food Res. Int. 2013, 51, 855–865. [Google Scholar] [CrossRef]
- Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Maturano, Y.P.; Mestre, M.V.; Esteve-Zarzoso, B.; Nally, M.C.; Lerena, M.C.; Toro, M.E.; Vazquez, F.; Combina, M. Yeast population dynamics during prefermentative cold soak of Cabernet Sauvignon and Malbec wines. Int. J. Food Microbiol. 2015, 199, 23–32. [Google Scholar] [CrossRef]
- Lopes, C.A.; Rodríguez, M.E.; Sangorrín, M.; Querol, A.; Caballero, A.C. Patagonian Wines: The selection of an indigenous yeast starter. J. Ind. Microbiol. Biotechnol. 2007, 34, 539–546. [Google Scholar] [CrossRef]
- Tufariello, M.; Maiorano, G.; Rampino, P.; Spano, G.; Grieco, F.; Perrotta, C.; Capozzi, V. Selection of an autochthonous yeast starter culture for industrial production of Primitivo “Gioia Del Colle” PDO/DOC in Apulia (Southern Italy). LWT 2019, 99, 188–196. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 1999, 49, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Querol, A.; Barrio, E.; Ramón, D. A comparative study of different methods of yeast strain characterization. Syst. Appl. Microbiol. 1992, 15, 439–446. [Google Scholar] [CrossRef]
- Lucio, O. Acidificación Biológica de Vinos de pH Elevado Mediante la Utilización de Bacterias Lácticas. PhD. Thesis, Universitat de València, Valencia, Spain, 2014. [Google Scholar]
- Frayne, R.F. Direct analysis of the major organic components in grape must and wine using high performance liquid chromatography. Am. J. Enol. Vitic. 1986, 37, 281–287. [Google Scholar] [CrossRef]
- Kean, C.E.; Marsh, G. Determination of organic acids chromatography several times as sensitive a s standard method in detecting acids in wine, juices. Calif. Agrigulture Novemb. 1951, 5, 3. [Google Scholar]
- OIV. Compendium of Internationals Methods of Wine and Must Analysis. In Organisation Internationale de la Vigne et du Vin (OIV); OIV: Paris, France, 2003. [Google Scholar]
- Blouin, J. Techniques d’analyses Des Moûts et Des Vins; Dujardin-Salleron: Paris, France, 1992; pp. 199–201. [Google Scholar]
- Glories, Y. La couleur des vins rouges. 2e partie: Mesure, origine et interprétation. OENO One 1984, 18, 253. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Stonestreet, E. Le dosage des anthocyanes dans le vin rouge. Bull. De La Société Chim. 1965, 9, 119–142. [Google Scholar]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Stonestreet, E. Le dosage des tannins du vin rouge et la détermination de leur structure. Chim. Anal. 1966, 48, 188–196. [Google Scholar]
- Vivas, N.; Glories, Y.; Lagune, L.; Cédric, S.; Augustin, M. Estimation du degré de polymérisation des procyanidines du raisin et du vin par la méthode au ρ-dimethylaminocinnamaldéhyde. OENO One 1994, 28, 319. [Google Scholar] [CrossRef]
- Ortega, C.; López, R.; Cacho, J.; Ferreira, V. Fast analysis of important wine volatile compounds development and validation of a new method based on gas chromatographic-flame ionisation detection analysis of dichloromethane microextracts. J. Chromatogr. A 2001, 923, 205–214. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Cersosimo, M.; Loscos, N.; Cacho, J.; Garcia-Moruno, E.; Ferreira, V. The development of varietal aroma from non-floral grapes by yeasts of different genera. Food Chem. 2008, 107, 1064–1077. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis-General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- ISO 4120:2004; Sensory Analysis-Methodology-Triangle Test. International Organization for Standardization (ISO): Geneva, Switzerland, 2004.
- ISO 8589:2007; Sensory Analysis-General Guidance for the Design of Test Rooms. International Organization for Standardization (ISO): Geneva, Switzerland, 2007.
- ISO 3591:1977; Sensory Analysis-Apparatus—Wine-Tasting Glass. International Organization for Standardization (ISO): Geneva, Switzerland, 1977.
- NF ISO 11035; Analyse Sensorielle. Recherche et Sélection de Descripteurs Pour l’élaboration Dun Profil Sensoriel, Par Approche Multidimensionnelle. Association Française de normalisation: Paris, France, 1995.
- Martini, A.; Ciani, M.; Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vitic. 1996, 47, 435. [Google Scholar] [CrossRef]
- Mortimer, R.; Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 1999, 150, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Albertin, W.; Setati, M.E.; Miot-Sertier, C.; Mostert, T.T.; Colonna-Ceccaldi, B.; Coulon, J.; Girard, P.; Moine, V.; Pillet, M.; Salin, F.; et al. Hanseniaspora Uvarum from winemaking environments show spatial and temporal genetic clustering. Front. Microbiol. 2016, 6, 1569. [Google Scholar] [CrossRef] [PubMed]
- Combina, M.; Elía, A.; Mercado, L.; Catania, C.; Ganga, A.; Martinez, C. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. Int. J. Food Microbiol. 2005, 99, 237–243. [Google Scholar] [CrossRef]
- Zara, S.; Mannazzu, I. Detection, quantification, and identification of yeast in winemaking. In Yeasts in the Production of Wine; Springer: New York, NY, USA, 2019; pp. 81–115. [Google Scholar]
- Granchi, L.; Ganucci, D.; Buscioni, G.; Mangani, S.; Guerrini, S. The biodiversity of Saccharomyces cerevisiae in spontaneous wine fermentation: The occurrence and persistence of winery-strains. Fermentation 2019, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Sabate, J.; Cano, J.; Querol, A.; Guillamón, J.M. Diversity of Saccharomyces strains in wine fermentations: Analysis for two consecutive years. Lett. Appl. Microbiol. 1998, 26, 452–455. [Google Scholar] [CrossRef] [Green Version]
- Mercado, L.; Sturm, M.E.; Rojo, M.C.; Ciklic, I.; Martínez, C.; Combina, M. Biodiversity of Saccharomyces cerevisiae populations in Malbec vineyards from the “Zona Alta Del Río Mendoza” Region in Argentina. Int. J. Food Microbiol. 2011, 151, 319–326. [Google Scholar] [CrossRef]
- Schuller, D.; Casal, M. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. Antonie Van Leeuwenhoek 2007, 91, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, J.; Dubordieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology. The Microbiology of Wine and Vinifications; John Wiley & Sons Ltd.: Chichester, UK, 2000; Volume 1. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Thevelein, J.M.; Pretorius, I.S. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Tronchoni, J.; Gamero, A.; Arroyo-López, F.N.; Barrio, E.; Querol, A. Differences in the glucose and fructose consumption profiles in diverse Saccharomyces wine species and their hybrids during grape juice fermentation. Int. J. Food Microbiol. 2009, 134, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Orlić, S.; Arroyo-López, F.N.; Huić-Babić, K.; Lucilla, I.; Querol, A.; Barrio, E.A. Comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J. Appl. Microbiol. 2010, 108, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Goold, H.D.; Kroukamp, H.; Williams, T.C.; Paulsen, I.T.; Varela, C.; Pretorius, I.S. Yeast’s balancing act between ethanol and glycerol production in low-alcohol wines. Microb. Biotechnol. 2017, 10, 264–278. [Google Scholar] [CrossRef]
- Rodicio, R.; Heinisch, J.J. Sugar metabolism in yeasts. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Frölich, J., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017; pp. 189–213. ISBN 978-3-319-60020-8. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Pretorius, I.S.; Thevelein, J.M. Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl. Microbiol. Biotechnol. 2008, 77, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Karaoglan, H.A.; Ozcelik, F.; Musatti, A.; Rollini, M. Mild pretreatments to increase fructose consumption in Saccharomyces cerevisiae wine yeast strains. Foods 2021, 10, 1129. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Effects on colour and phenolic composition of sugar concentration processes in dried-on- or dried-off-vine grapes and their aged or not natural sweet wines. Trends Food Sci. Technol. 2013, 31, 36–54. [Google Scholar] [CrossRef]
- Vigentini, I.; De Lorenzis, G.; Fabrizio, V.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Imazio, S.; Failla, O.; Foschino, R. The vintage effect overcomes the terroir effect: A three year survey on the wine yeast biodiversity in Franciacorta and Oltrepò Pavese, two northern Italian vine-growing areas. Microbiology 2015, 161, 362–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambuti, A.; Picariello, L.; Forino, M.; Errichiello, F.; Guerriero, A.; Moio, L. How the management of ph during winemaking affects acetaldehyde, polymeric pigments and color evolution of red wine. Appl. Sci. 2022, 12, 2555. [Google Scholar] [CrossRef]
- Morata, A.; Gómez-Cordovés, M.C.; Suberviola, J.; Bartolomé, B.; Colomo, B.; Suárez, J.A. Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. J. Agric. Food Chem. 2003, 51, 4084–4088. [Google Scholar] [CrossRef]
- Hernández, L.F.; Espinosa, J.C.; Fernández-González, M.; Briones, A. Beta-Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int. J. Food Microbiol. 2003, 80, 171–176. [Google Scholar] [CrossRef]
- Echeverrigaray, S.; Scariot, F.J.; Menegotto, M.; Delamare, A.P.L. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity. Int. J. Food Microbiol. 2020, 314, 108383. [Google Scholar] [CrossRef]
- Sims, C.A.; Morris, J.R. A Comparison of the color components and color stability of red wine from Noble and Cabernet Sauvignon at various pH levels. Am. J. Enol. Vitic. 1985, 36, 181–184. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Heras, J.M.; Callejo, M.J.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Yeast influence on the formation of stable pigments in red winemaking. Food Chem. 2016, 197, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, P.P.; du Plessis, H.W.; Paulsen, V.; Ntushelo, N.; Jolly, N.P.; du Toit, M. Saccharomyces cerevisiae, Non-Saccharomyces yeasts and lactic acid bacteria in sequential fermentations: Effect on phenolics and sensory attributes of South African Syrah wines. South Afr. J. Enol. Vitic. 2017, 38, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Morata, A.; Gómez-Cordovés, M.C.; Colomo, B.; Suárez, J.A. Cell wall anthocyanin adsorption by different Saccharomyces strains during the fermentation of Vitis vinifera L. Cv Graciano grapes. Eur. Food Res. Technol. 2005, 220, 341–346. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Romero-Cascales, I.; Fernández-Fernández, J.I.; López-Roca, J.M.; Gómez-Plaza, E. Influence of the yeast strain on Monastrell wine colour. Innov. Food Sci. Emerg. Technol. 2007, 8, 322–328. [Google Scholar] [CrossRef]
- Caboulet, D.; Ducasse, M.A.; Roy, A.; Dagan, L.; Fauveau, C.; Pellerin, P.; Schneider, R. The influence of yeast strains on the phenolic and aromatic qualities of red wines. Wine Vitic. J. 2012, 27, 35–42. [Google Scholar]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- De Freitas, V.A.P.; Glories, Y.; Monique, A. Developmental changes of procyanidins in grapes of red Vitis vinifera varieties and their composition in respective wines. Am. J. Enol. Vitic. 2000, 51, 397–403. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar] [CrossRef]
- del Barrio-Galán, R.; Medel-Marabolí, M.; Peña-Neira, Á. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains. Food Chem. 2015, 179, 116–126. [Google Scholar] [CrossRef]
- Blazquez Rojas, I.; Smith, P.A.; Bartowsky, E.J. Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine. World J. Microbiol. Biotechnol. 2012, 28, 3311–3321. [Google Scholar] [CrossRef]
- Rinaldi, A.; Blaiotta, G.; Aponte, M.; Moio, L. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Food Microbiol. 2016, 53, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ramos, D.; Cebollero, E.; Gonzalez, R. A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Appl. Environ. Microbiol. 2008, 74, 5533–5540. [Google Scholar] [CrossRef] [Green Version]
- Slingsby, R.W.; Kepner, R.E.; Muller, C.J.; Webb, A.D. Some volatile components of Vitis vinifera variety Cabernet Sauvignon wine. Am. J. Enol. Vitic. 1980, 31, 360–363. [Google Scholar] [CrossRef]
- Patel, S.; Shibamoto, T. Effect of 20 different yeast strains on the production of volatile components in symphony wine. J. Food Compos. Anal. 2003, 16, 469–476. [Google Scholar] [CrossRef]
- Bonino, M.; Schellino, R.; Rizzi, C.; Aigotti, R.; Delfini, C.; Baiocchi, C. Aroma compounds of an Italian wine (Ruché) by HS–SPME analysis coupled with GC–ITMS. Food Chem. 2003, 80, 125–133. [Google Scholar] [CrossRef]
- Callejon, R.M.; Clavijo, A.; Ortigueira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef]
- Fleet, G. Yeast interactions and wine flavour. Int. J. Food Microbiol. 2003, 86, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Swiegers, J.H.; Pretorius, I.S. Modulation of volatile sulfur compounds by wine yeast. Appl. Microbiol. Biotechnol. 2007, 74, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M.; Bartowsky, E.J.; McCarthy, J.; Moio, L.; Henschke, P.A. Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains. J. Agric. Food Chem. 2006, 54, 6322–6331. [Google Scholar] [CrossRef] [PubMed]
- Suzzi, G.; Arfelli, G.; Schirone, M.; Corsetti, A.; Perpetuini, G.; Tofalo, R. Effect of grape indigenous Saccharomyces cerevisiae strains on Montepulciano d’Abruzzo red wine quality. Food Res. Int. 2012, 46, 22–29. [Google Scholar] [CrossRef]
- Antonelli, A.; Castellari, L.; Zambonelli, C.; Carnacini, A. Yeast influence on volatile composition of wines. J. Agric. Food Chem. 1999, 47, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Ferreira, V. Volatile aroma compounds and wine sensory attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–28. [Google Scholar]
- Aznar, M.; López, R.; Cacho, J.F.; Ferreira, V. Identification and quantification of impact odorants of aged red wines from Rioja. GC−Olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 2001, 49, 2924–2929. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Ulrich, D.; Kovacevic Ganic, K.; Lovric, T. Study of phenolic and volatile composition of white wine during fermentation and a short time of storage. Vitis 2007, 46, 77–84. [Google Scholar]
- Allen, M.S.; Lacey, M.J.; Boyd, S.J. Methoxypyrazines in red wines: Occurrence of 2-methoxy-3-(1-methylethy) pyrazine. J. Agric. Food Chem. 1995, 43, 769–772. [Google Scholar] [CrossRef]
- Koch, A.; Ebeler, S.E.; Williams, L.E.; Matthews, M.A. Fruit ripening in Vitis vinifera: Light intensity before and not during ripening determines the concentration of 2-Methoxy-3-Isobutylpyrazine in Cabernet Sauvignon Berries. Physiol. Plant. 2012, 145, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Pickering, G.J.; Spink, M.; Kotseridis, Y.; Inglis, D.; Brindle, I.D.; Sears, M.; Beh, A.L. Yeast strain affects 3-isopropyl-2-methoxypyrazine concentration and Sensory Profile in Cabernet Sauvignon wine. Aust. J. Grape Wine Res. 2008, 14, 230–237. [Google Scholar] [CrossRef]
Isolates | Isolation Phase | mDNA HinfI Restriction Profile |
---|---|---|
32F | HAF | 1 |
32B, 32E, 32G, 32I | HAF | 2 |
36D, 36E, 37A | EAF | |
32D | HAF | 3 |
36H | EAF | |
32A, 32C | HAF | 4 |
37B | EAF | |
36I | EAF | 5 |
32J | EAF | 6 |
36F | EAF | 7 |
36C, 36G | EAF | 8 |
36A | EAF | 9 |
37D, 37E | EAF | 10 |
37C | EAF | 11 |
Strain | Consumed Sugar | Consumed Sugar/Ethanol Production Ratio | Residual Sugar | Alcohol Concentration (%v/v) | Density (g/L) | Volatile Acidity (g Acetic Acid/L) | pH | Total Acidity (g Tartaric Acid/L) |
---|---|---|---|---|---|---|---|---|
32C | 239.1 ± 4.23 b | 17.2 ± 0.10 a | 2.12 ± 0.16 a | 13.9 ± 0.17 c | 992 ± 1.0 a | 0.49 ± 0.08 ab | 3.68 ± 0.07 b | 7.33 ± 0.09 c |
32D | 229.3 ± 0.75 a | 17.4 ± 0.10 ab | 2.10 ± 0.20 a | 13.2 ± 0.12 a | 993 ± 1.0 a | 0.59 ± 0.06 b | 3.57 ± 0.09 a | 7.00 ± 0.38 bc |
32E | 240.0 ± 1.98 b | 17.3 ± 0.15 a | 2.38 ± 0.03 a | 13.9 ± 0.17 c | 992 ± 1.0 a | 0.41 ± 0.08 a | 3.68 ± 0.07 c | 7.33 ± 0.09 c |
32F | 236.0 ± 4.46 b | 17.3 ± 0.15 a | 2.67 ± 0.15 a | 13.7 ± 0.15 b | 993 ± 0.0 a | 0.55 ± 0.00 b | 3.59 ± 0.06 a | 6.41 ± 0.12 a |
32J | 234.7 ± 0.68 b | 17.6 ± 0.10 c | 2.70 ± 0.20 a | 13.3 ± 0.12 a | 992 ± 1.0 a | 0.50 ± 0.04 ab | 3.68 ± 0.06 c | 6.10 ± 0.11 a |
36A | 242.9 ± 7.02 b | 17.3 ± 0.06 a | 2.20 ± 0.17 a | 14.1 ± 0.42 c | 993 ± 1.0 a | 0.43 ± 0.08 a | 3.67 ± 0.05 c | 6.85 ± 0.34 b |
36C | 242.9 ± 1.18 b | 17.3 ± 0.06 a | 2.37 ± 0.06 a | 14.1 ± 0.12 c | 992 ± 0.0 a | 0.66 ± 0.04 c | 3.55 ± 0.05 a | 6.40 ± 0.34 a |
36F | 233.3 ± 9.56 b | 17.6 ± 0.21 d | 2.47 ± 0.47 a | 13.2 ± 0.64 a | 993 ± 0.0 a | 0.59 ± 0.10 bc | 3.64 ± 0.07 b | 7.23 ± 0.16 c |
36I | 234.0 ± 7.06 b | 17.6 ± 0.15 c | 2.33 ± 0.06 a | 13.3 ± 0.29 a | 992 ± 0.0 a | 0.43 ± 0.04 a | 3.63 ± 0.06 b | 6.43 ± 0.24 b |
37C | 235.6 ± 3.01 b | 17.4 ± 0.12 ab | 2.30 ± 0.10 a | 13.6 ± 0.25 b | 992 ± 0.0 a | 0.55 ± 0.00 b | 3.69 ± 0.02 c | 7.25 ± 0.09 c |
37E | 242.2 ± 1.20 b | 17.5 ± 0.23 bc | 2.50 ± 0.10 a | 13.9 ± 0.12 bc | 993 ± 1.0 a | 0.40 ± 0.00 a | 3.66 ± 0.01 bc | 7.23 ± 0.04 c |
F-Ratio | 0.79 | 3.98 | 0.96 | 4.18 | 1.27 | 10.47 | 2.80 | 10.47 |
p-Value | 0.0300 | 0.0030 | 0.0700 | 0.0010 | 0.2150 | 0.0000 | 0.0170 | 0.0000 |
Strain | Color Intensity (CI) | Hue | Total Anthocyanins (mg/L) | Colored Anthocyanins (mg/L) | Catechins (g/L) | Condensed Tannins (g/L) | Total Polyphenols (g/L) | Total Polyphenol Index (IPT) | DMACH Index (%) | Ethanol Index (%) |
---|---|---|---|---|---|---|---|---|---|---|
32C | 10.96 ± 0.87 bc | 60.07 ± 0.60 a | 676.36 ± 13.68 c | 494.4 ± 18.19 c | 0.10 ± 0.007 c | 2.53 ± 0.22 c | 3.73 ± 0.15 a | 43.63 ± 2.58 b | 18.08 ± 3.62 a | 58.24 ± 3.53 b |
32D | 8.92 ± 0.27 a | 68.77 ± 2.57 c | 587.53 ± 33.13 bc | 448.0 ± 17.97 a | 0.09 ± 0.018 b | 2.13 ± 0.15 a | 3.54 ± 0.14 ab | 39.56 ± 1.63 a | 32.03 ± 4.70 b | 54.33 ± 4.45 ab |
32E | 9.54 ± 0.37 a | 63.36 ± 2.32 b | 629.53 ± 23.51 c | 482.9 ± 12.60 bc | 0.09 ± 0.011 b | 2.24 ± 0.21 a | 3.58 ± 0.23 b | 40.76 ± 2.53 a | 33.31 ± 3.21 b | 54.76 ± 3.08 ab |
32F | 10.92 ± 0.18 bc | 64.68 ± 2.20 bc | 648.83 ± 22.15 c | 487.9 ± 11.10 bc | 0.10 ± 0.007 c | 2.44 ± 0.16 c | 3.70 ± 0.09 c | 43.37 ± 0.69 b | 22.88 ± 3.76 ab | 54.99 ± 3.16 ab |
32J | 10.06 ± 0.62 b | 62.81 ± 3.62 ab | 645.97 ± 19.73 c | 482.4 ± 11.95 bc | 0.10 ± 0.008 c | 2.47 ± 0.24 c | 3.72 ± 0.08 c | 43.48 ± 1.34 b | 29.26 ± 5.23 b | 57.25 ± 3.53 b |
36A | 11.00 ± 0.54 c | 61.82 ± 2.51 ab | 557.61 ± 38.92 b | 435.3 ± 16.73 a | 0.09 ± 0.008 ab | 2.45 ± 0.24 c | 3.47 ± 0.14 a | 38.57 ± 5.28 a | 21.56 ± 4.71 a | 52.89 ± 5.15 a |
36C | 10.74 ± 0.85 bc | 58.75 ± 2.84 a | 626.29 ± 34.12 c | 490.9 ± 31.88 c | 0.09 ± 0.008 b | 2.29 ± 0.20 b | 3.66 ± 0.17 bc | 41.29 ± 2.31 ab | 25.71 ± 2.69 ab | 53.17 ± 3.13 a |
36F | 9.39 ± 0.42 a | 63.50 ± 2.69 b | 607.53 ± 17.33 bc | 455.4 ± 19.10 a | 0.09 ± 0.009 b | 2.19 ± 0.15 a | 3.56 ± 0.16 b | 39.64 ± 4.17 a | 32.39 ± 1.63 b | 53.33 ± 2.27 a |
36I | 9.40 ± 0.29 a | 66.80 ± 1.16 c | 619.11 ± 49.43 bc | 481.8 ± 14.71 bc | 0.09 ± 0.009 b | 2.42 ± 0.07 c | 3.77 ± 0.04 c | 41.90 ± 1.96 ab | 16.81 ± 3.17 a | 59.19 ± 2.61 b |
37C | 11.04 ± 0.47 c | 58.41 ± 1.75 a | 487.03 ± 28.66 a | 457.2 ± 12.71 a | 0.08 ± 0.003 a | 2.31 ± 0.15 bc | 3.47 ± 0.05 a | 40.85 ± 1.02 a | 23.79 ± 2.96 ab | 52.94 ± 3.34 a |
37E | 9.15 ± 0.24 a | 59.58 ± 2.31 a | 548.99 ± 46.10 b | 470.1 ± 13.28 b | 0.08 ± 0.007 ab | 2.13 ± 0.11 a | 3.49 ± 0.09 a | 39.78 ± 0.73 a | 23.21 ± 0.85 ab | 52.90 ± 4.33 a |
F-Ratio | 12.93 | 10.96 | 10.95 | 7.77 | 3.99 | 4.06 | 5.14 | 2.70 | 18.61 | 2.27 |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.000 | 0.025 |
Volatile Compounds (mg/L) | 32C | 32D | 32E | 32F | 32J | 36A | 36C | 36F | 36I | 37C | 37E | F-Ratio | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-Butanol | 0.06 ± 0.04 a | 0.12 ± 0.03 bc | 0.082 ± 0.04 ab | 0.268 ± 0.16 d | 0.172 ± 0.01 c | 0.049 ± 0.06 a | 0.055 ± 0.008 a | 0.045 ± 0.02 a | 0.031 ± 0.02 a | 0.039 ± 0.01 a | 0.028 ± 0.01 a | 21.31 | 0.000 |
Isoamyl alcohol | 21.5 ± 5.57 ab | 26.7 ± 10.45 ab | 31.6 ± 4.99 c | 24.9 ± 2.39 ab | 25.7 ± 3.91 ab | 32.6 ± 9.39 c | 30.8 ± 3.16 b | 24.5 ± 4.22 b | 21.9 ± 6.76 ab | 15.3 ± 7.77 a | 11.3 ± 5.75 a | 12.30 | 0.000 |
2.3 Butanediol | 92.0 ± 13.2 c | 50.0 ± 10.5 ab | 70.0 ± 10.1 bc | 50.4 ± 8.1 b | 90.1 ± 19.1 cd | 30.4 ± 7.2 a | 90.5 ± 9.2 cd | 40.8 ± 7.6 ab | 90.4 ± 12.0 cd | 99.3 ± 9.8 d | 70.3 ± 10.6 bc | 72.21 | 0.000 |
1-Heptanol | 0.06 ± 0.04 a | 0.18 ± 0.05 b | 0.16 ± 0.03 b | 0.61 ± 0.32 c | 0.008 ± 0.18 a | 0.04 ± 0.03 a | 0.04 ± 0.01 a | 0.03 ± 0.009 a | 0.02 ± 0.006 a | 0.02 ± 0.002 a | 0.05 ± 0.006 a | 10.32 | 0.000 |
Benzyl alcohol | 0.13 ± 0.09 a | 0.04 ± 0.016 a | 0.05 ± 0.007 a | 0.08 ± 0.04 a | 0.04 ± 0.008 a | 0.05 ± 0.008 a | 0.04 ± 0.003 a | 0.04 ± 0.003 a | 0.04 ± 0.003 a | 0.03 ± 0.007 a | 0.83 ± 0.07 b | 24.71 | 0.000 |
2-Phenylethanol | 110.5 ± 19.1 e | 103.0 ± 15.2 e | 95.7 ± 12.7 de | 119.3 ± 23.3 e | 72.8 ± 15.3 cd | 106.3 ± 12.4 e | 70.7 ± 12.7 bc | 62.2 ± 11.5 abc | 46.1 ± 9.0 ab | 53.6 ± 8.01 abc | 41.6 ± 9.35 a | 12.33 | 0.000 |
Total alcohols | 224.25 ± 38.04 | 180.04 ± 36.24 | 197.58 ± 27.87 | 195.55 ± 34.3 | 188.81 ± 38.5 | 169.43 ± 29.1 | 192.13 ± 25.1 | 127.61 ± 23.3 | 158.48 ± 27.8 | 168.28 ± 25.6 | 124.11 ± 25.8 | ||
Methyl acetate | 0.08 ± 0.02 d | 0.02 ± 0.00 abc | 0.11 ± 0.04 e | 0.03 ± 0.03 c | 0.01 ± 0.01 ab | 0.01 ± 0.00 a | 0.03 ± 0.03 bc | 0.01 ± 0.00 ab | 0.07 ± 0.03 d | 0.01 ± 0.00 a | 0.01 ± 0.00 ab | 31.11 | 0.000 |
Ethyl acetate | 7.00 ± 0.9 c | 3.00 ± 0.15 a | 2.00 ± 0.10 a | 5.30 ± 0.41 c | 4.30 ± 0.31 bc | 2.00 ± 0.15 a | 1.10 ± 0.05 a | 2.10 ± 0.04 ab | 0.70 ± 0.02 a | 1.30 ± 0.06 ab | 0.70 ± 0.01 a | 18.80 | 0.000 |
Isobutyl acetate | nd | 0.03 ± 0.04 b | nd | 0.02 ± 0.04 a | nd | 0.04 ± 0.06 a | 0.23 ± 0.05 b | nd | nd | nd | 0.02 ± 0.03 a | 1.60 | 0.000 |
Ethyl isobutyrate | 0.05 ± 0.02 a | 0.30 ± 0.13 bc | 0.04 ± 0.38 a | 0.35 ± 0.45 c | 0.04 ± 0.01 a | 0.20 ± 0.14 abc | 0.03 ± 0.00 a | 0.31 ± 0.23 bc | 0.05 ± 0.08 a | 0.03 ± 0.01 a | 0.02 ± 0.00 a | 12.16 | 0.000 |
Ethyl octanoate | 0.91 ± 0.06 bcd | 0.12 ± 0.01 a | 0.46 ± 0.14 bc | 0.81 ± 0.19 efg | 0.90 ± 0.31 efg | 0.77 ± 0.36 def | 1.05 ± 0.14 g | 0.73 ± 0.24 cdef | 0.98 ± 0.50 fg | 0.41 ± 0.16 b | 0.66 ± 0.25 bcde | 50.51 | 0.000 |
Ethyl decanoate | 0.34 ± 0.01 b | 0.26 ± 0.11 de | 0.25 ± 0.02 de | 0.30 ± 0.01 ef | 0.16 ± 0.03 bc | 0.04 ± 0.05 a | 0.15 ± 0.04 bc | 0.33 ± 0.05 f | 0.21 ± 0.05 cd | 0.14 ± 0.02 b | 0.20 ± 0.08 bcd | 93.82 | 0.000 |
Diethyl succynate | 0.22 ± 0.01 bcd | 0.28 ± 0.12 e | 0.13 ± 0.04 cd | 0.33 ± 0.18 e | 0.07 ± 0.16 abc | 0.04 ± 0.02 a | 0.09 ± 0.01 abc | 0.03 ± 0.00 a | 0.06 ± 0.00 ab | 0.05 ± 0.01 a | 0.16 ± 0.06 d | 29.22 | 0.000 |
2-Phenylethylacetate | 7.36 ± 1.3 abc | 6.40 ± 0.7 cde | 10.03 ± 1.2 g | 8.98 ± 1.7 fg | 5.84 ± 0.7 bcd | 6.77 ± 1.7 de | 4.02 ± 0.3 a | 8.12 ± 0.9 g | 6.36 ± 1.7 cde | 4.50 ± 0.90 ab | 4.57 ± 0.37 ab | 20.132 | 0.000 |
Total esters | 15.96 ± 2.3 | 10.41 ± 1.3 | 13.02 ± 1.9 | 16.12 ± 3.0 | 11.33 ± 1.5 | 9.87 ± 2.5 | 6.68 ± 0.35 | 11.64 ± 1.5 | 8.45 ± 2.4 | 6.43 ± 1.16 | 6.30 ± 0.8 | ||
Butyric acid | 0.12 ± 0.01 bc | 0.21 ± 0.07 e | 0.15 ± 0.04 cd | 0.19 ± 0.09 de | 0.12 ± 0.03 bc | 0.12 ± 0.03 bc | 0.11 ± 0.02 abc | 0.12 ± 0.02 bc | 0.13 ± 0.01 bc | 0.06 ± 0.05 a | 0.09 ± 0.04 ab | 22.22 | 0.000 |
Isopentanoic acid | 0.38 ± 0.03 b | 0.56 ± 0.08 d | 0.41 ± 0.15 bc | 0.78 ± 0.13 e | 0.87 ± 0.09 e | 0.51 ± 0.13 cd | 0.51 ± 0.03 cd | 0.58 ± 0.22 d | 0.36 ± 0.02 b | 0.20 ± 0.07 ª | 0.34 ± 0.06 b | 14.15 | 0.000 |
Hexanoic acid | 0.78 ± 0.15 e | 0.31 ± 0.19 a | 0.52 ± 0.10 bcd | 0.55 ± 0.04 d | 0.44 ± 0.06 b | 0.52 ± 0.07 bcd | 0.54 ± 0.04 cd | 0.45 ± 0.06 bc | 0.50 ± 0.08 bcd | 0.32 ± 0.03 a | 0.26 ± 0.11 a | 34.91 | 0.000 |
Ethyl Hexanoic acid | 0.008 ± 0.001 bc | nd | 0.005 ± 0.003 ab | 0.016 ± 0.005 d | 0.015 ± 0.005 cd | 0.016 ± 0.004 d | 0.004 ± 0.001 ab | 0.07 ± 0.005 e | 0.007 ± 0.027 abc | 0.004 ± 0.002 ab | 0.009 ± 0.002 bcd | 5.41 | 0.000 |
Octanoic acid | 0.74 ± 0.17 e | 0.42 ± 0.28 bc | 0.58 ± 0.08 d | 0.58 ± 0.06 d | 0.36 ± 0.07 cd | 0.51 ± 0.09 cd | 0.53 ± 0.05 cd | 0.48 ± 0.10 cd | 0.47 ± 0.11 cd | 0.32 ± 0.13 ab | 0.22 ± 0.14 a | 28.71 | 0.000 |
Decanoic acid | 0.19 ± 0.04 abc | 0.67 ± 0.25 d | 0.16 ± 0.08 abc | 0.14 ± 0.01 ab | 0.11 ± 0.02 a | 0.20 ± 0.11 bc | 0.11 ± 0.04 a | 0.25 ± 0.07 c | 0.14 ± 0.03 ab | 0.10 ± 0.05 a | 0.13 ± 0.07 ab | 17.70 | 0.000 |
Isobutyric acid | 0.25 ± 0.01 ab | 0.31 ± 0.12 b | 0.20 ± 0.05 a | 0.50 ± 0.17 cd | 0.39 ± 0.07 d | 0.46 ± 0.15 c | 0.27 ± 0.17 ab | 0.31 ± 0.08 b | 0.33 ± 0.06 b | 0.26 ± 0.06 ab | 0.28 ± 0.05 ab | 12.01 | 0.000 |
Total acids | 2.49 ± 0.41 | 2.48 ± 1.02 | 2.03 ± 0.51 | 2.75 ± 0.52 | 2.31 ± 0.34 | 2.33 ± 0.60 | 2.07 ± 0.34 | 2.26 ± 0.54 | 1.93 ± 0.34 | 1.25 ± 0.41 | 1.34 ± 0.47 | ||
γ-butyrolactone | 6.98 ± 0.3 d | 4.90 ± 0.5 d | 4.31 ± 0.3 d | 2.99 ± 0.8 abc | 3.93 ± 0.4 bcd | 2.56 ± 0.1 a | 2.74 ± 0.7 a | 7.83 ± 1.7 e | 2.85 ± 1.9 ab | 4.52 ± 0.7 d | 4.84 ± 0.7 d | 35.01 | 0.000 |
Total lactones | 6.98 ± 0.3 | 4.90 ± 0.5 | 4.31 ± 0.3 | 2.99 ± 0.8 | 3.93 ± 0.4 | 2.56 ± 0.1 | 2.74 ± 0.7 | 7.83 ± 1.7 | 2.85 ± 1.9 | 4.52 ± 0.7 | 4.84 ± 0.7 | ||
Acetaldehyde | 11.20 ± 1.9 bc | 6.80 ± 1.9 ab | 25.00 ± 3.9 c | 4.40 ± 0.9 a | 9.10 ± 2.7 ab | 22.90 ± 4.2 c | 6.30 ± 2.7 ab | 22.20 ± 5.4 c | 18.90± 5.0 bc | 3.30 ± 1.1 a | 20.80 ± 4.1 bc | 14.27 | 0.000 |
Diacetyl | 0.01 ± 0.01 a | 0.04 ± 0.03 cde | 0.03 ± 0.01 abcd | 0.03 ± 0.02 bcd | 0.08 ± 0.05 f | 0.05 ± 0.02 def | 0.02 ± 0.01 abc | 0.06 ± 0.02 ef | 0.01 ± 0.004 a | 0.02 ± 0.001 a | 0.01 ± 0.002 ab | 20.43 | 0.000 |
5-Methylfurfural | 0.27 ± 0.01 cde | 0.23 ± 0.03 bcd | 0.14 ± 0.10 a | 0.20 ± 0.04 abc | 0.21 ± 0.03 bcd | 0.37 ± 0.19 f | 0.29 ± 0.07 def | 0.17 ± 0.071 b | 0.17 ± 0.03 ab | 0.22 ± 0.07 bcd | 0.15 ± 0.10 ab | 19.44 | 0.000 |
Total aldehydes | 11.48± 1.92 | 7.14 ± 1.96 | 25.17 ± 3.92 | 4.62 ± 0.96 | 9.39 ± 2.78 | 23.32 ± 4.41 | 6.61 ± 2.78 | 22.43 ± 5.49 | 19.08 ± 5.01 | 3.54 ± 1.17 | 20.96 ± 4.20 |
Scale of 1–10 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sensory Atributes | 32C | 32D | 32E | 32F | 32J | 36A | 36C | 36F | 36I | 37C | 37E | F-Ratio | p-Value |
Color | |||||||||||||
Color quality | 8.2 ± 0.0 | 7.9 ± 0.1 | 8.1 ± 0.1 | 7.8 ± 0.6 | 8.0 ± 2.0 | 8.1 ± 1.1 | 8.0 ± 1.9 | 7.9 ± 2.2 | 8.0 ± 1.4 | 7.9 ± 1.8 | 8.1 ± 0.0 | 0.34 | 0.9684 |
Color intensity | 8.2 ± 0.3 | 8.0 ± 0.0 | 8.0 ± 0.3 | 8.0 ± 0.7 | 8.1 ± 1.9 | 8.2 ± 2.1 | 8.2 ± 0.8 | 8.1 ± 2.0 | 8.1 ± 2.3 | 8.2 ± 2.5 | 8.3 ± 1.4 | 0.24 | 0.9907 |
Aroma | |||||||||||||
Aroma intensity | 8.1 ± 0.8 b | 7.3 ± 0.2 a | 7.2 ± 0.1 a | 8.4 ± 1.0 b | 7.2 ± 2.4 a | 7.4 ± 1.6 a | 7.2 ± 1.2 a | 7.2 ± 1.0 a | 7.4 ± 1.6 a | 7.2 ± 1.8 a | 7.3 ± 1.2 a | 9.41 | 0.0392 |
Aroma quality | 8.2 ± 1.2 b | 6.6 ± 0.5 a | 7.4 ± 0.a | 8.4 ± 1.0 b | 6.6 ± 0.0 a | 7.9 ± 1.7 b | 7.4 ± 0.6 ab | 7.8 ± 2.9 b | 7.1 ± 0.9 ab | 7.2 ± 2.1 a | 7.0 ± 0.9 a | 7.06 | 0.0400 |
Red fruit aroma | 7.3 ± 1.2 b | 5.8 ± 0.4 a | 6.9 ± 0.7 a | 6.8 ± 2.7 a | 6.5 ± 1.9 a | 6.5 ± 1.0 a | 6.8 ± 1.3 ab | 6.8 ± 1.2 ab | 5.6 ± 1.6 a | 6.2 ± 1.1 a | 7.2 ± 1.1 b | 8.65 | 0.0375 |
Black fruit aroma | 5.3 ± 0.5 | 5.2 ± 0.1 | 5.5 ± 0.1 | 7.0 ± 1.2 | 5.4 ± 0.5 | 5.8 ± 0.8 | 4.1 ± 0.6 | 5.3 ± 0.9 | 5.0 ± 0.7 | 5.9 ± 1.0 | 5.7 ± 0.2 | 0.65 | 0.7707 |
Balsamic aroma | 3.7 ± 0.7 | 3.0 ± 0.1 | 4.5 ± 0.0 | 4.8 ± 1.2 | 3.2 ± 1.2 | 4.0 ± 0.7 | 3.6 ± 0.4 | 4.9 ± 1.2 | 3.8 ± 1.1 | 4.2 ± 0.0 | 3.0 ± 0.0 | 0.55 | 0.8520 |
Vegetable aroma | 1.7 ± 0.8 a | 3.5 ± 0.0 b | 1.9 ± 0.5 a | 1.1 ± 0.3 a | 2.2 ± 0.8 ab | 1.7 ± 0.1 a | 1.1 ± 0.1 a | 1.5 ± 0.3 a | 2.1 ± 0.5 ab | 1.1 ± 0.4 a | 1.1 ± 0.3 a | 1.98 | 0.0431 |
Floral aroma | 1.3 ± 0.4 | 1.1 ± 0.0 | 1.2 ± 0.2 | 1.3 ± 0.7 | 1.3 ± 0.5 | 1.1 ± 0.5 | 1.1 ± 0.0 | 1.6 ± 0.2 | 1.4 ± 0.0 | 1.4 ± 0.6 | 1.2 ± 0.2 | 0.42 | 0.9355 |
Lactic aroma | 2.9 ± 0.6 | 2.7 ± 0.3 | 2.5 ± 0.0 | 3.3 ± 1.1 | 2.8 ± 0.3 | 2.7 ± 0.9 | 1.9 ± 0.4 | 3.1 ± 1.1 | 2.7 ± 0.8 | 3.2 ± 0.9 | 2.9 ± 0.9 | 0.25 | 0.9897 |
Spicy aroma | 1.5 ± 0.7 | 1.6 ± 0.5 | 1.7 ± 0.0 | 2.8 ± 1.0 | 2.1 ± 0.8 | 1.5 ± 0.7 | 1.6 ± 0.5 | 2.1 ± 0.8 | 1.7 ± 0.5 | 1.6 ± 0.1 | 1.6 ± 0.5 | 0.60 | 0.8067 |
Taste | |||||||||||||
Taste intensity | 7.3 ± 1.2 | 6.8 ± 0.4 | 6.6 ± 0.0 | 6.9 ± 1.1 | 6.8 ± 2.8 | 6.8 ± 1.1 | 7.2 ± 1.5 | 6.8 ± 2.1 | 7.1 ± 2.3 | 7.0 ± 1.7 | 7.4 ± 1.7 | 0.35 | 0.9636 |
Taste quality | 7.9 ± 2.3 | 7.0 ± 0.2 | 6.2 ± 0.0 | 7.1 ± 1.2 | 7.3 ± 2.7 | 6.3 ± 1.4 | 6.9 ± 0.9 | 7.0 ± 1.7 | 7.1 ± 2.7 | 6.5 ± 0.7 | 6.7 ± 1.2 | 0.59 | 0.8172 |
Acidity | 5.9 ± 0.5 | 6.3 ± 0.1 | 6.8 ± 0.2 | 5.8 ± 0.1 | 5.8 ± 1.9 | 6.7 ± 1.7 | 6 ± 0.0 | 6.1 ± 0.9 | 6.4 ± 0.0 | 6.4 ± 1.6 | 6.1 ± 1.4 | 0.45 | 0.9189 |
Sweetness | 2.3 ± 0.8 | 2.5 ± 0.0 | 2.7 ± 0.3 | 2.6 ± 0.1 | 2.6 ± 0.9 | 2.4 ± 0.3 | 2.4 ± 0.3 | 2.7 ± 0.2 | 2.8 ± 0.7 | 2.3 ± 0.5 | 2.3 ± 0.6 | 0.04 | 1.0000 |
Unctuousness | 6.5 ± 1.7 | 6.0 ± 0.8 | 5.5 ± 0.0 | 6.0 ± 0.1 | 6.2 ± 2.7 | 5.7 ± 0.0 | 5.5 ± 1.1 | 5.8 ± 0.0 | 5.9 ± 1.8 | 3.8 ± 0.1 | 6.2 ± 2.1 | 0.12 | 0.9995 |
Structure | 3.8 ± 0.9 | 3.6 ± 0.9 | 3.2 ± 0.9 | 3.7 ± 0.2 | 4.4 ± 0.0 | 4.0 ± 1.0 | 3.8 ± 0.6 | 3.7 ± 0.9 | 4.0 ± 1.9 | 5.9 ± 0.8 | 4.2 ± 1.1 | 0.11 | 0.9997 |
Astringency | 4.9 ± 1.2 | 5.0 ± 0.3 | 5.8 ± 0.8 | 4.9 ± 0.4 | 4.7 ± 1.5 | 5.5 ± 0.9 | 5.7 ± 1.0 | 5.2 ± 0.4 | 5.5 ± 2.1 | 5.4 ± 1.0 | 5.0 ± 1.1 | 0.24 | 0.9907 |
Bitterness | 3.6 ± 0.9 | 3.9 ± 0.0 | 4.2 ± 0.3 | 3.8 ± 0.0 | 3.5 ± 0.7 | 3.5 ± 0.1 | 3.7 ± 0.7 | 3.6 ± 0.5 | 3.8 ± 0.7 | 3.5 ± 0.4 | 3.5 ± 1.0 | 0.06 | 1.0000 |
Taste persistence | 7.4 ± 0.0 | 6.8 ± 0.1 | 6.7 ± 0.1 | 6.6 ± 0.0 | 6.4 ± 1.2 | 6.3 ± 1.6 | 6.3 ± 1.6 | 6.1 ± 0.1 | 6.5 ± 0.9 | 6.0 ± 1.2 | 6.4 ± 1.2 | 0.42 | 0.9315 |
Overall Quality | 7.8 ± 1.5 | 7.0 ± 0.5 | 7.3 ± 0.0 | 7.6 ± 0.1 | 7.1 ± 1.2 | 6.9 ± 1.2 | 7.0 ± 1.3 | 6.6 ± 0.7 | 7.2 ± 1.7 | 7.3 ± 1.0 | 7.4 ± 1.9 | 0.46 | 0.9121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berbegal, C.; Ferrer, S.; Polo, L.; Pardo, I.; García-Esparza, M.J.; Andrés, L.; Álvarez, I.; Lizama, V. Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation 2023, 9, 654. https://doi.org/10.3390/fermentation9070654
Berbegal C, Ferrer S, Polo L, Pardo I, García-Esparza MJ, Andrés L, Álvarez I, Lizama V. Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation. 2023; 9(7):654. https://doi.org/10.3390/fermentation9070654
Chicago/Turabian StyleBerbegal, Carmen, Sergi Ferrer, Lucía Polo, Isabel Pardo, María José García-Esparza, Lorena Andrés, Inmaculada Álvarez, and Victoria Lizama. 2023. "Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness" Fermentation 9, no. 7: 654. https://doi.org/10.3390/fermentation9070654
APA StyleBerbegal, C., Ferrer, S., Polo, L., Pardo, I., García-Esparza, M. J., Andrés, L., Álvarez, I., & Lizama, V. (2023). Diversity of Indigenous Saccharomyces cerevisiae Yeast Strains in Cabernet Sauvignon Fermentations from Utiel-Requena Region (Spain) as a Resource to Improve Wine Distinctiveness. Fermentation, 9(7), 654. https://doi.org/10.3390/fermentation9070654