Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Identification of Presumptive Lactococci and Dairy Streptococci
2.3. Genotypic Diversity Analysis of Lactococcal and Dairy Streptococcal Isolates
2.4. Species Identification of Isolates Using 16S rRNA Gene Sequencing
2.5. Metagenome Extraction and Microbiota Analysis by 16S rRNA Gene Profiling
2.6. DNA Extraction, Genome Sequencing and Analysis
2.7. Anti-Microbial Production Evaluation
3. Results
3.1. Metagenome Analysis of Pecorino Siciliano PDO Curd from Five Sicilian Farms
3.2. Culture-Based Analysis of Milk, Curd and Whey Samples from Five Farms
3.3. Diversity of Dairy Lactococci Associated with the Five Farms
3.4. Diversity of Dairy Streptococci Associated with the Five Pecorino Siciliano PDO Cheese Producing Farms
3.5. Genome Characteristics of Dairy Lactococcal and Streptococcal Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Anastasiou, R.; Georgalaki, M.; Bounenni, R.; Paximadaki, A.; Charmpi, C.; Alexandraki, V.; Kazou, M.; Tsakalidou, E. Comparison of the Microbiome of Artisanal Homemade and Industrial Feta Cheese through Amplicon Sequencing and Shotgun Metagenomics. Microorganisms 2022, 10, 1073. [Google Scholar] [CrossRef] [PubMed]
- De Pasquale, I.; Di Cagno, R.; Buchin, S.; De Angelis, M.; Gobbetti, M. Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes’ Milk Cheeses. PLoS ONE 2016, 11, e0153213. [Google Scholar] [CrossRef] [Green Version]
- Erhardt, M.M.; Oliveira, W.D.C.; Fröder, H.; Marques, P.H.; Oliveira, M.B.P.P.; Richards, N.S.P.D.S. Lactic Bacteria in Artisanal Cheese: Characterization through Metagenomics. Fermentation 2023, 9, 41. [Google Scholar] [CrossRef]
- EU Commission Implementing Regulation (EU). Commission Implementing Regulation (EU) 2020/1338 of 21 September 2020 Approving Non-Minor Amendments to the Specification for a Name Entered in the Register of Protected Designations of Origin and Protected Geographical Indications (‘Pecorino Siciliano’ (PDO)). 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020R1338 (accessed on 8 June 2023).
- Schimmenti, E.; Viola, E.; Funsten, C.; Borsellino, V. The Contribution of Geographical Certification Programs to Farm Income and Rural Economies: The Case of Pecorino Siciliano PDO. Sustainability 2021, 13, 1977. [Google Scholar] [CrossRef]
- European Union Regulation (EU). No. 1151/2012 of the European Parliament and of the Council of 21 November 2012 on Quality Schemes for Agricultural Products and Foodstuffs. Off. J. Eur. Union 2012, 343, 1–29. [Google Scholar]
- Todaro, M.; Francesca, N.; Reale, S.; Moschetti, G.; Vitale, F.; Settanni, L. Effect of Different Salting Technologies on the Chemical and Microbiological Characteristics of PDO Pecorino Siciliano Cheese. Eur. Food Res. Technol. 2011, 233, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Todaro, M.; Lo Presti, V.; Macaluso, A.; Alleri, M.; Licitra, G.; Chiofalo, V. Alkaline Phosphatase Survey in Pecorino Siciliano PDO Cheese. Foods 2021, 10, 1648. [Google Scholar] [CrossRef]
- Gaglio, R.; Todaro, M.; Settanni, L. Improvement of Raw Milk Cheese Hygiene through the Selection of Starter and Non-Starter Lactic Acid Bacteria: The Successful Case of PDO Pecorino Siciliano Cheese. Int. J. Environ. Res. Public Health 2021, 18, 1834. [Google Scholar] [CrossRef]
- Settanni, L.; Busetta, G.; Puccio, V.; Licitra, G.; Franciosi, E.; Botta, L.; Di Gerlando, R.; Todaro, M.; Gaglio, R. In-Depth Investigation of the Safety of Wooden Shelves Used for Traditional Cheese Ripening. Appl. Environ. Microbiol. 2021, 87, e01524-21. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Torriani, S.; Akkermans, A.D.L.; De Vos, W.M.; Vaughan, E.E. Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S RRNA Analysis. Appl. Environ. Microbiol. 2002, 68, 1882–1892. [Google Scholar] [CrossRef] [Green Version]
- Dolci, P.; Alessandria, V.; Zeppa, G.; Rantsiou, K.; Cocolin, L. Microbiological Characterization of Artisanal Raschera PDO Cheese: Analysis of Its Indigenous Lactic Acid Bacteria. Food Microbiol. 2008, 25, 392–399. [Google Scholar] [CrossRef]
- Cardamone, C.; Cirlincione, F.; Gaglio, R.; Puccio, V.; Daidone, F.; Sciortino, S.; Mancuso, I.; Scatassa, M.L. Behavior of Four Main Dairy Pathogenic Bacteria during Manufacturing and Ripening of Pecorino Siciliano Cheese. J. Food Qual. Hazards Control 2020, 7, 27–35. [Google Scholar] [CrossRef]
- Mahony, J.; Kot, W.; Murphy, J.; Ainsworth, S.; Neve, H.; Hansen, L.H.; Heller, K.J.; Sørensen, S.J.; Hammer, K.; Cambillau, C.; et al. Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny. Appl. Environ. Microbiol. 2013, 79, 4385–4392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavelle, K.; Sadovskaya, I.; Vinogradov, E.; Kelleher, P.; Lugli, G.A.; Ventura, M.; van Sinderen, D.; Mahony, J. Bipartite Rgp Locus Diversity in Streptococcus Thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide. Appl. Environ. Microbiol. 2022, 88, e0150422. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, S.; Sadovskaya, I.; Vinogradov, E.; Courtin, P.; Guerardel, Y.; Mahony, J.; Grard, T.; Cambillau, C.; Chapot-Chartier, M.-P.; van Sinderen, D. Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity. mBio 2014, 5, e00880-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahony, J.; Frantzen, C.; Vinogradov, E.; Sadovskaya, I.; Theodorou, I.; Kelleher, P.; Chapot-Chartier, M.-P.; Cambillau, C.; Holo, H.; van Sinderen, D. The CWPS Rubik’s Cube: Linking Diversity of Cell Wall Polysaccharide Structures with the Encoded Biosynthetic Machinery of Selected Lactococcus Lactis Strains. Mol. Microbiol. 2020, 114, 582–596. [Google Scholar] [CrossRef]
- Chopin, A.; Bolotin, A.; Sorokin, A.; Ehrlich, S.D.; Chopin, M. Analysis of Six Prophages in Lactococcus Lactis IL1403: Different Genetic Structure of Temperate and Virulent Phage Populations. Nucleic Acids Res. 2001, 29, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Zomer, A.; Canchaya, C.; O’Connell-Motherway, M.; Kuipers, O.; Turroni, F.; Ribbera, A.; Foroni, E.; Buist, G.; Wegmann, U.; et al. Comparative Analyses of Prophage-like Elements Present in Two Lactococcus Lactis Strains. Appl. Environ. Microbiol. 2007, 73, 7771–7780. [Google Scholar] [CrossRef] [Green Version]
- Alexandraki, V.; Kazou, M.; Blom, J.; Pot, B.; Papadimitriou, K.; Tsakalidou, E. Comparative Genomics of Streptococcus Thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front. Microbiol. 2019, 10, 2916. [Google Scholar] [CrossRef]
- Da Silva Duarte, V.; Giaretta, S.; Campanaro, S.; Treu, L.; Armani, A.; Tarrah, A.; Oliveira De Paula, S.; Giacomini, A.; Corich, V. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus Thermophilus M17PTZA496. Viruses 2018, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Cruz, S.; Parlindungan, E.; Erazo Garzon, A.; Alqarni, M.; Lugli, G.A.; Ventura, M.; van Sinderen, D.; Mahony, J. Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms 2020, 8, 1685. [Google Scholar] [CrossRef] [PubMed]
- Ali, Y.; Koberg, S.; Heßner, S.; Sun, X.; Rabe, B.; Back, A.; Neve, H.; Heller, K.J. Temperate Streptococcus Thermophilus Phages Expressing Superinfection Exclusion Proteins of the Ltp Type. Front. Microbiol. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, T.; Sberro, H.; Weinstock, E.; Cohen, O.; Doron, S.; Charpak-Amikam, Y.; Afik, S.; Ofir, G.; Sorek, R. BREX Is a Novel Phage Resistance System Widespread in Microbial Genomes. EMBO J. 2015, 34, 169–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Sattler, L.; Shafqat, S.; Graumann, P.L.; Bramkamp, M. A Bacterial Dynamin-Like Protein Confers a Novel Phage Resistance Strategy on the Population Level in Bacillus Subtilis. mBio 2022, 13, e03753-21. [Google Scholar] [CrossRef]
- Vassallo, C.N.; Doering, C.R.; Littlehale, M.L.; Teodoro, G.I.C.; Laub, M.T. A Functional Selection Reveals Previously Undetected Anti-Phage Defence Systems in the E. Coli Pangenome. Nat. Microbiol. 2022, 7, 1568–1579. [Google Scholar] [CrossRef]
- Rousset, F.; Depardieu, F.; Miele, S.; Dowding, J.; Laval, A.-L.; Lieberman, E.; Garry, D.; Rocha, E.P.C.; Bernheim, A.; Bikard, D. Phages and Their Satellites Encode Hotspots of Antiviral Systems. Cell Host Microbe 2022, 30, 740–753.e5. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Payne, L.J.; Meaden, S.; Mestre, M.R.; Palmer, C.; Toro, N.; Fineran, P.C.; Jackson, S.A. PADLOC: A Web Server for the Identification of Antiviral Defence Systems in Microbial Genomes. Nucleic Acids Res. 2022, 50, W541–W550. [Google Scholar] [CrossRef]
- Tesson, F.; Hervé, A.; Mordret, E.; Touchon, M.; d’Humières, C.; Cury, J.; Bernheim, A. Systematic and Quantitative View of the Antiviral Arsenal of Prokaryotes. Nat. Commun. 2022, 13, 2561. [Google Scholar] [CrossRef]
- Niccum, B.A.; Kastman, E.K.; Kfoury, N.; Robbat, A.; Wolfe, B.E. Strain-Level Diversity Impacts Cheese Rind Microbiome Assembly and Function. mSystems 2020, 5, e00149-20. [Google Scholar] [CrossRef]
- Somerville, V.; Berthoud, H.; Schmidt, R.S.; Bachmann, H.-P.; Meng, Y.H.; Fuchsmann, P.; Von Ah, U.; Engel, P. Functional Strain Redundancy and Persistent Phage Infection in Swiss Hard Cheese Starter Cultures. ISME J. 2022, 16, 388–399. [Google Scholar] [CrossRef]
- Hayes, S.; Mahony, J.; Vincentelli, R.; Ramond, L.; Nauta, A.; van Sinderen, D.; Cambillau, C. Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions. Viruses 2019, 11, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkus, O.; De Jager, V.C.; Spus, M.; Van Alen-Boerrigter, I.J.; Van Rijswijck, I.M.; Hazelwood, L.; Janssen, P.W.; Van Hijum, S.A.; Kleerebezem, M.; Smid, E.J. Multifactorial Diversity Sustains Microbial Community Stability. ISME J. 2013, 7, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Milani, C.; Hevia, A.; Foroni, E.; Duranti, S.; Turroni, F.; Lugli, G.A.; Sanchez, B.; Martín, R.; Gueimonde, M.; van Sinderen, D.; et al. Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S RRNA Gene-Based Analysis Protocol. PLoS ONE 2013, 8, e68739. [Google Scholar] [CrossRef] [PubMed]
- Alagna, L.; Mancabelli, L.; Magni, F.; Chatenoud, L.; Bassi, G.; Del Bianco, S.; Fumagalli, R.; Turroni, F.; Mangioni, D.; Migliorino, G.M.; et al. Changes in Upper Airways Microbiota in Ventilator-Associated Pneumonia. Intensive Care Med. Exp. 2023, 11, 17. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Lugli, G.A.; Milani, C.; Mancabelli, L.; Van Sinderen, D.; Ventura, M. MEGAnnotator: A User-Friendly Pipeline for Microbial Genomes Assembly and Annotation. FEMS Microbiol. Lett. 2016, 363, fnw049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besemer, J. Heuristic Approach to Deriving Models for Gene Finding. Nucleic Acids Res. 1999, 27, 3911–3920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an Update of CRISRFinder, Includes a Portable Version, Enhanced Performance and Integrates Search for Cas Proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A User-Friendly Web Server to Thoroughly Mine RiPPs and Bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef] [PubMed]
- Parlindungan, E.; Lugli, G.A.; Ventura, M.; Van Sinderen, D.; Mahony, J. Lactic Acid Bacteria Diversity and Characterization of Probiotic Candidates in Fermented Meats. Foods 2021, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Franciosi, E.; Todaro, A.; Guarcello, R.; Alfeo, V.; Randazzo, C.L.; Settanni, L.; Todaro, M. Addition of Selected Starter/Non-Starter Lactic Acid Bacterial Inoculums to Stabilise PDO Pecorino Siciliano Cheese Production. Food Res. Int. 2020, 136, 109335. [Google Scholar] [CrossRef] [PubMed]
- Busetta, G.; Gaglio, R.; Mangione, G.; Garofalo, G.; Franciosi, E.; Gannuscio, R.; Caccamo, M.; Todaro, M.; Di Gerlando, R.; Settanni, L.; et al. Effect of Commission Implementing Regulation (EU) 2020/1319 on the Bacterial Composition of PDO Provola Dei Nebrodi Cheese. Int. J. Food Microbiol. 2023, 394, 110188. [Google Scholar] [CrossRef] [PubMed]
- Cruciata, M.; Gaglio, R.; Scatassa, M.L.; Sala, G.; Cardamone, C.; Palmeri, M.; Moschetti, G.; La Mantia, T.; Settanni, L. Formation and Characterization of Early Bacterial Biofilms on Different Wood Typologies Applied in Dairy Production. Appl. Environ. Microbiol. 2018, 84, e02107-17. [Google Scholar] [CrossRef] [Green Version]
- Didienne, R.; Defargues, C.; Callon, C.; Meylheuc, T.; Hulin, S.; Montel, M.-C. Characteristics of Microbial Biofilm on Wooden Vats (‘Gerles’) in PDO Salers Cheese. Int. J. Food Microbiol. 2012, 156, 91–101. [Google Scholar] [CrossRef]
- Gaglio, R.; Cruciata, M.; Di Gerlando, R.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Sardina, M.T.; Moschetti, G.; Portolano, B.; Settanni, L. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms. Appl. Environ. Microbiol. 2016, 82, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Busetta, G.; Garofalo, G.; Barbera, M.; Di Trana, A.; Claps, S.; Lovallo, C.; Franciosi, E.; Gaglio, R.; Settanni, L. Metagenomic, Microbiological, Chemical and Sensory Profiling of Caciocavallo Podolico Lucano Cheese. Food Res. Int. 2023, 169, 112926. [Google Scholar] [CrossRef]
- Licitra, G.; Caccamo, M.; Valence, F.; Lortal, S. Traditional Wooden Equipment Used for Cheesemaking and Their Effect on Quality. In Global Cheesemaking Technology; Papademas, P., Bintsis, T., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 157–172. ISBN 978-1-119-04616-5. [Google Scholar]
- Settanni, L.; Di Grigoli, A.; Tornambé, G.; Bellina, V.; Francesca, N.; Moschetti, G.; Bonanno, A. Persistence of Wild Streptococcus Thermophilus Strains on Wooden Vat and during the Manufacture of a Traditional Caciocavallo Type Cheese. Int. J. Food Microbiol. 2012, 155, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Grigoli, A.; Francesca, N.; Gaglio, R.; Guarrasi, V.; Moschetti, M.; Scatassa, M.L.; Settanni, L.; Bonanno, A. The Influence of the Wooden Equipment Employed for Cheese Manufacture on the Characteristics of a Traditional Stretched Cheese during Ripening. Food Microbiol. 2015, 46, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Bernheim, A.; Millman, A.; Ofir, G.; Meitav, G.; Avraham, C.; Shomar, H.; Rosenberg, M.M.; Tal, N.; Melamed, S.; Amitai, G.; et al. Prokaryotic Viperins Produce Diverse Antiviral Molecules. Nature 2021, 589, 120–124. [Google Scholar] [CrossRef]
- Cheng, R.; Huang, F.; Wu, H.; Lu, X.; Yan, Y.; Yu, B.; Wang, X.; Zhu, B. A Nucleotide-Sensing Endonuclease from the Gabija Bacterial Defense System. Nucleic Acids Res. 2021, 49, 5216–5229. [Google Scholar] [CrossRef]
- Lopatina, A.; Tal, N.; Sorek, R. Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy. Annu. Rev. Virol. 2020, 7, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Lowey, B.; Whiteley, A.T.; Keszei, A.F.A.; Morehouse, B.R.; Mathews, I.T.; Antine, S.P.; Cabrera, V.J.; Kashin, D.; Niemann, P.; Jain, M.; et al. CBASS Immunity Uses CARF-Related Effectors to Sense 3′–5′- and 2′–5′-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection. Cell 2020, 182, 38–49.e17. [Google Scholar] [CrossRef]
- Gao, L.; Altae-Tran, H.; Böhning, F.; Makarova, K.S.; Segel, M.; Schmid-Burgk, J.L.; Koob, J.; Wolf, Y.I.; Koonin, E.V.; Zhang, F. Diverse Enzymatic Activities Mediate Antiviral Immunity in Prokaryotes. Science 2020, 369, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Afshari, R.; Pillidge, C.J.; Read, E.; Rochfort, S.; Dias, D.A.; Osborn, A.M.; Gill, H. New Insights into Cheddar Cheese Microbiota-Metabolome Relationships Revealed by Integrative Analysis of Multi-Omics Data. Sci. Rep. 2020, 10, 3164. [Google Scholar] [CrossRef] [Green Version]
- Vernile, A.; Giammanco, G.; Spano, G.; Beresford, T.P.; Fox, P.F.; Massa, S. Genotypic Characterization of Lactic Acid Bacteria Isolated from Traditional Pecorino Siciliano Cheese. Dairy Sci. Technol. 2008, 88, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Yeluri Jonnala, B.R.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front. Microbiol. 2018, 9, 1020. [Google Scholar] [CrossRef] [Green Version]
- Ercolini, D.; De Filippis, F.; La Storia, A.; Iacono, M. “Remake” by High-Throughput Sequencing of the Microbiota Involved in the Production of Water Buffalo Mozzarella Cheese. Appl. Environ. Microbiol. 2012, 78, 8142–8145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, L.; Hols, P. The Inhibitory Spectrum of Thermophilin 9 from Streptococcus thermophilus LMD-9 Depends on the Production of Multiple Peptides and the Activity of BlpGSt, a Thiol-Disulfide Oxidase. Appl. Environ. Microbiol. 2008, 74, 1102–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Total No. Reads | Filtered Reads |
---|---|---|
F1 | 45,477 | 42,017 |
F2 | 36,153 | 33,613 |
F3 | 70,793 | 65,585 |
F4 | 37,257 | 34,473 |
F5 | 43,181 | 40,216 |
Number of Isolates of Lactococcal cwps Genotypes | ||||||||
---|---|---|---|---|---|---|---|---|
A | B | C1 | C2 | C3 | C4 | C5 | X | |
Farm 1 | ||||||||
Milk | - | - | - | - | - | - | - | - |
Whey | - | 1 | - | - | - | 1 | - | 2 |
Curd | - | - | 3 | 1 | 1 | - | - | 2 |
Farm 2 | ||||||||
Milk | - | 8 | - | 1 | - | - | - | 4 |
Whey | 3 | 5 | - | - | - | - | - | 14 |
Curd | - | - | 1 | - | - | - | - | 5 |
Farm 3 | ||||||||
Milk | - | 13 | 6 | - | - | - | - | 34 |
Whey | - | 11 | - | 4 | - | - | - | 20 |
Curd | - | 21 | - | - | - | - | - | 6 |
Farm 4 | ||||||||
Milk | - | - | - | - | - | - | - | 1 |
Whey | - | - | - | - | - | - | - | - |
Curd | - | 1 | - | - | - | - | - | 10 |
Farm 5 | ||||||||
Milk | - | - | - | - | - | - | 7 | 11 |
Whey | - | - | - | - | - | - | - | - |
Curd | 1 | 2 | - | - | - | - | - | 6 |
Farm | Sample | Genotype | No. Isolates |
---|---|---|---|
2 | Whey | Bt1 Vt4 | 2 |
2 | Whey | Bt2 Vt1 | 1 |
2 | Whey | Bt3 Vt3 | 1 |
3 | Curd | Bt1 Vt1 | 8 |
3 | Curd | Bt2 Vt5 | 1 |
3 | Whey | Bt1 Vt1 | 14 |
Strain | Genotype | Sample Source | Genome Completeness (%) | Genome Length (Mb) | No. Predicted ORFs | Genbank Accession No. |
---|---|---|---|---|---|---|
S. thermophilus | ||||||
STMM1 | Bt1 Vt4 | F2 whey | 100 | 1.825 | 1956 | CP125881 |
STMM2 | Bt1 Vt4 | F2 whey | 100 | 1.823 | 1970 | CP125763 |
STMM3 | Bt2 Vt1 | F2 whey | 100 | 1.883 | 2005 | CP125764 |
STMM4 | Bt3 Vt3 | F2 whey | 99.1 | 1.894 | 2013 | CP125765 |
STMM11 | Bt2 Vt5 | F3 curd | 100 | 1.767 | 1874 | CP125766 |
STMM22 | Bt1 Vt1 | F3 whey | 99.1 | 1.895 | 1995 | CP125767 |
STMM25 | Bt1 Vt1 | F3 whey | 99.1 | 1.885 | 1981 | CP125768 |
L. lactis/cremoris | ||||||
cremoris 32b | C5 | F5 milk | 100 | 2.558 | 2646 | CP125963 |
lactis 67b | C2 | F2 milk | 100 | 2.493 | 2507 | CP125882 |
cremoris 71b | C1 | F1 curd | 100 | 2.709 | 2753 | CP125769 |
lactis 74b | C4 | F1 whey | 100 | 2.460 | 2437 | CP125964 |
lactis 76b | A | F5 curd | 100 | 2.522 | 2531 | CP125771 |
lactis 218 | - | F3 whey | 100 | 2.620 | 2616 | CP125770 |
lactis 463 | B | F2 whey | 100 | 2.652 | 2736 | CP125772 |
lactis 464 | - | F2 whey | 100 | 2.561 | 2593 | CP125965 |
Strain | |||||||||
---|---|---|---|---|---|---|---|---|---|
L. lactis | # Prophage | CRISPR-Cas (# Spacers) | Abi | R/M Type (#) | Viperin | Sirtuin- Dependent | Gabija | CBass (Type) | AVAST (Type) |
67b | 1 *, 1 § | - | D, N | I (2) | + | - | - | - | - |
74b | 2 *, 2 § | - | - | - | - | - | - | - | - |
76b | - | - | - | + | - | - | - | - | |
218 | 1 * | - | E, Q | - | - | - | + | - | - |
463 | 5 *, 2 § | - | B | I | + | - | - | - | - |
464 | - | D, B | - | + | - | - | + (I) | + (II) | |
L. cremoris | |||||||||
32b | 2 *, 2 § | - | II | + | - | - | - | - | |
71b | 6 § | - | J P | I, II | + | - | - | - | - |
S. thermophilus | |||||||||
STMM1 | II-U (18) | - | I (2), III, IV | - | - | - | - | - | |
STMM2 | 2 § | II-U (20) | - | I (2), III, IV | - | - | - | - | - |
STMM3 | 0 | II-U (15) | - | I (2), III, IV | - | - | - | - | - |
STMM4 | 1 § | II-U (23) | D | I (2), III | - | - | - | - | - |
STMM11 | 1 § | II-U (27) II-A (24) | - | I, III, IV | - | - | - | - | - |
STMM22 | 0 | II-U (12) | D | I (2), III | - | + | + | - | - |
STMM25 | 0 | II-U (14) | D | I (2), III | - | + | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruta, S.; Murray, M.; Kampff, Z.; McDonnell, B.; Lugli, G.A.; Ventura, M.; Todaro, M.; Settanni, L.; van Sinderen, D.; Mahony, J. Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems. Fermentation 2023, 9, 620. https://doi.org/10.3390/fermentation9070620
Ruta S, Murray M, Kampff Z, McDonnell B, Lugli GA, Ventura M, Todaro M, Settanni L, van Sinderen D, Mahony J. Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems. Fermentation. 2023; 9(7):620. https://doi.org/10.3390/fermentation9070620
Chicago/Turabian StyleRuta, Silvia, Matthew Murray, Zoe Kampff, Brian McDonnell, Gabriele Andrea Lugli, Marco Ventura, Massimo Todaro, Luca Settanni, Douwe van Sinderen, and Jennifer Mahony. 2023. "Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems" Fermentation 9, no. 7: 620. https://doi.org/10.3390/fermentation9070620
APA StyleRuta, S., Murray, M., Kampff, Z., McDonnell, B., Lugli, G. A., Ventura, M., Todaro, M., Settanni, L., van Sinderen, D., & Mahony, J. (2023). Microbial Ecology of Pecorino Siciliano PDO Cheese Production Systems. Fermentation, 9(7), 620. https://doi.org/10.3390/fermentation9070620