Metal Salt-Based Deep Eutectic Solvent Pretreatment of Moso Bamboo to Improve Enzymatic Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the DES
2.2.2. DES Pretreatment
2.2.3. Enzymatic Hydrolysis
2.3. Characterisation of Moso Bamboo before and after the DES Pretreatment
2.3.1. Component Analysis
2.3.2. Scanning Electron Microscopy
2.3.3. X-ray Diffraction
2.3.4. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Optimisation of the DES Solvent System
3.1.1. Change in the Residual Component after Various DES Pretreatments
3.1.2. Enzymatic Saccharification of Residue after Various DES Pretreatment
3.2. Optimisation of the FeCl3/Gly Pretreatment Conditions
3.2.1. Effect of Temperature on the Residue’s Components
3.2.2. Effect of Time on the Residue Components
3.3. Structural Analysis of the Residues after the DES Pretreatment
3.3.1. FT-IR Analysis
3.3.2. XRD Analysis
3.3.3. SEM Analysis
3.4. Effect of Hemicelluloses and Lignin on the Enzymatic Hydrolysis of Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yogalakshmi, K.N.; Mohamed Usman, T.M.; Kavitha, S.; Saloni, S.; Shivani, T.; Kumar, S.A.; Banu, J.R. Lignocellulosic biorefinery technologies: A perception into recent advances in biomass fractionation, biorefineries, economic hurdles and market outlook. Fermentation 2023, 9, 238–262. [Google Scholar]
- Schmatz, A.A.; Masarin, F.; Brienzo, M. Lignin removal and cellulose digestibility improved by adding antioxidants and surfactants to organosolv pretreatment of sugarcane bagasse. BioEnergy Res. 2021, 15, 1107–1115. [Google Scholar] [CrossRef]
- De Oliveira, M.C.; Bassin, I.D.; Cammarota, M.C. Microalgae and cyanobacteria biomass pretreatment methods: A comparative analysis of chemical and thermochemical pretreatment methods aimed at methane production. Fermentation 2022, 8, 497. [Google Scholar] [CrossRef]
- Kumar, L.; Arantes, V.; Chandra, R.; Saddler, J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour. Technol. 2012, 103, 201–208. [Google Scholar] [CrossRef]
- Huang, C.; Li, R.; Tang, W.; Zheng, Y.; Meng, X. Improve Enzymatic hydrolysis of lignocellulosic biomass by modifying lignin structure via sulfite pretreatment and using lignin blockers. Fermentation 2022, 8, 558. [Google Scholar] [CrossRef]
- Ma, C.Y.; Xu, L.H.; Zhang, C.; Guo, K.N.; Yuan, T.Q.; Wen, J.L. A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. Bioresour. Technol. 2021, 341, 125828. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.S.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018, 20, 2711–2721. [Google Scholar] [CrossRef]
- Chen, Z.; Bai, X.; A, L.; Wan, C. High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals. ACS Sustain. Chem. Eng. 2018, 6, 12205–12216. [Google Scholar] [CrossRef]
- Guan, M.; Liu, Q.; Xin, H.; Jiang, E.; Ma, Q. Enhanced glucose production from cellulose and corn stover hydrolysis by molten salt hydrates pretreatment. Fuel Process. Technol. 2021, 215, 106739–106744. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, Z.; Jiang, B.; Wei, M.; Zhang, Z.; Zeng, L.; Clark, J.H.; Fan, J. An integrated process for the valorization of corn stover promoted by NaCl in a GVL/H2O system. Green Chem. 2022, 24, 1515–1526. [Google Scholar] [CrossRef]
- Shen, X.J.; Wang, B.; Huang, P.L.; Wen, J.L.; Sun, R.C. Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis. Bioresour. Technol. 2016, 206, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry 2007, 13, 6495–6501. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2012.
- Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Tex. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Wang, H.; Chen, T.; Yao, S.; Tang, Y. Comparison of polyol-based deep eutectic solvents (DESs) on pretreatment of moso bamboo (Phyllostachys pubescens) for enzymatic hydrolysis. Ind. Crop. Prod. 2022, 189, 115767. [Google Scholar] [CrossRef]
- Wang, Z.K.; Hong, S.; Wen, J.L.; Ma, C.Y.; Tang, L.; Jiang, H.; Chen, J.J.; Li, S.; Shen, X.J.; Yuan, T.Q. Lewis acid-facilitated deep eutectic solvent (des) pretreatment for producing high-purity and antioxidative lignin. ACS Sustain. Chem. Eng. 2019, 8, 1050–1057. [Google Scholar] [CrossRef]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.F.; Wang, Z.; Zheng, T.; Yao, J. Deep eutectic solvent with bifunctional Bronsted-Lewis acids for highly efficient lignocellulose fractionation. Bioresour. Technol. 2022, 347, 126723. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour. Technol. 2020, 299, 122695–122707. [Google Scholar] [CrossRef]
- Xian, X.; Fang, L.; Zhou, Y.; Li, B.; Zheng, X.; Liu, Y.; Lin, X. Integrated bioprocess for cellulosic ethanol production from wheat straw: New ternary deep-eutectic-solvent pretreatment, enzymatic saccharification, and fermentation. Fermentation 2022, 8, 371. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, L.; Xie, X.; Fan, D.; Ouyang, X.; Fan, W.; Qiu, X. Enhanced production and separation of short-chain glucan oligomers from corn stover in an unacidified LiBr molten salt hydrate via pre-extraction of hemicellulose. Green Chem. 2022, 24, 8812–8819. [Google Scholar] [CrossRef]
- Sun, S.F.; Yang, H.Y.; Yang, J.; Shi, Z.J. The effect of alkaline extraction of hemicellulose on cocksfoot grass enzymatic hydrolysis recalcitrance. Ind. Crop. Prod. 2022, 178, 114654–114663. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, S.; Abu-Ghannam, N.; Jaiswal, A.K. Evaluation of ultrasound assisted potassium permanganate pre-treatment of spent coffee waste. Bioresour. Technol. 2017, 224, 680–687. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.; Chen, M.; Zhao, Q.; Su, R.; Huang, R.; Qi, W. Enhanced enzymatic hydrolysis of lignocellulose by ethanolassisted FeCl3 pretreatment. Chem. Eng. Trans. 2017, 61, 781–786. [Google Scholar]
- Loow, Y.L.; Wu, T.Y.; Lim, Y.S.; Tan, K.A.; Siow, L.F.; Jahim, J.M.; Mohammad, A.W. Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent. Energy Convers. Manag. 2017, 138, 248–260. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Gou, S.; Zhang, L.; Wang, Z. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydr. Polym. 2021, 251, 117018. [Google Scholar] [CrossRef]
- Isci, A.; Erdem, G.M.; Bagder Elmaci, S.; Sakiyan, O.; Lamp, A.; Kaltschmitt, M. Effect of microwave-assisted deep eutectic solvent pretreatment on lignocellulosic structure and bioconversion of wheat straw. Cellulose 2020, 27, 8949–8962. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Pan, X.J. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour. Technol. 2010, 101, 4992–5002. [Google Scholar] [CrossRef]
- Novo, L.P.; Gurgel, L.V.A.; Marabezi, K.; da Silva Curvelo, A.A. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour. Technol. 2011, 102, 10040–10046. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.W.; Xia, S.Q.; Ma, P.S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 2016, 219, 1–5. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Pu, Y.Q.; Ragauskas, A.J.; Klett, A.S.; Thies, M.; Zheng, Y. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renew. Energy 2018, 123, 664–674. [Google Scholar] [CrossRef]
Pretreatment Conditions | Solid Recovery (%) | Chemical Components c (%) | Removal Ratio (%) | |||
---|---|---|---|---|---|---|
Cellulose | Hemicelluloses | Lignin | Hemicelluloses | Lignin | ||
Untreated | - | 39.20 ± 1.23 d | 16.30 ± 1.02 | 27.60 ± 1.11 | - | - |
3c-DES a | 83.98 ± 0.30 | 43.34 ± 0.89 | 10.58 ± 0.32 | 26.06 ± 0.41 | 45.49 ± 1.65 | 20.72 ± 1.25 |
FeCl3/Gly b | 55.54 ± 1.08 | 66.55 ± 0.71 | 10.01 ± 0.24 | 21.70 ± 0.60 | 65.89 ± 0.82 | 56.33 ± 1.21 |
AlCl3/Gly | 63.82 ± 0.82 | 56.91 ± 0.84 | 9.42 ± 0.31 | 21.73 ± 0.59 | 63.12 ± 1.21 | 49.76 ± 1.36 |
ZnCl2/Gly | 86.35 ± 0.24 | 40.86 ± 0.26 | 16.62 ± 0.35 | 29.06 ± 0.73 | 11.98 ± 1.85 | 9.08 ± 2.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Guo, G.; Shen, D.; Tang, Y. Metal Salt-Based Deep Eutectic Solvent Pretreatment of Moso Bamboo to Improve Enzymatic Hydrolysis. Fermentation 2023, 9, 618. https://doi.org/10.3390/fermentation9070618
Chen T, Guo G, Shen D, Tang Y. Metal Salt-Based Deep Eutectic Solvent Pretreatment of Moso Bamboo to Improve Enzymatic Hydrolysis. Fermentation. 2023; 9(7):618. https://doi.org/10.3390/fermentation9070618
Chicago/Turabian StyleChen, Tianying, Guixin Guo, Da Shen, and Yanjun Tang. 2023. "Metal Salt-Based Deep Eutectic Solvent Pretreatment of Moso Bamboo to Improve Enzymatic Hydrolysis" Fermentation 9, no. 7: 618. https://doi.org/10.3390/fermentation9070618
APA StyleChen, T., Guo, G., Shen, D., & Tang, Y. (2023). Metal Salt-Based Deep Eutectic Solvent Pretreatment of Moso Bamboo to Improve Enzymatic Hydrolysis. Fermentation, 9(7), 618. https://doi.org/10.3390/fermentation9070618