Biotechnological Features of a Functional Non-Dairy Mixed Juice Fermented with Lacticaseibacillus paracasei SP5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Apple-Orange-Carrot Juice Fermentation
2.3. pH and Total Titratable Acidity (TTA)
2.4. HPLC Analysis
2.5. Microbiological ANALYSIS
2.6. Volatiles Analysis by HS-SPME GC-MS
2.7. Sensory Evaluation
2.8. Statistical Analysis
3. Results
3.1. Microbiological Analyses
3.2. pH and TTA
3.3. Residual Sugar and Organic Acids Analysis
3.4. Volatiles Analysis
3.5. Sensorial Evaluation of Apple-Orange-Carrot Juice Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khezri, S.; Kia, E.M.; Seyedsaleh, M.M.; Abedinzadeh, S.; Dastras, M. Application of nanotechnology in food industry and related health concern challenges. Int. J. Adv. Biotechnol. Res. 2016, 7, 1370–1382. [Google Scholar]
- Luvián-Morales, J.; Varela-Castillo, F.O.; Flores-Cisneros, L.; Cetina-Pérez, L.; Castro-Eguiluz, D. Functional Foods Modulating Inflammation and Metabolism in Chronic Diseases: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2021, 62, 4371–4392. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Castillo, P.A.; González-Vázquez, R.; Torres-Maravilla, E.; Tello, M.; Bermúdez-Humarán, L.G.; Mayorga-Reyes, L. Probiotics against Viral Infections: Current Clinical Trials and Future Perspectives. Immuno 2021, 1, 468–498. [Google Scholar] [CrossRef]
- FAO/WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper 85. 2006. Available online: https://www.fao.org/3/a0512e/a0512e.pdf (accessed on 12 May 2023).
- Tamminen, M.; Salminen, S.; Ouwehand, A.C. Fermentation of carrot juice by probiotics: Viability and preservation of adhesion. Int. J. Biotechnol. Wellness Ind. 2013, 2, 10–15. [Google Scholar] [CrossRef]
- Rakin, M.; Vukasinovic, M.; Siler-Marinkovic, S.; Maksimovic, M. Contribution of lactic acid fermentation to improved nutritive quality vegetable juices enriched with brewer’s yeast autolysate. Food Chem. 2007, 100, 599–602. [Google Scholar] [CrossRef]
- Kim, M.H.; Yun, C.H.; Lee, C.H.; Ha, J.K. The effects of fermented soybean meal on immunophysiological and stress-related parameters in Holstein calves after weaning. J. Dairy Sci. 2012, 95, 5203–5212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.B.; Ferrari, J. Development of probiotic grape juice and Lactobacillus paracasei viability under cold storage. In Proceedings of the X CIGR Section IV International Technical Symposium, XXV Congresso Brasileiro de Ciência e Tecnologia de Alimentos, Gramado, Brazil, 24 October 2016; Available online: https://www.researchgate.net/publication/312042441_Development_of_probiotic_grape_juice_and_Lactobacillus_paracasei_viability_under_cold_storage/citations (accessed on 17 May 2023).
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Panda, S.H.; Parmanick, M.; Ray, R.C. Lactic acid fermentation of sweet potato (Ipomoea batatas L.) into pickles. J. Food Process Preserv. 2007, 31, 83–101. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Gobbetti, M. Lactic acid fermentation of smoothies and juices. In Lactic Acid Fermentation of Fruits and Vegetables; Paramithiotis, S., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 267–282. [Google Scholar]
- Mantzourani, I.; Terpou, A.; Bekatorou, A.; Mallouchos, A.; Alexopoulos, A.; Kimbaris, A.; Plessas, S. Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chem. 2020, 308, 125658. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Liu, J.; Lyu, J.; Zhou, M.; Trych, U. Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innov. Food Sci. Emerg. Technol. 2020, 60, 102279. [Google Scholar] [CrossRef]
- Jakopic, J.; Zupan, A.; Eler, K.; Schmitzer, V.; Stampar, F.; Veberic, R. It’s great to be the King: Apple fruit development affected by the position in the cluster. Sci. Hortic. 2015, 194, 18–25. [Google Scholar] [CrossRef]
- Kalemba-Drożdż, M.; Kwiecień, I.; Szewczyk, A.; Cierniak, A.; Grzywacz-Kisielewska, A. Fermented vinegars from apple peels, raspberries, rosehips, lavender, mint, and rose petals: The composition, antioxidant power, and genoprotective abilities in comparison to acetic macerates, decoctions, and tinctures. Antioxidants 2020, 9, 1121. [Google Scholar] [CrossRef] [PubMed]
- Tounsi, M.S.; Wannes, W.A.; Ouerghemmi, I.; Jegham, S.; Njima, Y.B.; Hamdaoui, G.; Marzouk, B. Juice components and antioxidant capacity of four Tunisian Citrus varieties. J. Sci. Food Agric. 2011, 91, 142–151. [Google Scholar] [CrossRef]
- De la Fuente, B.; Luz, C.; Puchol, C.; Meca, G.; Barba, F.J. Evaluation of fermentation assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) on antioxidant compounds and organic acids of an orange juice-milk based beverage. Food Chem. 2021, 343, 128414. [Google Scholar] [CrossRef]
- Riganakos, K.A.; Karabagias, I.K.; Gertzou, I.; Stahl, M. Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innov. Food Sci. Emerg. Technol. 2017, 42, 165–172. [Google Scholar] [CrossRef]
- Han, Z.; Deng, L.; Xu, Y.; Feng, Y.; Geng, Q.; Xiong, K. Image processing method for detection of carrot green-shoulder, fibrous roots and surface cracks. TCSAE 2013, 29, 156–161. [Google Scholar]
- Liang, J.R.; Deng, H.; Hu, C.Y.; Zhao, P.T.; Meng, Y.H. Vitality, fermentation, aroma profile, and digestive tolerance of the newly selected Lactiplantibacillus plantarum and Lacticaseibacillus paracasei in fermented apple juice. Front. Nutr. 2022, 9, 1045347. [Google Scholar] [CrossRef]
- Kun, S.; Rezessy-Szabó, J.M.; Nguyen, Q.D.; Hoschke, Á. Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochem. 2008, 43, 816–821. [Google Scholar] [CrossRef]
- Sadler, G.D.; Murphy, P.A. pH and titratable acidity. In Food Analysis; Nielsen, S.S., Ed.; Springer: Boston, MA, USA, 2010; pp. 219–238. [Google Scholar]
- Bontsidis, C.; Mallouchos, A.; Terpou, A.; Nikolaou, A.; Batra, G.; Mantzourani, I.; Plessas, S. Microbiological and chemical properties of chokeberry juice fermented by novel lactic acid bacteria with potential probiotic properties during fermentation at 4 °C for 4 weeks. Foods 2021, 10, 768. [Google Scholar] [CrossRef]
- Nikolaou, A.; Tsakiris, A.; Kanellaki, M.; Bezirtzoglou, E.; Akrida-Demertzi, K.; Kourkoutas, Y. Wine production using free and immobilized kefir culture on natural supports. Food Chem. 2019, 272, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Plessas, S.; Bekatorou, A.; Gallanagh, J.; Nigam, P.; Koutinas, A.A.; Psarianos, C. Evolution of aroma volatiles during storage of sourdough breads made by mixed cultures of Kluyveromyces marxianus and Lactobacillus delbrueckii ssp. bulgaricus or Lactobacillus helveticus. Food Chem. 2008, 107, 883–889. [Google Scholar]
- Plessas, S.; Bosnea, L.; Alexopoulos, A.; Bezirtzoglou, E. Potential effects of probiotics in cheese and yogurt production: A review. Eng. Life Sci. 2012, 1, 433–440. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Charalampopoulos, D. Survival of Lactobacillus plantarum in model solutions and fruit juices. Int. J. Food Microbiol. 2011, 146, 111–117. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Minervini, F.; Calasso, M. Lactobacillus casei group. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L., McNamara, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 275–286. [Google Scholar]
- Hashemi, S.M.B.; Khaneghah, A.M.; Barba, F.J.; Nemati, Z.; Shokofti, S.S.; Alizadeh, F. Fermented sweet lemon juice (Citrus limetta) using Lactobacillus plantarum LS5: Chemical composition, antioxidant and antibacterial activities. J. Funct. Foods 2017, 38, 409–414. [Google Scholar] [CrossRef]
- Espirito-Santo, A.P.; Carlin, F.; Renard, C.M. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Res. Int. 2015, 78, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.R. Probiotic fruit and vegetable juices-recent advances and future perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- Pino, A.; Bartolo, E.; Caggia, C.; Cianci, A.; Randazzo, C.L. Detection of vaginal lactobacilli as probiotic candidates. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S. (Ed.) Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Zhang, C.; Yang, H.; Yang, F.; Ma, Y. Current progress on butyric acid production by fermentation. Curr. Microbiol. 2009, 59, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Valero-Cases, E.; Frutos, M.J. Effect of inulin on the viability of L. plantarum during storage and in vitro digestion and on composition parameters of vegetable fermented juices. Plant Foods Hum. Nutr. 2017, 72, 161–167. [Google Scholar] [CrossRef] [PubMed]
- De Godoy Alves Filho, E.; Rodrigues, T.H.S.; Fernandes, F.A.N.; Pereira, A.L.F.; Narain, N.; de Brito, E.S.; Rodrigues, S. Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice. Food Res. Int. 2017, 99, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Siebert, T.E.; Barter, S.R.; de Barros Lopes, M.A.; Herderich, M.J.; Francis, I.L. Investigation of ‘stone fruit’ aroma in Chardonnay, Viognier and botrytis Semillon wines. Food Chem. 2018, 256, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Sevilla, A.J.; Mena, P.; Martí, N.; Viguera, C.G.; Carbonell-Barrachina, Á.A. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Res. Int. 2013, 54, 246–254. [Google Scholar] [CrossRef]
- Peng, W.; Meng, D.; Yue, T.; Wang, Z.; Gao, Z. Effect of the apple cultivar on cloudy apple juice fermented by a mixture of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus fermentum. Food Chem. 2021, 340, 127922. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Yu, H.; Chen, Z.; Tian, H. Influence of 4 lactic acid bacteria on the flavor profile of fermented apple juice. Food Biosci. 2019, 27, 30–36. [Google Scholar] [CrossRef]
- Lee, P.R.; Saputra, A.; Yu, B.; Curran, P.; Liu, S.Q. Effects of pure and mixed-cultures of Saccharomyces cerevisiae and Williopsis saturnus on the volatile profiles of grape wine. Food Biotechnol. 2012, 26, 307–325. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef]
- Zheng, J.; Elangovan, S.; Valyaev, D.A.; Brousses, R.; Cesar, V.; Sortais, J.B.; Lavigne, G. Hydrosilylation of Aldehydes and Ketones Catalyzed by Half-Sandwich Manganese (I) N-Heterocyclic Carbene Complexes. Adv. Synth. Catal. 2014, 356, 1093–1097. [Google Scholar] [CrossRef]
- Kati, K.; Kaisa, P.; Karin, A. Influence and interactions of processing conditions and starter culture on formation of acids, volatile compounds, and amino acids in wheat sourdoughs. Cereal Chem. 2004, 81, 598–610. [Google Scholar] [CrossRef]
Temperature (°C) | Days | Juice | L. paracasei SP5 | Yeasts/Fungi |
---|---|---|---|---|
Log CFU/mL | ||||
30 | 0 | F | 9.55 a ± 0.10 | ND |
UF | ND | ND | ||
30 | 1 | F | 9.22 b ± 0.23 | ND |
UF | ND | ND | ||
4 | 7 | F | 9.12 b ± 0.11 | ND |
UF | ND | ND | ||
4 | 14 | F | 8.67 c ± 0.15 | ND |
UF | ND | 1.21 ± 0.15 b | ||
4 | 21 | F | 8.65 c ± 0.13 | ND |
UF | ND | 1.40 ± 0.11 b | ||
4 | 28 | F | 8.28 d ± 0.11 | ND |
UF | ND | 1.85 ± 0.15 a |
Time | Juice | Malic Acid | Lactic Acid | Acetic Acid | Propionic Acid | Sugars |
---|---|---|---|---|---|---|
g/L | ||||||
0 d | 3.7 a ± 0.2 | 3.6 c ± 0.2 | ND | ND | 122.2 a ± 0.2 | |
1st d | F | 3.1 b ± 0.1 | 4.5 c ± 0.3 | ND | ND | 112.2 c ± 0.5 |
UF | 3.6 a ± 0.1 | 3.5 c ± 0.1 | ND | ND | 122.0 a ± 0.2 | |
1st week | F | 1.8 c ± 0.3 | 6.9 b ± 0.3 | ND | ND | 116.3 b ± 0.9 |
UF | 3.7 c ± 0.1 | 3.7 b ± 0.2 | ND | ND | 119.8 b ± 1.1 | |
2nd week | F | 1.6 c ± 0.2 | 7.2 b ± 0.1 | ND | ND | 117.4 b ± 0.5 |
UF | 3.7 a ± 0.1 | 3.6 c ± 0.2 | ND | ND | 120.0 a ± 0.4 | |
3rd week | F | 1.5 c ± 0.3 | 7.0b ± 0.2 | ND | ND | 111.3 c ± 0.7 |
UF | 3.5 a ± 0.2 | 3.5 c ± 0.2 | ND | ND | 121.3 a ± 0.3 | |
4th week | F | 1.5 c ± 0.2 | 9.1 a ± 0.3 | 0.6 ± 0.1 | 0.3 ± 0.1 | 106.6 d ± 0.5 |
UF | 3.4 a ± 0.3 | 3.5 c ± 0.3 | ND | ND | 118.7 a ± 0.5 |
Compound | Identification Kovats Index | Concentration (mg/L) | ||
---|---|---|---|---|
Esters | 0 d | 1st d | 4th Week | |
Ethyl butyrate | 803 | 0.1 | Tr | Tr |
Ethyl 2-methyl-butyrate | 841 | 0.3 | 0.1 | Tr |
3-methylbutyl acetate | 867 | 0.5 | 0.3 | 0.1 |
2-methylbutyl acetate | 869 | 0.1 | 0 | nd |
(Z)-3-hexen-1-ol acetate | 1009 | 0.2 | 0.1 | nd |
Hexyl acetate | 1018 | 1.8 | 0.5 | 0.1 |
Octyl formate | 1081 | 0.6 | 0.7 | 0.2 |
(Z)-3,7-dimethyl-2,6-octadien-1-ol acetate (neryl acetate) | 1386 | 0.1 | 0.1 | nd |
Hexyl hexanoate | 1395 | 0.1 | Tr | nd |
Alcohols | ||||
(Z)-3-hexen-1-ol | 846 | 0.2 | 0.1 | 0.1 |
1-hexanol | 861 | 0.2 | 0.4 | 0.2 |
3,7-dimethyl-1,6-octadien-3-ol (linalool) | 1123 | 4.6 | 4.5 | 1.4 |
1-methyl-4-(1-methylethenyl)-cyclohexanol (β-Terpineol) | 1176 | 0.2 | 0.2 | 0.1 |
4-methyl-1-(1-methylethyl)-3-cyclohexen-1-ol (Terpinen-4-ol) | 1195 | 1.5 | 1.6 | 0.4 |
α,α-4-trimethyl-3-cyclohexene-1-methanol (α-Terpineol) | 1214 | 3.7 | 4.2 | 1.0 |
trans-2-methyl-5-(1-methylethenyl)-2-cyclohexen-1-ol (trans-Carveol) | 1218 | 0.4 | 0.4 | 0.1 |
(Z)- 3,7-dimethyl-2,6-octadien-1-ol (nerol) | 1229 | 0.2 | 0.1 | Tr |
3,7-dimethyl-6-octen-1-ol (citronellol) | 1235 | 0.4 | 0.1 | Tr |
(E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol) | 1255 | 0.1 | 0.2 | Tr |
1-dodecanol | 1261 | 0.2 | 0.3 | 0.2 |
2,4-Di-tert-butylphenol | 1516 | 0.1 | 0.1 | Tr |
Organic acids | ||||
Octanoic acid | 1198 | 1.0 | 0.6 | 0.1 |
Nonanoic acid | 1298 | 0.2 | 0.4 | 0.2 |
Carbonyls | ||||
Decanal | 1215 | 1.2 | 0.1 | nd |
4-ethyl-benzaldehyde | 1217 | 9.0 | 4.1 | 0.3 |
(S)-2-methyl-5-(1-methylethenyl)-2-cyclohexen-1-one (d-carvone) | 1241 | 0.6 | 0.5 | 0.1 |
4-(1-methylethenyl)-1-cyclohexene-1-carboxaldehyde | 1258 | 0.6 | 0.4 | Tr |
Other | ||||
a-pinene | 928 | 0.2 | 0.1 | Tr |
b-myrcene | 1001 | 2.2 | 0.6 | 0.1 |
1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene (α-Terpinene) | 1026 | 0.2 | Tr | Tr |
Limonene | 1046 | 175.0 | 60.0 | 6.4 |
1-methyl-4-(1-methylethylidene)-cyclohexene (α-Terpinolene) | 1122 | 0.4 | 0.2 | Tr |
(1α,3α,6α)-3,7,7-trimethyl-bicyclo[4.1.0]heptane (trans-Carane) | 1274 | 1.0 | 0.5 | 0.1 |
Copaene | 1392 | 0.1 | Tr | Tr |
Caryophyllene | 1442 | 0.3 | 0.2 | 0 |
Valencene | 1480 | 2.2 | 1.1 | 0.2 |
β-Cadinene | 1485 | 0.1 | 0.1 | Tr |
Time | Sample | Aroma | Taste | Overall Acceptability |
---|---|---|---|---|
0 d | Fresh juice | 8.8 a ± 0.2 | 9.0 a ± 0.1 | 8.7 a ± 0.2 |
1st d | Unfermented | 8.5 2,b ± 0.1 | 8.5 1,b ± 0.1 | 8.5 1,a ± 0.3 |
Fermented | 8.9 1,a ± 0.1 | 8.5 1,b ± 0.2 | 8.2 2,a ± 0.2 | |
7th d | Unfermented | 7.5 1,c ± 0.2 | 7.5 1,c ± 0.3 | 7.4 1,b ± 0.2 |
Fermented | 8.0 2,c ± 0.2 | 7.5 1,c ± 0.1 | 8.1 2,a ± 0.1 | |
14th d | Unfermented | 7.1 1,c ± 0.2 | 7.4 1,c ± 0.2 | 6.9 1,b ± 0.3 |
Fermented | 7.7 2,c ± 0.1 | 7.3 1,c ± 0.3 | 7.3 2,b ± 0.1 | |
21th d | Unfermented | 6.5 1,d ± 0.2 | 6.9 1,c ± 0.2 | 6.5 1,c ± 0.2 |
Fermented | 7.1 2,c ± 0.3 | 6.7 1,c ± 0.1 | 7.5 2,b ± 0.1 | |
28th d | Unfermented | 6.0 1,d ± 0.2 | 6.0 1,d ± 0.2 | 6.3 1,c ± 0.2 |
Fermented | 6.6 2,c ± 0.2 | 6.3 1,d ± 0.2 | 6.5 1,c ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzourani, I.; Nikolaou, A.; Kourkoutas, Y.; Alexopoulos, A.; Plessas, S. Biotechnological Features of a Functional Non-Dairy Mixed Juice Fermented with Lacticaseibacillus paracasei SP5. Fermentation 2023, 9, 489. https://doi.org/10.3390/fermentation9050489
Mantzourani I, Nikolaou A, Kourkoutas Y, Alexopoulos A, Plessas S. Biotechnological Features of a Functional Non-Dairy Mixed Juice Fermented with Lacticaseibacillus paracasei SP5. Fermentation. 2023; 9(5):489. https://doi.org/10.3390/fermentation9050489
Chicago/Turabian StyleMantzourani, Ioanna, Anastasios Nikolaou, Yiannis Kourkoutas, Athanasios Alexopoulos, and Stavros Plessas. 2023. "Biotechnological Features of a Functional Non-Dairy Mixed Juice Fermented with Lacticaseibacillus paracasei SP5" Fermentation 9, no. 5: 489. https://doi.org/10.3390/fermentation9050489
APA StyleMantzourani, I., Nikolaou, A., Kourkoutas, Y., Alexopoulos, A., & Plessas, S. (2023). Biotechnological Features of a Functional Non-Dairy Mixed Juice Fermented with Lacticaseibacillus paracasei SP5. Fermentation, 9(5), 489. https://doi.org/10.3390/fermentation9050489