Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Reactivation of Probiotic Culture
2.2. Preparation of Cell Culture
2.3. Green Soybean Milk Preparation
2.4. Microencapsulation of B. breve TISTR 2130
2.5. Survival of Free and Microencapsulated Probiotics during Exposure to Gastrointestinal Conditions
2.5.1. Survival of Free and Microencapsulated Probiotic Bacteria during Exposure to SGJ
2.5.2. Survival of Free and Microencapsulated Probiotic Bacteria during Sequential Exposure to Simulated Gastrointestinal Juice
2.5.3. Determination of Microbial Viability
2.6. The Morphology of Microencapsulated Probiotic Bacteria and Free Cells during Sequential Exposure to Simulated Gastrointestinal Conditions
2.7. Preparation of Green Soybean Yogurt
2.7.1. pH Value
2.7.2. Total Lactic Acid
2.7.3. Syneresis
2.7.4. Apparent Viscosity
2.7.5. Color Measurement
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Different Concentrations of Sodium Alginate and Calcium Lactate on Bead Size and Microencapsulation Efficiency of Microencapsulated B. breve TISTR 2130
3.2. Viability of Free Cells and Encapsulated B. breve TISTR 2130 under Simulated Gastrointestinal Conditions
3.3. Particle Morphology
3.4. Quality Changes in Green Soybean Yogurt (GSY) during Refrigerated Storage
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leksawasdi, N.; Taesuwan, S.; Prommajak, T.; Techapun, C.; Khonchaisri, R.; Sittilop, N.; Halee, A.; Jantanasakulwong, K.; Phongthai, S.; Nunta, R.; et al. Ultrasonic extraction of bioactive compounds from green soybean pods and application in green soybean milk antioxidants fortification. Foods 2022, 11, 588. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cheng, Y.; Luo, X.; Duan, Y. Protective effect of procyanidins extracted from the lotus seedpod on immune function injury induced by extremely low frequency electromagnetic field. Biomed. Pharmacother. 2016, 82, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Soni, R.; Jain, N.K.; Shah, V.; Soni, J.; Suthar, D.; Gohel, P. Development of probiotic yogurt: Effect of strain combination on nutritional, rheological, organoleptic and probiotic properties. J. Food Sci. Technol. 2020, 57, 2038–2050. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front. Microbiol. 2017, 8, 846. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Zahoor, T.; Sadiq, F.A.; Ahmad, F.; Khan, Q.F.; Yasmeen, A.; Imran, M.; Sakandar, H.A. Effect of encapsulation on the viability of probiotics in yoghurt. Prog. Nutr. 2018, 20, 44–52. [Google Scholar]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Holkem, A.T.; Raddatz, G.C.; Nunes, G.L.; Cichoski, A.J.; Jacob-Lopes, E.; Ferreira Grosso, C.R.; de Menezes, C.R. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying. LWT—Food Sci. Technol. 2016, 71, 302–308. [Google Scholar] [CrossRef]
- Lai, P.Y.; How, Y.H.; Pui, L.P. Microencapsulation of Bifidobacterium lactis Bi-07 with galactooligosaccharides using co-extrusion technique. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e2416. [Google Scholar] [CrossRef]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Goderska, K.; Zybala, M.; Czarnecki, Z. Characterisation of microencapsulated Lactobacillus rhamnosus LR7 strain. Pol. J. Food Nutr. Sci. 2003, 53, 21–24. [Google Scholar]
- Petraitytė, S.; Šipailienė, A. Enhancing encapsulation efficiency of alginate capsules containing lactic acid bacteria by using different divalent cross-linkers sources. LWT 2019, 110, 307–315. [Google Scholar] [CrossRef]
- Nawong, S.; Oonsivilai, R.; Boonkerd, N.; Truelstrup Hansen, L. Entrapment in food-grade transglutaminase cross-linked gelatin-maltodextrin microspheres protects Lactobacillus spp. during exposure to simulated gastro-intestinal juices. Food Res. Int. 2016, 85, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Bujalance, C.; Jiménez-Valera, M.; Moreno, E.; Ruiz-Bravo, A. A selective differential medium for Lactobacillus plantarum. J. Microbiol. Methods 2006, 66, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Horáčková, Š.; Mühlhansová, A.; Sluková, M.; Schulzová, V.; Plocková, M. Fermentation of soymilk by yoghurt and bifidobacteria strains. Czech J. Food Sci. 2015, 33, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Adams, M.C. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy propionibacteria. Int. J. Food Microbiol. 2004, 91, 253–260. [Google Scholar] [CrossRef] [PubMed]
- IDF. Yogurt enumeration of characteristic microorganisms colony-count technique at 37 degree C. Food Microbiol. 2003, 117, 1–11. [Google Scholar]
- Czerwińska-Główka, D.; Krukiewicz, K. Guidelines for a morphometric analysis of prokaryotic and eukaryotic cells by scanning electron microscopy. Cells. 2021, 10, 3304. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Feng, F.; Li, Y. Effective of different homogeneous methods on physicochemical, textural and sensory characteristics of soybean (Glycine max L.) yogurt. CyTA—J. Food. 2016, 15, 21–26. [Google Scholar]
- Izadi, Z.; Nasirpour, A.; Garoosi, G.A.; Tamjidi, F. Rheological and physical properties of yogurt enriched with phytosterol during storage. J. Food Sci. Technol. 2015, 52, 5341–5346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappai, J.; Beena, A.K.; James, L.; Aparna, S. V Process standardization for alginate encapsulation of potentially probiotic Pediococcus pentosaceus DM101. J. Vet. Anim. Sci 2021, 52, 196–199. [Google Scholar] [CrossRef]
- Jeong, C.; Kim, S.; Lee, C.; Cho, S.; Kim, S.B. Changes in the physical properties of calcium alginate gel beads under a wide range of gelation temperature conditions. Foods 2020, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Coelho-Rocha, N.D.; De Castro, C.P.; De Jesus, L.C.L.; Leclercq, S.Y.; De Cicco Sandes, S.H.; Nunes, A.C.; Azevedo, V.; Drumond, M.M.; Mancha-Agresti, P. Microencapsulation of lactic acid bacteria improves the gastrointestinal delivery and in situ expression of recombinant fluorescent protein. Front. Microbiol. 2018, 9, 2398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, L.T.; Allan-Wojtas, P.M.; Jin, Y.L.; Paulson, A.T. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 2002, 19, 35–45. [Google Scholar] [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Wang, X.; Gao, S.; Yun, S.; Zhang, M.; Peng, L.; Li, Y.; Zhou, Y. Microencapsulating alginate-based polymers for probiotics delivery systems and their application. Pharmaceuticals 2022, 15, 644. [Google Scholar] [CrossRef] [PubMed]
- Xian Chean, S.; Ying Hoh, P.; Hsuan How, Y.; Lin Nyam, K.; Phing Pui, L. Microencapsulation of Lactiplantibacillus plantarum with inulin and evaluation of survival in simulated gastrointestinal conditions and roselle juice. Braz. J. Food Technol. 2021, 24, 1–13. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chaudhari, A.B.; Kothari, R.M. Cost-effective fermentative production of calcium lactate using BISS (below Indian standard sugar) and Spirulina hydrolysate. Indian J. Biotechnol. 2009, 8, 418–424. [Google Scholar]
- Klokk, T.I.; Melvik, J.E. Controlling the size of alginate gel beads by use of a high electrostatic potential. J. Microencapsul. 2002, 19, 415–424. [Google Scholar] [CrossRef]
- Giraffa, G.; Mattarelli, P.; Taverniti, V.; Wendel, U. Assessing viability and stress tolerance of probiotics-a review. Front. Microbiol. 2021, 12, 818468. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Sada, A.; Orlando, P. Fermentative ability of alginate-prebiotic encapsulated Lactobacillus acidophilus and survival under simulated gastrointestinal conditions. J. Funct. Foods 2009, 1, 319–323. [Google Scholar] [CrossRef]
- Gandomi, H.; Abbaszadeh, S.; Misaghi, A.; Bokaie, S.; Noori, N. Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT—Food Sci. Technol. 2016, 69, 365–371. [Google Scholar] [CrossRef]
- Gunzburg, W.H.; Aung, M.M.; Toa, P.; Ng, S.; Read, E.; Tan, W.J.; Brandtner, E.M.; Dangerfield, J.; Salmons, B. Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation. Microb. Cell Fact. 2020, 19, 216. [Google Scholar] [CrossRef]
- Ayyash, M.M.; Abdalla, A.K.; AlKalbani, N.S.; Baig, M.A.; Turner, M.S.; Liu, S.Q.; Shah, N.P. Invited review: Characterization of new probiotics from dairy and nondairy products—Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J. Dairy Sci. 2021, 104, 8363–8379. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.T.; Lai, K.W.; Zhu, L.Y.; Nyam, K.L.; Pui, L.P. Microencapsulation of Lactobacillus plantarum 299v and its storage in kuini juice. Malays. J. Microbiol. 2020, 16, 235–244. [Google Scholar]
- Kowalska, E.; Ziarno, M.; Ekielski, A.; Żelaziński, T. Materials used for the microencapsulation of probiotic bacteria in the food industry. Molecules 2022, 27, 3321. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.S.; Grosso, C.R.F.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Matias, N.S.; Padilha, M.; Bedani, R.; Saad, S.M.I. In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple ice creams. Int. J. Food Microbiol. 2016, 234, 83–93. [Google Scholar] [CrossRef]
- Sengsaengthong, S.; Oonsivilai, R. Effect of microencapsulation of Lactobacillus sp. 21C2-10 isolated from cassava pulp on physicochemical, sensorial and microbiological characteristics of ice cream. Int. Food Res. J. 2019, 26, 585–594. [Google Scholar]
- Zhu, H.; Hart, C.A.; Sales, D.; Roberts, N.B. Bacterial killing in gastric juice-effect of pH and pepsin on Escherichia coli and Helicobacter pylori. J. Med. Microbiol. 2006, 55, 1265–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustos, A.Y.; Font de Valdez, G.; Fadda, S.; Taranto, M.P. New insights into bacterial bile resistance mechanisms: The role of bile salt hydrolase and its impact on human health. Food Res. Int. 2018, 112, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Choukaife, H.; Doolaanea, A.A.; Alfatama, M. Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals 2020, 13, 335. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Charalampopoulos, D. Encapsulation of Bifidobacterium longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Biosci. 2018, 21, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Shahbandari, J.; Golkar, A.; Taghavi, S.M.; Amiri, A. Effect of storage period on physicochemical, textural, microbial and sensory characteristics of stirred soy yogurt. Int. J. Farming Allied Sci. 2016, 5, 476–484. [Google Scholar]
- Ghorbani, M.; Mofaredi, B.; Bashiriyan, S. Study of the relationship between intellectual capital management and organizational innovation in the banks. African J. Bus. Manag. 2012, 6, 5208–5217. [Google Scholar]
- Yekta, M.; Ansari, S. Jujube mucilage as a potential stabilizer in stirred yogurt: Improvements in the physiochemical, rheological, and sensorial properties. Food Sci. Nutr. 2019, 7, 3709–3721. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mohameed, H. Experimental and modelling studies of the flow properties of concentrated yogurt as affected by the storage time. J. Food Eng. 2002, 52, 359–365. [Google Scholar] [CrossRef]
- Celik, S.; Bakrc, I.; Şat, I.G. Physicochemical and organoleptic properties of yogurt with cornelian cherry paste. Int. J. Food Prop. 2006, 9, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Achouri, A.; Boye, J.I.; Zamani, Y. Soybean variety and storage effects on soymilk flavour and quality. Int. J. Food Sci. Technol. 2008, 43, 82–90. [Google Scholar] [CrossRef]
- Chanamai, R.; McClements, D.J. Prediction of emulsion color from droplet characteristics: Dilute monodisperse oil-in-water emulsions. Food Hydrocoll. 2001, 15, 83–91. [Google Scholar] [CrossRef]
Treatment (T) | Sodium Alginate (%) | Calcium Lactate (%) | Cell Viability (log CFU/mL) | Microencapsulation Efficiency (%) | Particle Size (mm) |
---|---|---|---|---|---|
1 | 1.5 | 1.0 | 4.98 ± 0.45 b | 94.5 ± 0.86 c | 3.12 ± 0.07 d |
2 | 1.5 | 2.0 | 5.10 ± 0.07 ab | 96.9 ± 1.38 ab | 2.84 ± 0.08 e |
3 | 2.0 | 1.0 | 5.00 ± 0.03 ab | 95.1 ± 0.58 b | 3.25 ± 0.10 b |
4 | 2.0 | 2.0 | 5.25 ± 0.01 a | 99.8 ± 0.07 a | 3.25 ± 0.04 b |
5 | 2.5 | 1.0 | 4.87 ± 0.04 c | 92.6 ± 0.78 d | 3.68 ± 0.10 a |
6 | 2.5 | 2.0 | 4.96 ± 0.01 b | 94.2 ± 0.13 c | 3.23 ± 0.10 c |
Properties | Period of Storage (Days) | ||||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |
Viable cell count (log CFU/mL) | 6.20 ± 0.05 a | 6.17 ± 0.06 b | 6.11 ± 0.05 c | 5.47 ± 0.07 d | 5.39 ± 0.08 e |
Chemical analysis | |||||
pH | 4.36 ± 0.04 d | 4.50 ± 0.07 c | 4.51 ± 0.03 c | 4.55 ± 0.08 b | 4.58 ± 0.03 a |
Total lactic acid (%) | 0.11 ± 0.01 a | 0.09 ± 0.01 b | 0.09 ± 0.01 b | 0.09 ± 0.01 c | 0.09 ± 0.01 c |
Physical analysis | |||||
Syneresis (%) | 94.0 ± 2.83 a | 93.0 ± 1.41 b | 92.5 ± 0.707 c | 93.0 ± 1.41 b | 91.0 ± 1.41 d |
Viscosity (cP) | 1.76 ± 0.02 e | 1.86 ± 0.02 d | 1.96 ± 0.02 c | 2.13 ± 0.03 b | 2.26 ± 0.02 a |
L | 41.7 ± 0.02 a | 39.5 ± 0.04 b | 39.2 ± 0.04 c | 37.9 ± 0.06 d | 34.9 ± 0.04 e |
a* | −3.12 ± 0.12 d | −2.91 ± 0.05 c | −2.90 ± 0.04 c | −2.66 ± 0.04 b | −2.26 ± 0.04 a |
b* | 4.05 ± 0.33 a | 3.89 ± 0.06 b | 3.39 ± 0.04 c | 2.79 ± 0.02 d | 2.38 ± 0.02 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naklong, K.; Therdtatha, P.; Sumonsiri, N.; Leksawasdi, N.; Techapun, C.; Rachtanapun, P.; Taesuwan, S.; Nunta, R.; Khemacheewakul, J. Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation 2023, 9, 296. https://doi.org/10.3390/fermentation9030296
Naklong K, Therdtatha P, Sumonsiri N, Leksawasdi N, Techapun C, Rachtanapun P, Taesuwan S, Nunta R, Khemacheewakul J. Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation. 2023; 9(3):296. https://doi.org/10.3390/fermentation9030296
Chicago/Turabian StyleNaklong, Kanokorn, Phatthanaphong Therdtatha, Nutsuda Sumonsiri, Noppol Leksawasdi, Charin Techapun, Pornchai Rachtanapun, Siraphat Taesuwan, Rojarej Nunta, and Julaluk Khemacheewakul. 2023. "Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt" Fermentation 9, no. 3: 296. https://doi.org/10.3390/fermentation9030296
APA StyleNaklong, K., Therdtatha, P., Sumonsiri, N., Leksawasdi, N., Techapun, C., Rachtanapun, P., Taesuwan, S., Nunta, R., & Khemacheewakul, J. (2023). Microencapsulation of Bifidobacterium breve to Enhance Microbial Cell Viability in Green Soybean Yogurt. Fermentation, 9(3), 296. https://doi.org/10.3390/fermentation9030296