The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbal Water Extract
2.2. Preparation of Starter Culture
2.3. Preparation of Yogurt
2.4. Preparation of Water-Soluble Extract from Herbal Yogurt
2.5. O-Phthaldialdehyde (OPA) Assay
2.6. Total Phenolic Content (TPC) Assay
2.7. Antioxidant Activity by 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Radical-Scavenging Activity Assay
2.8. Alpha-Amylase Inhibition Assay
2.9. Alpha-Glucosidase Inhibition Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Peptides Concentration in Yogurt
3.2. Total Phenolic Content (TPC) and Radical Scavenging Activity of Yogurt
3.3. α-Amylase and α-Glucosidase Inhibitory Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lotfy, M.; El-Wahab, A.; Hadad Hemeda, M.; Ezzat Abd El-Aziz Ali, A.; Metwally Bauomy, I.; Gamil Hammed Shola, M. Prevalence of pre diabetes and diabetes mellitus among Al-Azhar University male students Hostel in Cairo Egypt. Al-Azhar Med. J. 2020, 49, 931–938. [Google Scholar] [CrossRef]
- Moosaie, F.; Ghaemi, F.; Mechanick, J.I.; Shadnoush, M.; Firouzabadi, F.D.; Kermanchi, J.; Poopak, A.; Esteghamati, S.; Forouzanfar, R.; Abhari, S.M.F.; et al. Obesity and Diabetic Complications: A Study from the Nationwide Diabetes Report of the National Program for Prevention and Control of Diabetes (NPPCD-2021) Implications for Action on Multiple Scales. Prim. Care Diabetes 2022, 16, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. Proteolytic activity, antioxidant, and α-Amylase inhibitory activity of yogurt enriched with coriander and cumin seeds. LWT 2020, 133, 109912. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT 2022, 153, 112455. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Antioxidant activity and inhibition of key enzymes linked to type-2diabetes and hypertension by Azadirachta indica-yogurt. J. Saudi Chem. Soc. 2013, 17, 295–301. [Google Scholar] [CrossRef]
- Shori, A.B. Screening of antidiabetic and antioxidant activities of medicinal plants. J. Integr. Med. 2015, 13, 297–305. [Google Scholar] [CrossRef]
- Bakr, A. Changes of hemoglobin content and glucose levels in the blood of Rattus norvegicus by water extracts of Azadirachta indica. Chin. J. Nat. Med. 2012, 10, 135–137. [Google Scholar]
- Lobo-Rojas, Á.; Quintero-Troconis, E.; Rondón-Mercado, R.; Pérez-Aguilar, M.C.; Concepción, J.L.; Cáceres, A.J. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022, 11, 1174. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–6. [Google Scholar] [CrossRef]
- Shori, A.B. Camel milk and its fermented products as a source of potential probiotic strains and novel food cultures: A mini review. PharmaNutrition 2017, 5, 84–88. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J.; Buys, E.M. Invited review: Probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. J. Dairy Sci. 2021, 104, 1–19. [Google Scholar] [CrossRef]
- Ntuli, V.; Sibanda, T.; Elegbeleye, J.A.; Mugadza, D.T.; Seifu, E.; Buys, E.M. Dairy production: Microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety; Academic Press: Cambridge, MA, USA, 2023; pp. 439–454. [Google Scholar]
- Shori, A.B. Storage quality and antioxidant properties of yogurt fortified with polyphenol extract from nutmeg, black pepper, and white pepper. Electron. J. Biotechnol. 2022, 57, 24–30. [Google Scholar] [CrossRef]
- Shori, A.B.; Yong, Y.S.; Baba, A.S. Effects of medicinal plants extract enriched cheese with fish collagen on proteolysis and in vitro angiotensin-I converting enzyme inhibitory activity. LWT 2022, 159, 113218. [Google Scholar] [CrossRef]
- Shori, A.B.; Peng, C.W.; Bagheri, E.; Baba, A.S. Physicochemical analysis, proteolysis activity and exopolysaccharides production of herbal yogurt fortified with plant extracts. Int. J. Food Eng. 2021, 17, 227–236. [Google Scholar] [CrossRef]
- Shori, A.B. Inclusion of phenolic compounds from different medicinal plants to increase α-amylase inhibition activity and antioxidants in yogurt. J. Taibah Univ. Sci. 2020, 14, 1000–1008. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Roux, E.; Perrin, C.; Miclo, L.; Dary-Mourot, A. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Food Res. Int. 2014, 63, 71–80. [Google Scholar] [CrossRef]
- Shori, A.B. Application of Bifidobacterium spp in beverages and dairy food products: An overview of survival during refrigerated storage. Food Sci. Technol. 2022, 42, e41520. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Kong, D.; Xu, P. Production and functionality of food-derived bioactive peptides: A review. Mini Rev. Med. Chem. 2018, 18, 1524–1535. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Fermented milk derives bioactive peptides with antihypertensive effects. Integr. Food Nutr. Metab. 2015, 2, 180–183. [Google Scholar]
- Shori, A.B.; Hong, Y.C.; Baba, A.S. Proteolytic profile, angiotensin-I converting enzyme inhibitory activity and sensory evaluation of Codonopsis pilosula and fish collagen cheese. Food Res. Int. 2021, 143, 110238. [Google Scholar] [CrossRef] [PubMed]
- Baba, A.S.; Najarian, A.; Shori, A.B.; Lit, K.W.; Keng, G.A. In vitro inhibition of key enzymes related to diabetes and hypertension in Lycium barbarum yogurt. Arab. J. Sci. Eng. 2014, 39, 5355–5362. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Comparative antioxidant activity, proteolysis and in vitro α-amylase and α-glucosidase inhibition of Allium sativum-yogurts made from cow and camel milk. J. Saudi Chem. Soc. 2014, 18, 456–463. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.S. Cinnamomum verum improved the functional properties of bioyogurts made from camel and cow milks. J. Saudi Soc. Agric. Sci. 2011, 10, 101–107. [Google Scholar] [CrossRef]
- Shori, A.B.; Rashid, F.; Baba, A.S. Effect of the addition of phytomix-3+ mangosteen on antioxidant activity, viability of lactic acid bacteria, type 2 diabetes key-enzymes, and sensory evaluation of yogurt. LWT 2018, 94, 33–39. [Google Scholar] [CrossRef]
- Tiwari, S.; Kavitake, D.; Devi, P.B.; Shetty, P.H. Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int. J. Biol. Macromol. 2021, 183, 1585–1595. [Google Scholar] [CrossRef]
- Kumar, S.; Abedin, M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture; Springer: Singapore, 2020; pp. 517–532. [Google Scholar]
- Mustafa, R.A.; Hamid, A.A.; Mohamed, S.; Bakar, F.A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci. 2010, 75, C28–C35. [Google Scholar] [CrossRef]
- Shori, A.B.; Albalawi, A.; Al Zahrani, A.J.; Al-sulbi, O.S.; Baba, A.S. Microbial analysis, antioxidant activity, and sensory properties of yoghurt with different starter cultures during storage. Int. Dairy J. 2022, 126, 105267. [Google Scholar] [CrossRef]
- Admassu, S.; Kebede, M. Application of antioxidants in food processing industry: Options to improve the extraction yields and market value of natural products. Adv. Food Technol. Nutr. Sci. 2019, 5, 38–49. [Google Scholar]
- Ismail, A.; Marjan, Z.M.; Foong, C.W. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 2004, 87, 581–586. [Google Scholar] [CrossRef]
- Skenderidis, P.; Lampakis, D.; Giavasis, I.; Leontopoulos, S.; Petrotos, K.; Hadjichristodoulou, C.; Tsakalof, A. Chemical properties, fatty-acid composition, and antioxidant activity of goji berry (Lycium barbarum L. and Lycium chinense Mill.) fruits. Antioxidants 2019, 8, 60. [Google Scholar] [CrossRef]
- Shori, A.B.; Ming, K.S.; Baba, A.S. The effects of Lycium barbarum water extract and fish collagen on milk proteolysis and in vitro angiotensin I-converting enzyme inhibitory activity of yogurt. Biotechnol. Appl. Biochem. 2021, 68, 221–229. [Google Scholar] [CrossRef]
- Psaltopoulou, T.; Panagiotakos, D.B.; Pitsavos, C.; Chrysochoou, C.; Detopoulou, P.; Skoumas, J.; Stefanadis, C. Dietary antioxidant capacity is inversely associated with diabetes biomarkers: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 561–567. [Google Scholar] [CrossRef]
- Fialova, S.; Rendekova, K.; Mucaji, P.; Slobodnikova, L. Plant natural agents: Polyphenols, alkaloids and essential oils as perspective solution of microbial resistance. Curr. Org. Chem. 2017, 21, 1875–1884. [Google Scholar] [CrossRef]
- Padmashree, A.; Roopa, N.; Semwal, A.D.; Sharma, G.K.; Agathian, G.; Bawa, A.S. Star-anise (Illicium verum) and black caraway (Carum nigrum) as natural antioxidants. Food Chem. 2007, 104, 59–66. [Google Scholar] [CrossRef]
- Östman, E.M.; Liljeberg Elmståhl, H.G.; Björck, I.M. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef]
- Byambasuren, S.E.; Wang, J.; Gaudel, G. Medicinal value of wolfberry (Lycium barbarum L.). J. Med. Plants Stud. 2019, 7, 90–97. [Google Scholar]
- Liu, J.; Li, Y.; Pu, Q.; Qiu, H.; Di, D.; Cao, Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int. J. Biol. Macromol. 2022, 201, 111–120. [Google Scholar] [CrossRef]
- Huizhen, C. Hyperglycemic Effect of Goji (Lycium barbarum) Polysaccharides. In Phytochemicals in Goji Berries; CRC Press: Boca Raton, FL, USA, 2020; pp. 79–92. [Google Scholar]
- Zhao, H.; Alexeev, A.; Chang, E.; Greenburg, G.; Bojanowski, K. Lycium barbarum glycoconjugates: Effect on human skin and cultured dermal fibroblasts. Phytomedicine 2005, 12, 131–137. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, B.; Wei, W.; Tian, X.; Wu, Z. Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Molecules 2019, 24, 1343. [Google Scholar] [CrossRef]
- Shabbir, H.; Kausar, T.; Noreen, S.; Rehman, H.U.; Hussain, A.; Huang, Q.; Gani, A.; Su, S.; Nawaz, A. In vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves. Animals 2020, 10, 1714. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.L.; Lin, Y.C.; Yen, G.C.; Chen, H.Y. Preventive effects of guava (Psidium guajava L.) leaves and its active compounds against α-dicarbonyl compounds-induced blood coagulation. Food Chem. 2007, 103, 528–535. [Google Scholar] [CrossRef]
Yogurt Samples | α-Amylase Inhibitory Activity (%) | |||||
---|---|---|---|---|---|---|
Storage Periods | 0 Day | 7 Day | 14 Day | 21 Day | 28 Day | |
P-Y | 25.54 ± 1.28 | 46.53 ± 2.27 | 44.64 ± 2.96 | 24.92 ± 1.92 | 24.16 ± 1.74 | |
CP-Y | 34.36 ± 2.20 * | 56.05 ± 2.19 * | 48.83 ± 2.18 | 46.58 ± 2.94 * | 26.4 ± 2.17 | |
IV-Y | 31.55 ± 1.01 * | 51.21 ± 1.28 | 50.65 ± 1.32 * | 34.76 ± 1.13 * | 27.06 ± 1.58 | |
LB-Y | 34.52 ± 2.19 * | 54.64 ± 2.52 * | 58.94 ± 2.30 * | 32.54 ± 1.85 * | 27.47 ± 0.92 * | |
PG-Y | 35.28 ± 1.72 * | 55.88 ± 2.57 * | 58.09 ± 2.67 * | 35.84 ± 1.42 * | 29.87 ± 1.45 * | |
IC50 (mg/g) | ||||||
P-Y | 4.77 ± 1.98 | 1.46 ± 1.79 | 1.38 ± 1.84 | 4.04 ± 1.82 | 3.67 ± 1.28 | |
CP-Y | 2.24 ± 1.72 * | 0.72 ± 2.61 * | 0.74 ± 1.24 * | 1.88 ± 1.77 * | 2.54 ± 2.08 * | |
IV-Y | 1.95 ± 2.63 * | 0.72 ± 2.92 * | 0.86 ± 2.07 * | 1.74 ± 1.47 * | 2.39 ± 1.68 * | |
LB-Y | 2.25 ± 0.51 * | 0.73 ± 1.72 * | 0.93 ± 2.27 * | 1.84 ± 1.45 * | 2.43 ± 1.57 * | |
PG-Y | 2.19 ± 2.09 * | 0.79 ± 1.49 * | 0.75 ± 1.11 * | 1.69 ± 1.18 * | 2.54 ± 1.23 * |
Yogurt Samples | α-Glucosidase Inhibitory Activity (%) | |||||
---|---|---|---|---|---|---|
Storage Periods | 0 Day | 7 Day | 14 Day | 21 Day | 28 Day | |
P-Y | 2.66 ± 0.23 | 6.27 ± 0.59 | 10.26 ± 1.11 | 3.62 ± 1.25 | 3.35 ± 1.74 | |
CP-Y | 9.76 ± 1.40 * | 18.2 ± 2.61 * | 20.45 ± 1.94 * | 13.07 ± 1.95 * | 12.24 ± 1.66 * | |
IV-Y | 7.73 ± 1.47 * | 11.99 ± 2.76 * | 15.09 ± 1.90 * | 7.79 ± 1.13 * | 6.71 ± 1.86 * | |
LB-Y | 12.28 ± 0.43 * | 17.37 ± 2.02 * | 19.63 ± 1.24 * | 11.43 ± 2.42 * | 10.27 ± 0.93 * | |
PG-Y | 9.71 ± 0.16 * | 14.81 ± 2.99 * | 16.98 ± 1.22 * | 10.45 ± 2.44 * | 9.44 ± 0.82 * | |
IC50 (mg/g) | ||||||
P-Y | 9.09 ± 2.67 | 3.57 ± 1.66 | 2.04 ± 1.28 | 6.39 ± 1.34 | 7.36 ± 1.61 | |
CP-Y | 2.41 ± 0.58 * | 1.28 ± 1.58 * | 1.14 ± 1.90 * | 1.95 ± 0.54 * | 2.09 ± 1.15 * | |
IV-Y | 3.47 ± 1.31 * | 2.19 ± 1.69 * | 1.48 ± 1.91 * | 3.17 ± 1.11 * | 3.67 ± 1.64 * | |
LB-Y | 2.05 ± 1.67 * | 1.48 ± 1.04 * | 1.20 ± 2.27 * | 2.35 ± 2.31 * | 2.64 ± 1.02 * | |
PG-Y | 2.39 ± 1.52 * | 1.76 ± 0.93 * | 1.37 ± 1.98 * | 2.22 ± 2.18 * | 2.81 ± 1.14 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shori, A.B.; Baba, A.S. The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants. Fermentation 2023, 9, 427. https://doi.org/10.3390/fermentation9050427
Shori AB, Baba AS. The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants. Fermentation. 2023; 9(5):427. https://doi.org/10.3390/fermentation9050427
Chicago/Turabian StyleShori, Amal Bakr, and Ahmad Salihin Baba. 2023. "The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants" Fermentation 9, no. 5: 427. https://doi.org/10.3390/fermentation9050427
APA StyleShori, A. B., & Baba, A. S. (2023). The Effect of Refrigerated Storage on Anti-Diabetic and Antioxidant Potency of Probiotic Yogurt Treated with Some Medicinal Plants. Fermentation, 9(5), 427. https://doi.org/10.3390/fermentation9050427