Camellia oleifera Shell Biochar as a Robust Adsorbent for Aqueous Mercury Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carbonization and Activation
2.3. Compositional and Structural Characterization
2.4. Mercury Adsorption Test
3. Results and Discussion
3.1. Morphology
3.2. Component and Functional Groups
3.3. Nitrogen Adsorption Capacity
3.4. Mercury Removal Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, Z.; Wang, S.; Fu, H.; Gao, W.; Wang, B.; Zeng, J.; Xu, J. Thermal Pyrolysis Characteristics and Kinetics of Hemicellulose Isolated from Camellia Oleifera Shell. Bioresour. Technol. 2019, 282, 228–235. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Fang, Z.; Zhao, Z.L.; Zheng, A.Q.; Wang, X.B.; Li, H. Bin Levoglucosan and Its Hydrolysates via Fast Pyrolysis of Lignocellulose for Microbial Biofuels: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2019, 105, 215–229. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, R.; Zhang, W.; Yao, G.L.; Chen, J. Antibacterial Activity of Tea Saponin from Camellia Oleifera Shell by Novel Extraction Method. Ind. Crops Prod. 2020, 153, 112604. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Jiang, F.; Xu, Y.; Ouyang, J.; Yu, S. An Integrated Process to Produce Ethanol, Vanillin, and Xylooligosaccharides from Camellia Oleifera Shell. Carbohydr. Res. 2013, 382, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ying, Y.; Li, X.; Yao, X. Physical and Chemical Properties of Camellia Oleifera Shell Composts with Different Additives and Its Maturity Evaluation System. Environ. Sci. Pollut. Res. 2020, 27, 35294–35302. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Y.; Liu, Y.; Chang, S. Anatomical Structure of Camellia Oleifera Shell. Protoplasma 2018, 255, 1777–1784. [Google Scholar] [CrossRef]
- Chen, G.; Wang, H.; Zhang, S.; Zhang, W.; Wu, H.; Li, C.; Xiao, Z. Multifunctional Wood Composites Based on Camellia Oleifera Shell with Harsh-Weather and Self-Mildew Resistance. Polym. Compos. 2022, 43, 3531–3543. [Google Scholar] [CrossRef]
- Ma, B.; Huang, Y.; Nie, Z.; Qiu, X.; Su, D.; Wang, G.; Yuan, J.; Xie, X.; Wu, Z. Facile Synthesis of: Camellia Oleifera Shell-Derived Hard Carbon as an Anode Material for Lithium-Ion Batteries. RSC Adv. 2019, 9, 20424–20431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; He, Y.; Zhu, Y.; Liu, Y.; Wang, X. Camellia Oleifera Shell as an Alternative Feedstock for Furfural Production Using a High Surface Acidity Solid Acid Catalyst. Bioresour. Technol. 2018, 249, 536–541. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, L.; Sun, K.; Jiang, J.; Zhang, X. Preparation of Activated Carbon from Waste Camellia Oleifera Shell for Supercapacitor Application. J. Solid State Electrochem. 2012, 16, 2179–2186. [Google Scholar] [CrossRef]
- Park, J.D.; Zheng, W. Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, G.P.; La Porta, C.A.M. Molecular Mechanisms Triggered by Mercury. Toxicology 2008, 244, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Korbas, M.; Odonoghue, J.L.; Watson, G.E.; Pickering, I.J.; Singh, S.P.; Myers, G.J.; Clarkson, T.W.; George, G.N. The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental Exposure. ACS Chem. Neurosci. 2010, 1, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Janković, B.; Manić, N.; Dodevski, V.; Radović, I.; Pijović, M.; Katnić, Đ.; Tasić, G. Physico-Chemical Characterization of Carbonized Apricot Kernel Shell as Precursor for Activated Carbon Preparation in Clean Technology Utilization. J. Clean. Prod. 2019, 236, 117614. [Google Scholar] [CrossRef]
- Chiarle, S.; Ratto, M.; Rovatti, M. Mercury Removal from Water by Ion Exchange Resins Adsorption. Water Res. 2000, 34, 2971–2978. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, Y.F.; Hong, Y.G.; Zhu, C.; She, M.; Zhang, J.; Wei, H.Q. Experimental and Kinetic Studies of Gas-Phase Mercury Adsorption by Raw and Bromine Modified Activated Carbon. Fuel Process. Technol. 2015, 134, 325–332. [Google Scholar] [CrossRef]
- Ting, Y.; Chen, C.; Ch’ng, B.L.; Wang, Y.L.; Hsi, H.C. Using Raw and Sulfur-Impregnated Activated Carbon as Active Cap for Leaching Inhibition of Mercury and Methylmercury from Contaminated Sediment. J. Hazard. Mater. 2018, 354, 116–124. [Google Scholar] [CrossRef]
- Habila, M.A.; AlOthman, Z.A.; Ghfar, A.A.; Al-Zaben, M.I.M.; Alothman, A.A.S.; Abdeltawab, A.A.; El-Marghany, A.; Sheikh, M. Phosphonium-Based Ionic Liquid Modified Activated Carbon from Mixed Recyclable Waste for Mercury(II) Uptake. Molecules 2019, 24, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panwar, N.L.; Pawar, A. Influence of Activation Conditions on the Physicochemical Properties of Activated Biochar: A Review. Biomass Convers. Biorefinery 2022, 12, 925–947. [Google Scholar] [CrossRef]
- Ma, N.; Li, J.; Zeng, J.; Liang, L.; Zhang, J. Preparation and Application of Bagasse-based Adsorbent for Highly Efficient Removal of Mercury Ions. Water Environ. Res. 2020, 92, 115–122. [Google Scholar] [CrossRef]
- Vithanage, M.; Rajapaksha, A.U.; Zhang, M.; Thiele-Bruhn, S.; Lee, S.S.; Ok, Y.S. Acid-Activated Biochar Increased Sulfamethazine Retention in Soils. Environ. Sci. Pollut. Res. 2015, 22, 2175–2186. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W.; Ma, N.; Shen, Y.; Xu, F.; Wang, Y.; Wu, N.; Guo, Z.; Jiang, L. Revealing the Key Role of Structural Cross-Link between Lignin and Polysaccharides during Fast Pyrolysis of Lignocellulose. Bioresour. Technol. 2022, 361, 127714. [Google Scholar] [CrossRef] [PubMed]
- Lawal, A.A.; Hassan, M.A.; Zakaria, M.R.; Yusoff, M.Z.M.; Norrrahim, M.N.F.; Mokhtar, M.N.; Shirai, Y. Effect of Oil Palm Biomass Cellulosic Content on Nanopore Structure and Adsorption Capacity of Biochar. Bioresour. Technol. 2021, 332, 125070. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Chen, F.; Zhang, Y.; Wu, Y.; Jiang, L. Dual Utilization of Lignocellulose Biomass and Glycerol Waste to Produce Fermentable Levoglucosan via Fast Pyrolysis. Front. Chem. 2022, 10, 847767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, H.; Wu, J.; Chen, W.; Chen, Y.; Gao, X.; Yang, H.; Chen, H. Physicochemical and Adsorption Properties of Biochar from Biomass-Based Pyrolytic Polygeneration: Effects of Biomass Species and Temperature. Biochar 2021, 3, 657–670. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Wang, X.; Zhang, S.; Chen, H. Biomass-Based Pyrolytic Polygeneration System on Cotton Stalk Pyrolysis: Influence of Temperature. Bioresour. Technol. 2012, 107, 411–418. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, S.R.; Liu, N.; Song, Y.; An, Q.-D.; Song, X.W. Dye Removal of Activated Carbons Prepared from NaOH-Pretreated Rice Husks by Low-Temperature Solution-Processed Carbonization and H3PO4 Activation. Bioresour. Technol. 2013, 144, 401–409. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- Park, J.; Wang, J.; Zhou, B.; Mikhael, J.; Delaune, R. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms. Environ. Pollut. 2019, 244, 627–635. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, H.; Ma, A.; Xie, W.; Sun, K.; Sun, Z. Mercury removal by the S2Cl2 modified biomass coke with mechano-chemical versus impregnation method. Chem. Eng. J. 2022, 435, 135073. [Google Scholar] [CrossRef]
- Zhao, S.; Luo, H.; Ma, A.; Xie, W.; Sun, K.; Sun, Z. Influence of pyrolysis conditions on the mercury removal characteristics and physicochemical properties of biomass coke. Fuel 2022, 313, 122979. [Google Scholar] [CrossRef]
Sample | Recovery Rate (wt%) | Elemental Content (wt%) | |||
---|---|---|---|---|---|
N | C | H | O | ||
COS | - | 0.1 | 43.1 | 6.2 | 50.6 |
biochar@250 | 59.7 | 0.2 | 55.6 | 5.2 | 39.0 |
biochar@350 | 45.0 | 0.2 | 67.3 | 4.2 | 28.4 |
biochar@450 | 37.0 | 0.2 | 72.8 | 3.4 | 23.6 |
biochar@550 | 37.5 | 0.2 | 76.2 | 2.6 | 21.1 |
biochar@650 | 34.2 | 0.4 | 79.1 | 1.8 | 18.7 |
biochar@750 | 23.8 | 0.5 | 78.6 | 1.4 | 19.5 |
biochar@850 | 31.6 | 0.5 | 78.7 | 1.3 | 19.6 |
a-biochar@250 | - | 0.1 | 11.5 | 1.7 | 86.7 |
a-biochar@350 | - | 0.2 | 52.2 | 2.7 | 44.8 |
a-biochar@450 | - | 0.2 | 71.6 | 2.2 | 26.0 |
a-biochar@550 | - | 0.2 | 70.3 | 2.4 | 27.1 |
a-biochar@650 | - | 0.2 | 72.5 | 2.3 | 25.0 |
a-biochar@750 | - | 0.2 | 76.7 | 1.8 | 21.2 |
a-biochar@850 | - | 0.2 | 73.6 | 2.0 | 24.3 |
Sample | SBET (m2/g) | SMicro (m2/g) | SMicro/SBET (%) | VMicro (10−3 cm−3/g) | Avg PD 1 (nm) |
---|---|---|---|---|---|
a-biochar@250 | 502.6 | 352.8 | 70.2 | 145.8 | 2.8 |
a-biochar@350 | 1182.1 | 1124.2 | 95.1 | 432.9 | 1.6 |
a-biochar@450 | 1614.6 | 1455.7 | 90.2 | 594.0 | 1.8 |
a-biochar@550 | 1084.8 | 1026.9 | 94.7 | 397.8 | 1.6 |
a-biochar@650 | 1043.8 | 1004.1 | 96.2 | 386.6 | 1.6 |
a-biochar@750 | 770.0 | 729.0 | 94.7 | 283.0 | 1.6 |
a-biochar@850 | 639.0 | 586.5 | 91.8 | 229.8 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Ma, N.; Peng, G.; Xu, W.; Zhang, Y.; Meng, F.; Huang, Q.; Hu, B.; Wang, Q.; Guo, X.; et al. Camellia oleifera Shell Biochar as a Robust Adsorbent for Aqueous Mercury Removal. Fermentation 2023, 9, 295. https://doi.org/10.3390/fermentation9030295
Chen F, Ma N, Peng G, Xu W, Zhang Y, Meng F, Huang Q, Hu B, Wang Q, Guo X, et al. Camellia oleifera Shell Biochar as a Robust Adsorbent for Aqueous Mercury Removal. Fermentation. 2023; 9(3):295. https://doi.org/10.3390/fermentation9030295
Chicago/Turabian StyleChen, Fenglin, Nianfang Ma, Guo Peng, Weiting Xu, Yanlei Zhang, Fei Meng, Qinghua Huang, Biao Hu, Qingfu Wang, Xinhong Guo, and et al. 2023. "Camellia oleifera Shell Biochar as a Robust Adsorbent for Aqueous Mercury Removal" Fermentation 9, no. 3: 295. https://doi.org/10.3390/fermentation9030295
APA StyleChen, F., Ma, N., Peng, G., Xu, W., Zhang, Y., Meng, F., Huang, Q., Hu, B., Wang, Q., Guo, X., Cheng, P., & Jiang, L. (2023). Camellia oleifera Shell Biochar as a Robust Adsorbent for Aqueous Mercury Removal. Fermentation, 9(3), 295. https://doi.org/10.3390/fermentation9030295