Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals
Abstract
:1. Introduction
2. An Overview of Significant African Fermented Cereal-Based Foods
3. Lactic Acid Fermentation Pathways Involved in Flavour/Aroma Compound Production
3.1. Carbohydrate Metabolism during LAB Fermentation of Cereals and Its Link to Flavour and Aroma Compounds Production
3.2. Protein Metabolism during Lab Fermentation of Cereals and Its Association with Flavour and Aroma Compound Production
3.3. Other Compounds which Can Contribute to the Flavour/Aroma of Fermented Cereals
4. Relationship between the Sensory Characteristics and Flavour/Aroma Compound of African Fermented Cereals
5. Correlation between Sensory Characteristics and Consumer Preference of African Fermented Cereals
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wieczorek, M.N.; Drabińska, N. Flavour generation during lactic acid fermentation of brassica vegetables—literature review. Appl. Sci. 2022, 12. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Macauley, H. Feeding Africa: Cereal Crops: Rice, Maize, Millet, Sorghum, Wheat; Abdou Diouf International Conference Centre: Dakar, Senegal, 2015; Volume 86, p. 74. [Google Scholar]
- Basson, G.; Ali Elnaeim Elbasheir, A.; Ndiko, L. Indigenous African cereal crops can contribute to mitigation of the impact of climate change on food security. J. Oasis Agric. Sustain. Dev. 2021, 36–44. [Google Scholar] [CrossRef]
- Peyer, L.C.; Zannini, E.; Arendt, E.K. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci. Technol. 2016, 54, 17–25. [Google Scholar] [CrossRef]
- Wakil, S.M.; Kazeem, M.O. Quality assessment of weaning food produced from fermented cereal-legume blends using starters. Int. Food Res. J. 2012, 4, 1679–1685. [Google Scholar]
- Achi, O.K.; Asamudo, N.U. Cereal-based fermented foods of africa as functional foods. Ref. Ser. Phytochem. 2019, 2, 1527–1558. [Google Scholar]
- Waters, D.M.; Mauch, A.; Coffey, A.; Arendt, E.K.; Zannini, E. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in cereal-based beverages: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Mamhoud, A.; Nionelli, L.; Bouzaine, T.; Hamdi, M.; Gobbetti, M.; Giuseppe, C. Selection of lactic acid bacteria isolated from Tunisian cereals and exploitation of the use as starters for sourdough fermentation. Int. J. Food Microbiol. 2016, 225, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Kim, Y.S. Mass spectrometry based metabolomics approach on the elucidation of volatile metabolites formation in fermented foods: A mini review. Food Sci. Biotechnol. 2021, 30, 881–890. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2741–2755. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Sharma, P.; Singh, J.; Singh, S.; Nain, L. Prospecting the potential of agroresidues as substrate for microbial flavor production. Front. Sustain. Food Syst. 2020, 4, 18. [Google Scholar] [CrossRef]
- Paulino, B.N.; Sales, A.; Felipe, L. de O.; Pastore, G.M.; Molina, G.; Bicas, J.L. Biotechnological production of non-volatile flavor compounds. Curr. Opin. Food Sci. 2021, 41, 26–35. [Google Scholar] [CrossRef]
- Di Stefano, E.; White, J.; Seney, S.; Hekmat, S.; McDowell, T.; Sumarah, M.; Reid, G. A novel millet-based probiotic fermented food for the developing world. Nutrients 2017, 9, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukisa, I.M.; Nsiimire, D.G.; Byaruhanga, Y.B.; Muyanja, C.M.B.K.; Langsrud, T.; Narvhus, J.A. Obushera: Descriptive sensory profiling and consumer acceptability. J. Sens. Stud. 2010, 25, 190–214. [Google Scholar] [CrossRef]
- Nkama, I.; Agarry, O.O.; Akoma, O. Sensory and nutritional quality characteristics of powdered ‘ Kunun-zaki ’: A Nigerian fermented cereal beverage. African J. Food Sci. 2010, 4, 364–370. [Google Scholar]
- Forsido, S.F.; Hordofa, A.A.; Ayelign, A.; Belachew, T.; Hensel, O. Effects of fermentation and malt addition on the physicochemical properties of cereal based complementary foods in Ethiopia. Heliyon 2020, 6, e04606. [Google Scholar] [CrossRef]
- Mutshinyani, M.; Mashau, M.E.; Jideani, A.I.O. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: Effects of spontaneous fermentation. Int. J. Food Prop. 2020, 23, 1692–1710. [Google Scholar] [CrossRef]
- Inyang, C.U.; Zakari, U.M. Effect of germination and fermentation of pearl millet on proximate chemical and sensory properties of instant “Fura” - A Nigerian cereal food. Pakistan J. Nutr. 2008, 7, 9–12. [Google Scholar] [CrossRef]
- Jideani, V.A.; Ratau, M.A.; Okudoh, V.I. Leuconostoc mesenteroides and Pediococcus pentosaceus non-alcoholic pearl millet beverage enriched with moringa oleifera leaf powder: Nutritional and sensory characteristics. Processes 2021, 9. [Google Scholar] [CrossRef]
- Kewuyemi, Y.O.; Njobeh, P.B.; Kayitesi, E.; Adebiyi, J.A.; Oyedeji, A.B.; Adefisoye, M.A.; Adebo, O.A. Metabolite profile of whole grain ting (a Southern African fermented product) obtained using two strains of Lactobacillus fermentum. J. Cereal Sci. 2020, 95, 103042. [Google Scholar] [CrossRef]
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC–MS)-based metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Muyanja, C.M.B.K.; Narvhus, J.A.; Langsrud, T. Organic acids and volatile organic compounds produced during traditional and starter culture fermentation of bushera, a Ugandan fermented cereal beverage. Food Biotechnol. 2012, 26, 1–28. [Google Scholar] [CrossRef]
- Sekwati-Monang, B.; Gänzle, M.G. Microbiological and chemical characterisation of ting, a sorghum-based sourdough product from Botswana. Int. J. Food Microbiol. 2011, 150, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Phiri, S.; Schoustra, S.E.; van den Heuvel, J.; Smid, E.J.; Shindano, J.; Linnemann, A. Fermented cereal-based Munkoyo beverage: Processing practices, microbial diversity and aroma compounds. PLoS ONE 2019, 14, e0223501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annan, N.T.; Poll, L.; Plahar, W.A. Aroma characteristics of spontaneously fermented Ghanaian maize dough for kenkey. Eur. Food Res. Technol. 2003, 2003, 53–60. [Google Scholar] [CrossRef]
- Annan, N.T.; Poll, L.; Sefa-Dedeh, S.; Plahar, W.A.; Jakobsen, M. Influence of starter culture combinations of Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei on aroma in Ghanaian maize dough fermentation. Eur. Food Res. Technol. 2003, 216, 377–384. [Google Scholar] [CrossRef]
- Bolaji, O.T.; Apotiola, Z.O.; Ojo, T.I.; Abdussalaam, R.B.; Akoro, S.M.; Ogunsola Olawale, A. Volatile compounds determination by GC-MS and identification of dominant microorganism at varying fermentation period of ogi slurry. J. Food Stab. 2020, 3, 38–56. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Glazunova, O.A.; Savinova, O.S.; Ajibade, B.O.; Ijabadeniyi, O.A.; Fedorova, T.V. Analytical characterization of the widely consumed commercialized fermented beverages from Russia (Kefir and ryazhenka) and South Africa (amasi and mahewu): Potential functional properties and profiles of volatile organic compounds. Foods 2021, 10, 3082. [Google Scholar] [CrossRef]
- Obinna-Echem, P.C. Effect of processing method on pasting, morphological and sensory properties of akamu- a Nigerian fermented maize product. Am. J. Food Sci. Technol. 2017, 5, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Masha, G.G.K.; Ipsen, R.; Petersen, M.A.; Jakobsen, M. Microbiological, rheological and aromatic characteristics of fermented uji (an East African sour porridge). World J. Microbiol. Biotechnol. 1998, 14, 451–456. [Google Scholar] [CrossRef]
- Adesokan, I.A.; Fawole, A.O.; Ekanola, Y.A.; Odejayi, D.O.; Olanipekun, O.K. Nutritional and sensory properties of soybean fortified composite ogi “A Nigerian fermented cereal gruel”. African J. Microbiol. Res. 2011, 5, 3144–3149. [Google Scholar] [CrossRef] [Green Version]
- Mehlomakulu, N.N.; Moyo, S.M. Yeast derived metabolites and their impact on nutritional and bioactive properties of African fermented maize products. Food Biosci. 2023, 51, 102300. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adeboye, A.S.; Adebiyi, J.A.; Sobowale, S.S.; Ogundele, O.M.; Kayitesi, E. Advances in Fermentation Technology for Novel Food Products. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S.K., Shetty, P.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 71–87. ISBN 978-3-319-74820-7. [Google Scholar]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Setta, M.C.; Matemu, A.; Mbega, E.R. Potential of probiotics from fermented cereal-based beverages in improving health of poor people in Africa. J. Food Sci. Technol. 2020, 57, 3935–3946. [Google Scholar] [CrossRef] [PubMed]
- Armistice, C.; Tafadzwa, M. Utilising traditional fermented foods as carriers of probiotics: The case of Maheu containing Lactobacillus rhamnosus yoba 2012. Emirates J. Food Agric. 2021, 33, 45–55. [Google Scholar] [CrossRef]
- Tamene, A.; Baye, K.; Humblot, C. Folate content of a staple food increased by fermentation of a cereal using selected folate-producing microorganisms. Heliyon 2022, 8. [Google Scholar] [CrossRef]
- Olukoya, D.K.; Ebigwei, S.I.; Olasupo, N.A.; Ogunjimi, A.A. Production of DogiK: An Improved Ogi (Nigerian Fermented Weaning Food) with Potentials for Use in Diarrhoea Control. J. Trop. Pediatr. 1994, 40, 108–113. [Google Scholar] [CrossRef]
- Mugula, J.K.; Narvhus, J.A.; Sørhaug, T. Use of starter cultures of lactic acid bacteria and yeasts in the preparation of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 2003, 83, 307–318. [Google Scholar] [CrossRef]
- Nwachukwu, E.; Achi, O.K.; Ijeoma, I.O. Lactic acid bacteria in fermentation of cereals for the production of indigenous Nigerian foods. African J. Food Sci. Technol. 2010, 1, 021–026. [Google Scholar]
- Banwo, K.; Asogwa, F.C.; Ogunremi, O.R.; Adesulu-Dahunsi, A.; Sanni, A. Nutritional profile and antioxidant capacities of fermented millet and sorghum gruels using lactic acid bacteria and yeasts. Food Biotechnol. 2021, 35, 199–220. [Google Scholar] [CrossRef]
- Okoro, I.A.; Ojimelukwe, P.C.; Ekwenye, U.N.; Akaerue, B.; Atuonwu, A.C. Quality characteristics of indigenous fermented beverage: Pito using Lactobacillus sake as starter culture. Cont. J. Appl. Sci. 2011, 6, 15–20. [Google Scholar]
- Ali, A.A.; Mustafa, M.M. Use of starter cultures of lactic acid bacteria and yeasts in the preparation of kisra, a Sudanese fermented food. Pakistan J. Nutr. 2009, 8, 1349–1353. [Google Scholar] [CrossRef]
- Mugula, J.K.; Nnko, S.A.M.; Narvhus, J.A.; Sørhaug, T. Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 2003, 80, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Nyamete, F.A.; Bennink, M.; Mugula, J.K. Potential of lactic acid fermentation in reducing aflatoxin B1 in Tanzania maize-based gruel. African J. Food, Agric. Nutr. Dev. 2016, 16, 11139–11151. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria †. Microbiol. Mol. Biol. Rev. 2006, 70, 939–1031. [Google Scholar] [CrossRef] [Green Version]
- Agati, V.; Guyot, J.P.; Talamond, P.; Hounhouigan, D.J. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawe` and ogi ) from Benin. J. Appl. Microbiol. 1998, 85, 512–520. [Google Scholar] [CrossRef]
- Sanni, A.I.; Morlon-guyot, J.; Guyot, J.P. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int. J. Food Microbiol. 2002, 72, 53–62. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The carbohydrate metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. Artic. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Songré-Ouattara, L.T.; Mouquet-Rivier, C.; Icard-Vernière, C.; Humblot, C.; Diawara, B.; Guyot, J.P. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. Int. J. Food Microbiol. 2008, 128, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Laëtitia, G.; Pascal, D.; Yann, D. The citrate metabolism in homo- and heterofermentative LAB: A selective means of becoming dominant over other microorganisms in complex ecosystems. Food Nutr. Sci. 2014, 5, 953–969. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.K.; Kuo, H.C.; Lai, C.H.; Chou, C.C. Single amino acid utilization for bacterial categorization. Sci. Rep. 2020, 10, 12686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry degradation of indigestible. Front. Bioeng. Biotechnol. 2021, 9, 1–19. [Google Scholar]
- Mugula, J.K.; Sørhaug, T.; Stepaniak, L. Proteolytic activities in togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 2003, 84, 1–12. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Leroy, F. Microbial Ecology and Process Technology of Sourdough Fermentation. Adv. Appl. Microbiol. 2017, 100, 49–160. [Google Scholar]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by lactobacillus species: From gene to application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef]
- Liu, M.; Nauta, A.; Francke, C.; Siezen, R.J. Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol. 2008, 74, 4590–4600. [Google Scholar] [CrossRef] [Green Version]
- Tavaria, F.K.; Dahl, S.; Carballo, F.J.; Malcata, F.X. Amino acid catabolism and generation of volatiles by lactic acid bacteria. J. Dairy Sci. 2002, 85, 2462–2470. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; de las Rivas, B.; de Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, H.; Wang, T.; Wang, R.; Luo, X. Effects of five different lactic acid bacteria on bioactive components and volatile compounds of oat. Foods 2022, 11, 3230. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Kayitesi, E.; Adebo, O.A. GC-HRTOF-MS dataset of metabolites extracted from sorghum and ting (a fermented product) produced using two strains of Lactobacillus fermentum (singly and in combination). Data Br. 2021, 36, 107102. [Google Scholar] [CrossRef] [PubMed]
- Onyango, C.; Bley, T.; Raddatz, H.; Henle, T. Flavour compounds in backslop fermented uji (an East African sour porridge). Eur. Food Res. Technol. 2004, 218, 579–583. [Google Scholar] [CrossRef]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- McFeeters, R.F. Fermentation microorganisms and flavor changes in fermented foods. J. Food Sci. 2004, 69, 2002–2004. [Google Scholar] [CrossRef]
- Nsogning, D.S.; Sacher, B.; Kollmannsberger, H.; Becker, T. Key volatile aroma compounds of lactic acid fermented malt based beverages – impact of lactic acid bacteria strains. Food Chem. 2017, 229, 565–573. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, W. Flavor and taste compounds analysis in Chinese solid fermented soy sauce. African J. Biotechnol. 2009, 8, 673–681. [Google Scholar]
- Chambers IV, E.; Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 2013, 18, 4887–4905. [Google Scholar] [CrossRef]
- Chelule, P.K.; Mokoena, M.P.; Gqaleni, N. Advantages of traditional lactic acid bacteria fermentation of food in Africa. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1160–1167. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory evaluation of food: Principles and practices, 2nd ed.; Springer: New York, NY, USA, 2010; Volume 2. [Google Scholar]
- Nyanzi, R.; Jooste, P.J.; Abu, J.O.; Beukes, E.M. Consumer acceptability of a synbiotic version of the maize beverage mageu. Dev. South. Afr. 2010, 27, 447–463. [Google Scholar] [CrossRef]
- Ifediba, D.I.; Nwafor, E.C. Nutritional and sensory evaluation of African breadfruit-corn yoghurt. African J. Food Sci. 2018, 12, 73–79. [Google Scholar] [CrossRef]
Cereal | Product | Microorganisms | Reference |
---|---|---|---|
Maize | Dogik (ogi) | L. pentosus and L. acidophilus | [40] |
Akamu/ogi | L. plantarum | [31] | |
Akamu/ogi | L. plantarum/ L. cellobiosus | [42] | |
Millet | Kunun-zaki | L. plantarum/L. cellobiosus | [17] |
Koko (ogi) | Lb. fermentum KL4 and C. tropicalis MKY6 | [42] | |
Kenkey | [43] | ||
Pito | L. plantarum (LpTx) | [44] | |
Sorghum | Kisra | Lactobacillus fermentum, Lactobacillus amylovorus, Lactobacillus brevis and Saccharomyces cerevisiae | [45] |
Ting | L. reuteri FUA3168, L. harbinensis, L. fermentum FUA3165, L. coryniformis, L. casei FUA3166, L. plantarum FUA3171 and L. parabuchneri, | [25] | |
Rice | Idli | [45] | |
Dhokla | [25] | ||
Ice cream | L. acidophilus LA-5 wer | [39] | |
Maize/sorghum/millet/rice/ wheat/other materials | Kunun-zaki | Lactobacillus plantarum, L. fermentum and Lactococcus lactis | |
Maheu | Lb. rhamnosus yoba | [17] | |
Togwa | L. fermentum, L. brevis, L. plantarum, L. cellobiosus, and Pediococcus pentosaceus) and yeasts | [46] | |
Togwa | Lactobacillus plantarum, Pediococcus pentosaceus, Lactobacillus casei and Lactobacillus fermentum | [47] | |
Uji | Lactobacillus plantarum, L. brevis, L. buchneri, L. paracasei ssp. paracasei and Pediococcus pentosaceus. | ||
Sourdough | Pedicoccus acidilactici O1A1, Pediococcus pentosaceus OA2, and Lactobacillus curvatus MA2 | [41] | |
Breadfruit–corn | S. thermophilus, L. bulgaricus and L. acidophilus |
Metabolite | Lactic Acid Bacteria Identified | Fermented Cereal | Associated Sensory Characteristic | Reference |
---|---|---|---|---|
Acids | ||||
Lactic Acid | L. rhamnosus GR-1 and S. thermophilus | Pearl millet | Unknown | [15] |
Acetic acid | L. fermentum LB-11 * L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial L. rhamnosus GR-1 and S. thermophilus | Maize Pearl Millet | Sour odour, vinegar odour, pungent smell Unknown | [28] [29] [15] |
Propionic acid | L. fermentum LB-11 * L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Sharp, rancid odour | [28] [29] |
Pentanoic acid | L. fermentum LB-11 * | Maize | Burnt rubber odour | [28] |
Hexanoic acid | L. fermentum LB-11 * | Maize | Urine-like odour, hay odour | [28] |
Heptanoic acid | L. fermentum LB-11 * | Maize | Rubber odour | [28] |
Octanoic acid | L. fermentum LB-11 * | Maize | Urine-like odour | [28] |
Nonanoic acid | L. fermentum LB-11 * | Maize | Roast nut odour, chemical odour | [28] |
Hexadecanoic acid | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial Not identified | Maize | Nearly odourlessGreen/fatty/ waxy flavour | [29,30] |
tetradecanoic acid | Not identified | Maize | Green-fatty/waxy flavour | [30] |
(E)-octadec-11-enoic acid | Not identified | Maize | Unknown | [30] |
(E)-hex-2-enoic acid | Not identified | Maize | Animal | [30] |
hexanoic acid | Not identified | Maize | Animal | [30] |
Alcohols | ||||
3H-pyrazol-3-one | Leuconostoc mesenteroides and Pediococcus pentoseaceus | Pearl millet | Unknown | [21] |
3,4-furandiol, tetrahydro-,trans | Leuconostoc mesenteroides and Pediococcus pentoseaceus | Pearl millet | Unknown | [21] |
Ethanol | L. fermentum LB-11 * L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Alcohol, fruity (mild, ether) | [28,29] |
Propanol | L. fermentum LB-11 * L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Alcoholic, fruity, gum | [28,29] |
2-Methyl-1-propanol | L. fermentum LB-11 L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Sweet smell, fruity | [28,29] |
2-Pentanol | L. fermentum LB-11 * | Maize | Gum, fruity | [28] |
1-Butanol | L. fermentum LB-11 * | Maize | Pungent, rubber | [28] |
1-Penten-3-ol | L. fermentum LB-11 * | Maize | Boiled potatoes | [28] |
2-Methyl butanol | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Aroma of tuber | [29] |
2-Methoxl phenol | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Sweet odour | [29] |
2-Methyl propanol | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Buttery or creamy | [29] |
3-Methyl-butanol | L. fermentum LB-11 * L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Vegetables, green odour Choking alcohol odour | [28,29] |
1-Pentanol | L. fermentum LB-11 * | Maize | Unknown | [28] |
1-Hexanol | L. fermentum LB-11 * | Maize | Unknown | [28] |
1-Octen-3-ol | L. fermentum LB-11 * | Maize | Unknown | [28] |
Heptanol | L. fermentum LB-11 *L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12, Weissella confusa partial | Maize | Alcohol | [28,29] |
1-Octanol | L. fermentum LB-11 * | Maize | Orange, sweet, fruity aroma | [28] |
2-Undecen-1-ol | L. fermentum LB-11 * | Maize | Unknown | [28] |
Nonanol | L. fermentum LB-11 * | Maize | Popcorn aroma, odour of vitamin pill | [28] |
3-Nonenol | L. fermentum LB-11 * | Maize | Unknown | [28] |
1,2-Butandiol | L. rhamnosus GR-1 and S. thermophilus | Pearl millet | Unknown | [15] |
Amino acid | ||||
Tyrosine | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Amide | ||||
2-hydroxypropanamide | Not Identified | Maize | Unknown | [30] |
Carbonyls (ketones and aldehydes) | ||||
2,4-Dihydroxy-2,5-dimethyl-3(2H)-furanone | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Valerophenone | Spontaneous and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
3-Acetoxy-2-methyl-pyran-4-one | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
2′,6′-Dihydroxy-3′-methylacetophenone | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
2-Hydroxy-1-(10-pyrrolidiyl)-1-buten-3-one | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Benz[cd]indol-2(1H)-one | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
[22] | ||||
Ethanone, 1-(3,4-dimethoxyphenyl)- | Spontaneous, L. fermentum FUA 3165 | Sorghum | Unknown | [22] |
4-Amino-7-diethylamino-chromen-2-one | Spontaneous, L. fermentum FUA 3165 | Sorghum | Unknown | [22] |
6-Ethyl-4,7-dimethyl-2,3-benzofurandione | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Diacetyl | L. fermentum LB-11 * | Maize | Unknown | [28] |
Pentanal | L. fermentum LB-11 * | Maize | Unknown | [28] |
Hexanal | L. fermentum LB-11 * | Maize | Green, grass, pine odour | [28] |
2-Pentenal | L. fermentum LB-11 * | Maize | Unknown | [28] |
2-Heptanone | L. fermentum LB-11 * | Maize | Bad, unpleasant odour | [28] |
Heptanal | L. fermentum LB-11 * | Maize | Green, sour green | [28] |
Furfural | L. fermentum LB-11 * | Maize | Unknown | [28] |
Nonanal | L. fermentum LB-11 * | Maize | Aquarium, green, fatty | [28] |
2-Octenal | L. fermentum LB-11 * | Maize | Unknown | [28] |
2,4-Heptadienal | L. fermentum LB-11 * | Maize | Hot, potato, silage | [28] |
Benzaldehyde | L. fermentum LB-11 * | Maize | Hot, potato, silage | [28] |
2-Nonenal | L. fermentum LB-11 * | Maize | Old, musty, onions | [28] |
Benzeneacetaldehyde | L. fermentum LB-11 * | Maize | Unknown | [28] |
2-Decenal | L. fermentum LB-11 * | Maize | Unknown | [28] |
2,4-Nonadienal | L. fermentum LB-11 * | Maize | Fermented, deep frying | [28] |
2-Undecenal | L. fermentum LB-11 * | Maize | Fruity, cooked, rice | [28] |
2,4-Decadienal | L. fermentum LB-11 * | Maize | Dough, fatty, soup | [28] |
gamma.-nonalactone | L. fermentum LB-11 * | Maize | Unknown | [28] |
Vinylphenol | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Colour of grape wine | [29] |
Ethyl caprylate | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Waxy odour | [29] |
Ethyl caprate | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Waxy odour | [29] |
2-methyl-naphthalene | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Unpleasant odour | [29] |
1-methylnaphthalene | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Mothball smell | [29] |
2-3-Butanediol | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Odourless | [29] |
Ethyl isovalerate | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Strong odour | [29] |
2-methoxy-4 | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Pleasant, spicy odour | [29] |
Ethyl dec-a-enoate | L. pentosus strain CE56.28.1, CE56.19, L. plantarum strain 28.19 E, NWAFU1572, P. acidilactici strain AA106, P. pentosaceus strain OO1, L. fermentum strain CAU:235, YLc37C, BB101, Enterococcus faecium strain AA109, Weissella confusa strain JBA12 and Weissella confusa partial | Maize | Odourless | [29] |
Ester | ||||
3-deoxy-d-mannoic lactone | Leuconostoc mesenteroides and Pediococcus pentoseaceus | Pearl Millet | Unknown | [21] |
Pentyl acetate | Not identified | Maize | Fruity—tropical | [30] |
Prop-2-enyl hexanoate | Not identified | Maize | Fruity—tropical | [30] |
ethyl methyl carbonate | Not identified | Maize | Fruity—sweet | [30] |
pentyl 2-methylpropanoate | Not identified | Maize | Fruity—sweet | [30] |
pentyl butanoate | Not identified | Maize | Fruity—tropical | [30] |
ethyl butanoate | Not identified | Maize | Fruity—tropical | [30] |
ethyl nonanoate | Not identified | Maize | Fruity—tropical | [30] |
pentyl 2-methylbutanoate | Not identified | Maize | Fruity—apple | [30] |
1,2-Ethanediol, diacetate 1,2-Ethanediol, | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
l-Proline, N-methoxycarbonyl-, heptadecyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
4-Methoxyphenol, acetate Tetrahydropyran | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Salicylic acid, methyl ester Bromoacetic | L. fermentum FUA 3165 | Sorghum | Unknown | [22] |
Methyl 2-oxo-1-pyrrolidine acetate | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
1-Ethyl-2-pyrrolidinecarboxylic acid, methyl ester | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Proline, 1-acetyl-, methyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Phthalic acid, 4-chloro-3-methylphenyl ethyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Hydrocinnamic acid, 4-hydroxy-3-methoxy-, methyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
3-Cyclopentylpropionic acid, 2-dimethylami- noethyl ester | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Phthalic acid, di(hept-2-yl) ester | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
Ethyl acetate | L. fermentum LB-11 * | Maize | Flowery, ester odour | [28] |
Ethyl propionate | L. fermentum LB-11 * | Maize | Fruity, gum, sweet | [28] |
Isoamyl acetate | L. fermentum LB-11 * | Maize | Fruity | [28] |
Ethyl hexanoate | L. fermentum LB-11 * | Maize | Fruity, plant, pear | [28] |
Hexyl acetate | L. fermentum LB-11 * | Maize | Green odour, onion aroma | [28] |
Ethyl lactate | L. fermentum LB-11 * | Maize | Fruity | [28] |
Ethyl heptanoate | L. fermentum LB-11 * | Maize | Flowery | [28] |
Heptyl acetate | L. fermentum LB-11 * | Maize | Onion, green | [28] |
Ethyl nonanoate | L. fermentum LB-11 * | Maize | Unknown Fruity—tropical | [28] [30] |
Ethylphenyl acetate | L. fermentum LB-11 * | Maize | Unknown | [28] |
Ethyl dodecanoate | L. fermentum LB-11 * | Maize | Unknown | [28] |
Myristic acid, methyl ester | L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
9,12-Hexadecadienoic acid, methyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
cis-13-Octadecenoic acid, methyl ester | Spontaneous, L. fermentum FUA 3165 and L. fermentum FUA 3321 | Sorghum | Unknown | [22] |
n-Hexadecanoic acid | Pearl Millet | Unknown | [21] | |
trans-9-Octadecenoic acid, pentyl ester | L. fermentum FUA 3165 | Sorghum | Unknown | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayitesi, E.; Onojakpor, O.; Moyo, S.M. Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals. Fermentation 2023, 9, 111. https://doi.org/10.3390/fermentation9020111
Kayitesi E, Onojakpor O, Moyo SM. Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals. Fermentation. 2023; 9(2):111. https://doi.org/10.3390/fermentation9020111
Chicago/Turabian StyleKayitesi, Eugénie, Ogheneyoma Onojakpor, and Siphosanele Mafa Moyo. 2023. "Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals" Fermentation 9, no. 2: 111. https://doi.org/10.3390/fermentation9020111
APA StyleKayitesi, E., Onojakpor, O., & Moyo, S. M. (2023). Highlighting the Impact of Lactic-Acid-Bacteria-Derived Flavours or Aromas on Sensory Perception of African Fermented Cereals. Fermentation, 9(2), 111. https://doi.org/10.3390/fermentation9020111