Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials, Chemicals, and Enzymes
2.2. Microorganisms and Inoculum Preparation
2.3. Dilute Acid Pretreatment of Corn Stover
2.4. Enzymatic Hydrolysis of Pretreated Corn Stover
2.5. Optimization of Process Parameters on Corn Stover Pretreatment
2.6. L-Lactic Acid Fermentation from Pretreated Corn Stover in 2.5-L Bioreactor
2.7. Purification of L-Lactic Acid
2.8. Analytical Methods
2.9. Statistical Analysis
3. Results and Discussion
3.1. Composition of Corn Stover
3.2. Effect of Acid Concentration on Carbohydrate Recovery and Inhibitor Generation
3.3. Effect of Enzyme Dosage on Sugar Released from Pretreated Corn Stover
3.4. Effect of Pretreatment Temperature and Reaction Time on Sugar Release and Inhibitor Generation
3.5. Co-Culture of L-Lactic Acid Fermentation Using Corn Stover Hydrolysate
3.6. Purification of L-Lactic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aghaei, S.; Karimi Alavijeh, M.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandri, M.; Schneider, R.; Mehlmann, K.; Venus, J. Recent advances in D-lactic acid production from renewable resources: Case studies on agro-industrial waste streams. Food Technol. Biotechnol. 2019, 57, 293–304. [Google Scholar] [CrossRef]
- Eş, I.; Khaneghah, A.M.; Barba, F.J.; Saraiva, J.A.; Sant’Ana, A.S.; Hashemi, S.M.B. Recent advancements in lactic acid production-a review. Food Res. Int. 2018, 107, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Yankov, D. Fermentative lactic acid production from lignocellulosic feedstocks: From source to purified product. Front. Chem. 2022, 10, 823005. [Google Scholar] [CrossRef] [PubMed]
- Cubas-Cano, E.; González-Fernández, C.; Ballesteros, M.; Tomás-Pejó, E. Biotechnological advances in lactic acid production by lactic acid bacteria: Lignocellulose as novel substrate. Biofuel Bioprod. Biorefin. 2018, 12, 290–303. [Google Scholar] [CrossRef]
- John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 2009, 27, 145–152. [Google Scholar] [CrossRef]
- Mora-Villalobos, J.A.; Montero-Zamora, J.; Barboza, N.; Rojas-Garbanzo, C.; Usaga, J.; Redondo-Solano, M.; Schroedter, L.; Olszewska-Widdrat, A.; Lopez-Gomez, J.P. Multi-product lactic acid bacteria fermentations: A review. Fermentation 2020, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Enamala, M.K.; Pasumarthy, D.S.; Gandrapu, P.K.; Chavali, M.; Mudumbai, H.; Kuppam, C. Production of a variety of industrially significant products by biological sources through fermentation. In Microbial Technology for the Welfare of Society; Springer: Berlin/Heidelberg, Germany, 2019; pp. 201–221. [Google Scholar]
- Hofvendahl, K.; Hahn–Hägerdal, B. Factors affecting the fermentative lactic acid production from renewable resources. Enzym. Microb. Technol. 2000, 26, 87–107. [Google Scholar] [CrossRef] [PubMed]
- Clemens, R.A.; Jones, J.M.; Kern, M.; Lee, S.Y.; Mayhew, E.J.; Slavin, J.L.; Zivanovic, S. Functionality of sugars in foods and health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 433–470. [Google Scholar]
- Li, Y.; Bhagwat, S.S.; Cortés-Peña, Y.R.; Ki, D.; Rao, C.V.; Jin, Y.-S.; Guest, J.S. Sustainable lactic acid production from lignocellulosic biomass. ACS Sustain. Chem. Eng. 2021, 9, 1341–1351. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Block, D.E.; Mills, D.A. Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 2018, 23, 2937. [Google Scholar] [PubMed] [Green Version]
- Sun, S.; Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, X.; Wu, L.; Li, Y.; Li, F.; Xiu, Z.; Tong, Y. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover. Biotechnol. Biofuels 2021, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.B.; Romaní, A.; Ruiz, H.A.; Teixeira, J.A.; Domingues, L. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresour. Technol. 2014, 161, 192–199. [Google Scholar] [PubMed] [Green Version]
- Larsson, S.; Reimann, A.; Nilvebrant, N.-O.; Jönsson, L.J. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 1999, 77, 91–103. [Google Scholar] [CrossRef]
- Lenihan, P.; Orozco, A.; O’Neill, E.; Ahmad, M.; Rooney, D.; Walker, G. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010, 156, 395–403. [Google Scholar] [CrossRef]
- Klongklaew, A.; Unban, K.; Kanpiengjai, A.; Wongputtisin, P.; Pamueangmun, P.; Shetty, K.; Khanongnuch, C. Improvement of enantiomeric L-lactic acid production from mixed hexose-pentose sugars by coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation 2021, 7, 95. [Google Scholar] [CrossRef]
- Unban, K.; Puangkhankham, N.; Kanpiengjai, A.; Govindarajan, R.K.; Kalaimurugan, D.; Khanongnuch, C. Improvement of polymer grade L-lactic acid production using Lactobacillus rhamnosus SCJ9 from low-grade cassava chips by simultaneous saccharification and fermentation. Processes 2020, 8, 1143. [Google Scholar]
- Morrison, J.M.; Elshahed, M.S.; Youssef, N.H. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass. Sci. Rep. 2016, 6, 29217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olszewska-Widdrat, A.; Alexandri, M.; López-Gómez, J.P.; Schneider, R.; Mandl, M.; Venus, J. Production and purification of L-lactic acid in lab and pilot scales using sweet sorghum juice. Fermentation 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, Z.; Fei, B.; Cai, Z.; Pan, X. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 2014, 151, 91–99. [Google Scholar] [CrossRef]
- Wang, Q.Q.; He, Z.; Zhu, Z.; Zhang, Y.-H.P.; Ni, Y.; Luo, X.L.; Zhu, J.Y. Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques. Biotechnol. Bioeng. 2012, 109, 381–389. [Google Scholar] [PubMed]
- Cannella, D.; Hsieh, C.-w.C.; Felby, C.; Jørgensen, H. Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol. Biofuels 2012, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, S.-k.; Su, X.; Yang, W.; Wang, Y.; Kuang, M.; Ma, L.; Fang, D.; Zhou, D. Enzymatic saccharification of high pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydr. Polym. 2016, 140, 279–286. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cao, S.; Meng, X.; Studer, M.; Wyman, C.E.; Ragauskas, A.J.; Pu, Y. The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar. Biotechnol. Biofuels 2017, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Yano, S.; Inoue, H.; Inoue, S.; Endo, T.; Sawayama, S. Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl. Biochem. Biotechnol. 2010, 160, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Pu, Y.; Yang, B.; Ragauskas, A.; Wyman, C.E. Comparison of microwaves to fluidized sand baths for heating tubular reactors for hydrothermal and dilute acid batch pretreatment of corn stover. Bioresour. Technol. 2011, 102, 5952–5961. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, G.; Arantes, V.; Saddler, J.N.; Ferraz, A.; Milagres, A.M.F. Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol. Biofuels 2017, 10, 176. [Google Scholar] [CrossRef]
- Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels 2011, 4, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, F.; Li, Y.; Wan, C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresour. Technol. 2011, 102, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, J.; Zhang, J.; Tu, Y.; Bao, J. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling. Bioresour. Technol. 2015, 198, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Aljundi, I.H.; Belovich, J.M.; Talu, O. Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chem. Eng. Sci. 2005, 60, 5004–5009. [Google Scholar] [CrossRef] [Green Version]
- Din, N.A.S.; Lim, S.J.; Maskat, M.Y.; Mutalib, S.A.; Zaini, N.A.M. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. Bioresour. Bioprocess. 2021, 8, 31. [Google Scholar] [CrossRef]
Components | Dry Solids (%, w/w) | |
---|---|---|
Organic matter | ||
- Hemicellulose | 33.80 | |
- Cellulose | 42.43 | |
- Lignin | 5.43 | |
- Other | 12.63 | |
Inorganic matter | ||
- Ash | 5.71 |
Pretreatment | Sugar Composition (g/L) | HMF (mg/L) | Furfural (mg/L) | |||
---|---|---|---|---|---|---|
Glucose | Xylose | Arabinose | Total Sugar | |||
Water | 4.13 ± 0.02 | 4.43 ± 0.1 | ND | 9.35 ± 0.1 | ND | ND |
Sulfuric acid (%, v/v) | ||||||
1.0 | 4.98 ± 0.01 | 5.89 ± 0.01 | 1.70 ± 0.01 | 13.74 ± 0.02 | 26.2 ± 0.1 | ND |
2.0 | 5.09 ± 0.06 | 6.49 ± 0.03 | 1.98 ± 0.07 | 15.42 ± 0.11 | 82.1 ± 0.2 | 3.2 ± 0.1 |
3.0 | 5.17 ± 0.02 | 6.84 ± 0.13 | 2.17 ± 0.02 | 15.29 ± 0.06 | 96.3 ± 0.1 | 4.0 ± 0.2 |
4.0 | 5.00 ± 0.07 | 7.47 ± 0.02 | 2.06 ± 0.06 | 15.88 ± 0.04 | 132.1 ± 0.3 | 6.3 ± 0.1 |
Formic acid (%, v/v) | ||||||
1.0 | 3.06 ± 0.03 | 4.03 ± 0.07 | ND | 7.54 ± 0.01 | 2.2 ± 0.1 | ND |
2.0 | 4.83 ± 0.05 | 5.76 ± 0.14 | 0.69 ± 0.01 | 12.00 ± 0.03 | 3.4 ± 0.1 | 1.1 ± 0.1 |
3.0 | 4.00 ± 0.08 | 4.78 ± 0.09 | 0.63 ± 0.02 | 10.42 ± 0.08 | 2.5 ± 0.2 | 1.2 ± 0.1 |
4.0 | 4.97 ± 0.04 | 5.86 ± 0.10 | 0.74 ± 0.01 | 12.64 ± 0.05 | 3.1 ± 0.1 | 1.0 ± 0.1 |
Pretreatment | Cellic cTec2 (FPU/g DM) | Sugar Composition (g/L) | HMF (mg/L) | Furfural (mg/L) | |||
---|---|---|---|---|---|---|---|
Glucose | Xylose | Arabinose | Total Sugar | ||||
Water | 10 | 9.60 ± 0.14 | 4.00 ± 0.14 | 0.00 ± 0.03 | 13.60 ± 0.08 | ND | ND |
1% Sulfuric acid | 10 | 19.59 ± 0.01 | 9.94 ± 0.01 | 1.57 ± 0.01 | 31.10 ± 0.01 | 0.25 ± 0.03 | ND |
1% Formic acid | 10 | 13.25 ± 0.04 | 5.15 ± 0.01 | 0.48 ± 0.01 | 18.87 ± 0.02 | 0.13 ± 0.13 | ND |
Water | 20 | 11.27 ± 0.14 | 3.08 ± 0.14 | 0.47 ± 0.01 | 14.81 ± 0.12 | ND | ND |
1% Sulfuric acid | 20 | 20.25 ± 0.01 | 10.36 ± 0.01 | 1.78 ± 0.11 | 32.38 ± 0.06 | 0.23 ± 0.01 | ND |
1% Formic acid | 20 | 14.97 ± 0.01 | 5.78 ± 0.01 | 0.56 ± 0.01 | 21.30 ± 0.02 | 0.15 ± 0.02 | ND |
Water | 30 | 10.99 ± 0.20 | 2.55 ± 0.06 | 0.43 ± 0.01 | 13.96 ± 0.10 | ND | ND |
1% Sulfuric acid | 30 | 22.18 ± 0.05 | 10.65 ± 0.01 | 1.76 ± 0.08 | 34.58 ± 0.04 | 0.22 ± 0.15 | ND |
1% Formic acid | 30 | 17.08 ± 0.02 | 7.66 ± 0.09 | 0.55 ± 0.01 | 25.28 ± 0.04 | 0.23 ± 0.02 | ND |
Water | 40 | 10.98 ± 0.15 | 2.59 ± 0.12 | 0.43 ± 0.03 | 14.00 ± 0.07 | ND | ND |
1% Sulfuric acid | 40 | 23.48 ± 0.01 | 10.33 ± 0.02 | 1.87 ± 0.06 | 35.67 ± 0.03 | 0.21 ± 0.03 | ND |
1% Formic acid | 40 | 18.74 ± 0.01 | 7.50 ± 0.01 | 0.62 ± 0.01 | 26.85 ± 0.02 | 0.18 ± 0.3 | ND |
Volume | Lactic Acid (g/L) | Cl− | SO42− | Na+ | K+ | Mg2+ | Ca2+ | P total | N Total | |
---|---|---|---|---|---|---|---|---|---|---|
(L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | ||
End of fermentation | 6.68 | 34.6 | 39.1 | 529 | 5323 | 298 | 113 | 132 | 146 | 1423 |
Ultra-filtration | 5.70 | 35.4 | 40.8 | 516 | 5319 | 297 | 109 | 129 | 112 | 937 |
Softening | 5.30 | 34.9 | 33.1 | 445 | 5119 | 206 | 0.14 | 3.91 | 98.7 | 740 |
Bipolar electrodialysis | 6.00 | 52.6 | 76.78 | 686 | 1441 | 41 | 0.13 | 1.45 | 136 | 268 |
Decolorization | 5.30 | 43.0 | 56.8 | 545 | 147 | 1.78 | 0.02 | 0.32 | 102 | 38.5 |
Cation exchange | 4.10 | 40.9 | 48.9 | 454 | 0.78 | 0.6 | 0.01 | 0.14 | 85.6 | 31.1 |
Anion exchange | 4.70 | 38.2 | 3.18 | 25 | 1.01 | 0.91 | 0.04 | 0.6 | 18.1 | 51.3 |
Concentrated lactic acid | 0.25 | 463.4 | 23.4 | 423 | 13.3 | 18.3 | 0.24 | 2.01 | 25.3 | 295.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klongklaew, A.; Unban, K.; Kalaimurugan, D.; Kanpiengjai, A.; Azaizeh, H.; Schroedter, L.; Schneider, R.; Venus, J.; Khanongnuch, C. Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation 2023, 9, 112. https://doi.org/10.3390/fermentation9020112
Klongklaew A, Unban K, Kalaimurugan D, Kanpiengjai A, Azaizeh H, Schroedter L, Schneider R, Venus J, Khanongnuch C. Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation. 2023; 9(2):112. https://doi.org/10.3390/fermentation9020112
Chicago/Turabian StyleKlongklaew, Augchararat, Kridsada Unban, Dharman Kalaimurugan, Apinun Kanpiengjai, Hassan Azaizeh, Linda Schroedter, Roland Schneider, Joachim Venus, and Chartchai Khanongnuch. 2023. "Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9" Fermentation 9, no. 2: 112. https://doi.org/10.3390/fermentation9020112
APA StyleKlongklaew, A., Unban, K., Kalaimurugan, D., Kanpiengjai, A., Azaizeh, H., Schroedter, L., Schneider, R., Venus, J., & Khanongnuch, C. (2023). Bioconversion of Dilute Acid Pretreated Corn Stover to L-Lactic Acid Using Co-Culture of Furfural Tolerant Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9. Fermentation, 9(2), 112. https://doi.org/10.3390/fermentation9020112