Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking Conditions
2.2. Chemical Analysis
2.3. Sensorial Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Progress and Enological Variables of the Wines
3.2. Effects on the Major Volatile Compounds and Polyols
3.3. Principal Component Analysis of GC-FID-Quantified Compounds
3.4. Pattern Recognition Using the Semiquantitative SBSE-GC-MS Minor Volatile Compound Dataset
3.5. Principal Component Analysis of the Data Matrix Obtained by GC-MS
3.6. Sensorial Analysis of the Wines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morata, A. Enological Repercussions of Non-Saccharomyces Species 2.0. Fermentation 2020, 20, 110. [Google Scholar] [CrossRef]
- Moreno-García, J. Proteomic and Metabolomic Study of Wine Yeasts in Free and Immobilized Formats, Subjected to Different Stress Conditions. Ph.D. Thesis, University of Córdoba, Córdoba, Spain, 2017. Available online: https://helvia.uco.es/xmlui/bitstream/handle/10396/15238/2017000001694.pdf (accessed on 5 May 2023).
- Nisiotou, A.; Mallouchos, A.; Tassou, C.; Banilas, G. Indigenous yeast interactions in dual-starter fermentations may improve the varietal expression of Moschofilero wine. Front. Microbiol. 2019, 10, 1712. [Google Scholar] [CrossRef]
- Schultz, H.R.; Jones, G.V. Climate induced historic and future changes in viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Binati, R.L.; Larini, I.; Salvetti, E.; Torriani, S. Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Res. Int. 2022, 156, 111333. [Google Scholar] [CrossRef]
- Álvarez-Barragán, J.; Mallard, J.; Ballester, J.; David, V.; Vichy, S.; Tourdot-Maréchal, R.; Alexandre, H.; Roullier-Gall, C. Influence of spontaneous, “pied de cuve” and commercial dry Yeast fermentation strategies on wine molecular composition and sensory properties. Food Res. Int. 2023, 174, 113648. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Puertas, B.; Cantos-Villar, E.; Jiménez-Hierro, M.J.; Carbú, M.; Garrido, C.; Ruiz-Moreno, M.J.; Moreno-Rojas, J.M. Impact of Sequential Inoculation with the Non-Saccharomyces T. delbrueckii and M. pulcherrima Combined with Saccharomyces cerevisiae Strains on Chemicals and Sensory Profile of Rosé Wines. J. Agric. Food Chem. 2021, 69, 1598–1609. [Google Scholar] [CrossRef]
- Vejarano, R.; Gil-Calderón, A. Commercially available non-Saccharomyces yeasts for winemaking: Current market, advantages over Saccharomyces, biocompatibility, and safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- Binati, R.L.; Lemos Junior, W.J.F.; Luzzini, G.; Slaghenaufi, D.; Ugliano, M.; Torriani, S. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Int. J. Food Microbiol. 2020, 318, 108470. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Sanarica, L.; Zara, I.; Pisarra, C.; Gambacorta, G.; Natrella, G.; Cardinale, M. Cultivar-Dependent Effects of Non-Saccharomyces Yeast Starter on the Oenological Properties of Wines Produced from Two Autochthonous Grape Cultivars in Southern Italy. Foods 2022, 11, 3373. [Google Scholar] [CrossRef]
- Beckner Whitener, M.E.; Carlin, S.; Jacobson, D.; Weighill, D.; Divol, B.; Conterno, L.; Du Toit, M.; Vrhovsek, U. Early fermentation volatile metabolite profile of non-Saccharomyces yeasts in red and white grape must: A targeted approach. LWT Food Sci. Technol. 2015, 64, 412–422. [Google Scholar] [CrossRef]
- Ruiz, J.; Belda, I.; Beisert, B.; Navascués, E.; Marquina, D.; Calderón, F.; Rauhut, D.; Santos, A.; Benito, S. Analytical impact of Metschnikowia pulcherrima in the volatile profile of Verdejo white wines. Appl. Microbiol. Biotechnol. 2018, 102, 8501–8509. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.L.; Hanigan, M.H. Enzymes Involved in Processing Glutathione Conjugates. Compr. Toxicol. 2010, 323–366. [Google Scholar] [CrossRef]
- Martínez, J.; González-Arenzana, L. Use of glutathione in the winemaking of white grape varieties. In White Wine Technology; Academic Press: Cambridge, MA, USA, 2022; pp. 29–38. [Google Scholar] [CrossRef]
- Contreras, A.; Curtin, C.; Varela, C. Yeast population dynamics reveal a potential collaboration’ between Metschnikowia pulcherrima and Saccharomyces uvarum for the production of reduced alcohol wines during Shiraz fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef] [PubMed]
- OIV. 2021. Available online: https://www.oiv.int/en (accessed on 1 May 2022).
- Martínez-García, R.; Mauricio, J.C.; García-Martínez, T.; Peinado, R.A.; Moreno, J. Towards a better understanding of the evolution of odour-active compounds and the aroma perception of sparkling wines during ageing. Food Chem. 2021, 357, 129784. [Google Scholar] [CrossRef]
- Moreno, J.; Peinado, R. Chapter 7: Redox Phenomena in Must and Wine. In Enological Chemistry; Academic Press: Cambridge, MA, USA, 2012; pp. 289–302. [Google Scholar]
- Vaquero, C.; Escott, C.; Heras, J.M.; Carrau, F.; Morata, A. Co-inoculations of Lachancea thermotolerans with different Hanseniaspora spp.: Acidification, aroma, biocompatibility, and effects of nutrients in wine. Food Res. Int. 2022, 161, 111891. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Navascués, E.; Calderón, F.; Santos, A.; Marquina, D.; Benito, S. An integrative view of the role of lachancea thermotolerans in wine technology. Foods 2021, 10, 2878. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Tesfaye, W.; Bañuelos, M.A.; González, C.; Suárez Lepe, J.A. Lachancea thermotolerans applications in Wine Technology. Fermentation 2018, 4, 53. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; del Fresno, J.M.; Bañuelos, M.A.; Suárez-Lepe, J.A. Applications of Metschnikowia pulcherrima in Wine biotechnology. Fermentation 2019, 5, 63. [Google Scholar] [CrossRef]
- Puškaš, V.S.; Miljić, U.D.; Djuran, J.J.; Vučurović, V.M. The aptitude of commercial yeast strains for lowering the ethanol content of wine. Food Sci. Nutr. 2020, 8, 1489–1498. [Google Scholar] [CrossRef]
- Escribano, R.; González-Arenzana, L.; Portu, J.; Garijo, P.; López-Alfaro, I.; López, R.; Santamaría, P.; Gutiérrez, A.R. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. J. Appl. Microbiol. 2018, 124, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Rigou, P.; Mekoue, J.; Sieczkowski, N.; Doco, T.; Vernhet, A. Impact of industrial yeast derivative products on the modification of wine aroma compounds and sensorial profile. A review. Food Chem. 2021, 358, 129760. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef]
- Vaquero, C.; Loira, I.; Heras, J.M.; Carrau, F.; González, C.; Morata, A. Biocompatibility in Ternary Fermentations with Lachancea thermotolerans, Other Non-Saccharomyces and Saccharomyces cerevisiae to Control pH and Improve the Sensory Profile of Wines From Warm Areas. Front. Microbiol. 2021, 12, 656262. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Mallouchos, A.; Filippousi, M.E.; Banilas, G.; Nisiotou, A. Molecular characterization and enological potential of a high lactic acid-producing Lachancea thermotolerans vineyard strain. Foods 2020, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Guo, C.; Yan, Y.; Sun, X.; Ma, T.; Zhang, J.; Li, C.; Gou, C.; Yue, T.; Yuan, Y. Contribution of non-Saccharomyces yeasts to aroma-active compound production, phenolic composition and sensory profile in Chinese Vidal icewine. Food Biosci. 2022, 46, 101152. [Google Scholar] [CrossRef]
- Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; et al. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem. 2021, 349, 129015. [Google Scholar] [CrossRef]
- Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.P.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M.; et al. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Viognier Wines. J. Fungi 2022, 8, 474. [Google Scholar] [CrossRef]
- Ogawa, M.; Vararu, F.; Moreno-Garcia, J.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Analyzing the minor volatilome of Torulaspora delbrueckii in an alcoholic fermentation. Eur. Food Res. Technol. 2022, 248, 613–624. [Google Scholar] [CrossRef]
- Sgouros, G.; Mallouchos, A.; Dourou, D.; Banilas, G.; Chalvantzi, I.; Kourkoutas, Y.; Nisiotou, A. Torulaspora delbrueckii May Help Manage Total and Volatile Acidity of Santorini-Assyrtiko Wine in View of Global Warming. Foods 2023, 12, 191. [Google Scholar] [CrossRef]
- González-Robles, I.W.; Cook, D.J. The impact of maturation on concentrations of key odour active compounds which determine the aroma of tequila. J. Inst. Brew. 2016, 122, 369–380. [Google Scholar] [CrossRef]
- Yang, E.J.; Kim, Y.S.; Chang, H.C. Purification and characterization of antifungal δ-dodecalactone from Lactobacillus plantarum AF1 isolated from kimchi. J. Food Prot. 2011, 74, 651–657. [Google Scholar] [CrossRef]
- Silva, R.; Coelho, E.; Aguiar, T.Q.; Domingues, L. Microbial biosynthesis of lactones: Gaps and opportunities towards sustainable production. Appl. Sci. 2021, 11, 8500. [Google Scholar] [CrossRef]
- Yang, Y.; Frank, S.; Wei, X.; Wang, X.; Li, Y.; Steinhaus, M.; Tao, Y. Molecular Rearrangement of Four Typical Grape Free Terpenes in the Wine Environment. J. Agric. Food Chem. 2023, 71, 721–728. [Google Scholar] [CrossRef]
- Li, J.; Hong, M.; Qi, B. Impact of Torulaspora delbrueckii during fermentation on aromatic profile of Vidal Blanc Icewine. Front. Microbiol. 2022, 13, 860128. [Google Scholar] [CrossRef]
WY | SC | MP | LT | |
---|---|---|---|---|
Ethanol (% v/v) | 13.95 ± 0.05 cd | 13.75 ± 0.27 b | 14.10 ± 0.00 d | 12.30 ± 0.33 a |
pH | 3.23 ± 0.01 b | 3.29 ± 0.00 c | 3.18 ± 0.01 a | 3.39 ± 0.03 d |
Volatile acidity (g L−1) | 0.27 ± 0.01 a | 0.46 ± 0.00 c | 0.27 ± 0.03 a | 0.39 ± 0.00 b |
Total acidity (g L−1) | 7.70 ± 0.05 c | 6.30 ± 0.08 a | 7.17 ± 0.04 b | 9.53 ± 0.21 d |
Reducing sugars (g L−1) | 0.17 ± 0.00 a | 0.14 ± 0.00 a | 0.22 ± 0.00 a | 0.59 ± 0.20 b |
IPT (Absorbance at 280 nm) | 5.7 ± 0.2 c | 5.7 ± 0.2 c | 5.5 ± 0.1 b | 4.32 ± 0.05 a |
Absorbance at 420 nm | 0.138 ± 0.001 b | 0.137 ± 0.003 b | 0.130 ± 0.014 b | 0.090 ± 0.004 a |
Absorbance at 520 nm | 0.034 ± 0.001 b | 0.033 ± 0.003 b | 0.039 ± 0.013 b | 0.024 ± 0.005 a |
Lactic acid (g L−1) | 0.23 ± 0.02 a | 0.18 ± 0.00 a | 0.25 ± 0.01 a | 4.70 ± 0.50 b |
Malic acid (g L−1) | 0.88 ± 0.07 c | 0.84 ± 0.02 bc | 0.81 ± 0.01 b | 0.44 ± 0.02 a |
Gluthatione (mg L−1) | 0.64 ± 0.04 b | 1.99 ± 0.19 c | 0.25 ± 0.01 a | 6.61 ± 0.12 d |
Compounds | CAS | WY | SC | MP | LT | HG |
---|---|---|---|---|---|---|
Methanol | 67-56-1 | 41 ± 3 a | 60 ± 9 b | 45 ± 2 a | 40 ± 2 a | 2 |
1-Propanol | 71-23-8 | 22 ± 1 b | 18.7 ± 0.7 a | 24 ± 1 b | 69 ± 2 c | 3 |
Isobutanol | 78-83-1 | 65 ± 4 b | 31.8 ± 0.9 a | 93 ± 1 d | 75 ± 3 c | 4 |
2-Methyl-1-butanol | 137-32-6 | 54 ± 2 b | 47 ± 1 a | 77 ± 1 d | 73 ± 2 c | 4 |
3-Methyl-1-butanol | 123-51-3 | 313 ± 7 c | 274 ± 7 a | 301 ± 3 b | 317 ± 10 c | 3 |
2-Phenylethanol | 60-12-8 | 57 ± 13 ab | 50 ± 3 a | 62 ± 4 b | 82 ± 7 c | 3 |
Acetaldehyde | 75-07-0 | 68 ± 9 ab | 95 ± 8 b | 64 ± 4 a | 200 ± 40 c | 3 |
1,1-Diethoxyethane | 105-57-7 | 0 a | 0 a | 0 a | 8 ± 3 b | 2 |
Acetoin | 513-86-0 | 36 ± 3 b | 30 ± 2 a | 32 ± 2 ab | 145 ± 7 c | 3 |
Ethyl acetate | 141-78-6 | 58.7 ± 0.6 c | 42 ± 2 b | 37 ± 2 a | 86 ± 6 d | 4 |
Ethyl lactate | 97-64-3 | 17 ± 2 a | 16.6 ± 0.6 a | 21 ± 1 a | 95 ± 9 b | 2 |
Diethyl succinate | 123-25-1 | 12 ± 3 c | 7.9 ± 0.6 b | 8 ± 1 b | 0 a | 3 |
2,3-Butanediol levo | 24347-58-8 | 448 ± 149 b | 378 ± 27 ab | 460 ± 49 b | 328 ± 28 a | 2 |
2,3-Butanediol meso | 5341-95-7 | 177 ± 70 b | 115 ± 7 a | 166 ± 14 b | 126 ± 9 a | 2 |
Glycerol (g L−1) | 56-81-5 | 12 ± 2 bc | 8.2 ± 0.5 a | 12.5 ± 0.9 b | 15 ± 2 c | 3 |
Families | Volatile Compound | CAS | ID | LRIcal | LRINIST | WY | SC | MP | LT | HG |
---|---|---|---|---|---|---|---|---|---|---|
I (4) | 2-Furanmethanol | 98-00-0 | MS, S | 944.1 | 856.0 | 0 a | 2.1 ± 0.6 b | 2.6 ± 0.9 b | 0 a | 2 |
1-Hexadecanol | 36653-82-4 | MS | 2231.2 | 1883.5 | 0 a | 1.6 ± 0.3 b | 0 a | 0 a | 2 | |
1-Tetradecanol | 112-72-1 | MS | 2065.4 | 1680.6 | 1.5 ± 0.6 b | 0 a | 0 a | 0 a | 2 | |
2-Ethyl-1-hexanol | 104-76-7 | MS | 1045.9 | 1031.0 | 6.9 ± 0.5 a | 6.7 ± 0.4 a | 8 ± 1 b | 7.2 ± 0.7 ab | 2 | |
II (2) | Octanoic acid | 124-07-2 | MS, S | 1348.2 | 1170.0 | 5 ± 2 b | 8 ± 2 c | 8 ± 3 c | 0 a | 3 |
Decanoic acid | 334-48-5 | MS, S | 1521.5 | 1380.0 | 0 a | 42 ± 13 c | 21 ± 8 b | 0 a | 3 | |
III (11) | Ethyl isobutyrate | 97-62-1 | MS, S | 840.7 | 774.0 | 0 a | 0 a | 0 a | 4.1 ± 0.7 b | 2 |
Ethyl butanoate | 105-54-4 | MS, S | 804.2 | 793.0 | 7 ± 1 a | 6.6 ± 0.8 a | 9 ± 1 b | 6 ± 1 a | 2 | |
Ethyl hexanoate | 123-66-0 | MS, S | 1001.0 | 1001.0 | 29 ± 4 b | 31 ± 3 b | 31 ± 1 b | 8 ± 3 a | 2 | |
Ethyl octanoate | 106-32-1 | MS, S | 1203.7 | 1196.0 | 18.7 ± 0.5 c | 20 ± 3 c | 14 ± 3 b | 10 ± 2 a | 3 | |
Ethyl 9-decenoate | 67233-91-4 | MS | 2304.8 | 1386.0 | 4.5 ± 0.7 c | 3.7 ± 0.4 b | 0 a | 0 a | 3 | |
Ethyl decanoate | 110-38-3 | MS, S | 1402.9 | 1393.0 | 8.0 ± 0.6 b | 9 ± 2 b | 8.1 ± 0.5 b | 6.6 ± 0.3 a | 2 | |
Ethyl dodecanoate | 106-33-2 | MS, S | 1602.7 | 1593.0 | 1.7 ± 0.1 a | 0.9 ± 0.9 b | 1.85 ± 0.08 a | 1.8 ± 0.4 a | 2 | |
Ethyl 3-hydroxytridecanoate | 107141-15-1 | MS | 1569.4 | 1539.0 | 0 a | 13 ± 2 b | 0 a | 0 a | 2 | |
Ethyl tetradecanoate | 124-06-1 | MS, S | 1803.6 | 1782.0 | 2.3 ± 0.4 ab | 3 ± 2b | 2.1 ± 0.5 ab | 1.7 ± 0.3 a | 2 | |
Ethyl hexadecanoate | 628-97-7 | MS, S | 2004.5 | 1997.0 | 5.8 ± 0.7 ab | 6 ± 4 ab | 8 ± 2 b | 3.9 ± 0.7 a | 2 | |
Ethyl 4-ethoxybenzoate | 23676-09-7 | MS | 1563.3 | 1521.0 | 0 a | 0 a | 0 a | 0.8 ± 0.1 b | 2 | |
IV (8) | 3-Methyl-1 butanol acetate | 123-92-2 | MS, S | 1129.2 | 876.0. | 87 ± 6 d | 74 ± 8 c | 46 ± 4 a | 55 ± 12 b | 4 |
2-Methyl-1 butanol acetate | 624-41-9 | MS, S | 1197.9 | 879.0 | 7 ± 2 a | 5.6 ± 0.4 a | 6.5 ± 0.9 a | 12 ± 3 b | 2 | |
Octyl acetate | 112-14-1 | MS, S | 1216.5 | 1209.0 | 2.8 ± 0.2 a | 2.9 ± 0.2 a | 2.8 ± 0.1 a | 2.8 ± 0.1 a | 1 | |
Butyl 2-methylbutanoate | 15706-73-7 | MS, S | 1197.9 | 1047.0 | 3.1 ± 0.2 a | 2.9 ± 0.4 a | 3.1 ± 0.4 a | 3.2 ± 0.2 a | 1 | |
Dihydro methyl jasmonate | 24851-98-7 | MS | 1820.9 | 1650.0 | 1 ± 1 b | 2.0 ± 0.4 c | 0 a | 0 a | 3 | |
Methyl hydrojasmonate | 39924-52-2 | MS | 1802.8 | 1614.0 | 0.8 ± 0.9 b | 0 a | 2.0 ± 0.1 c | 1.6 ± 0.2 c | 3 | |
1H-Indole-3-ethanol, acetate | 13137-14-9 | MS | 1925.0 | 1926.0 | 4.7 ± 0.8 b | 0 a | 0 a | 0 a | 2 | |
δ-Dodecalactone | 713-95-1 | MS, S | 1733.3 | 1679.0 | 0 a | 0 a | 0 a | 5 ± 2 b | 2 | |
V (5) | β-Pinene | 127-91-3 | MS | 971.2 | 980.0 | 3.0 ± 0.6 b | 0a | 0 a | 0 a | 2 |
D-Limonene | 5989-27-5 | MS, S | 1054.5 | 1032.0 | 118 ± 5 b | 87 ± 7 a | 85 ± 16 a | 88 ± 4 a | 2 | |
Nerolidol | 142-50-7 | MS, S | 1778.6 | 1535.0 | 0 a | 0 a | 2.2 ± 0.3 b | 0 a | 2 | |
Geranyl acetone | 689-67-8 | MS | 1554.3 | 1455.0 | 2.0 ± 0.3 b | 2.4 ± 0.3 c | 0 a | 0 a | 3 | |
Farnesol | 4602-84-0 | MS, S | 1750.0 | 1658.0 | 3.3 ± 0.7 b | 1.97 ± 0.09 a | 7 ± 1 c | 1.3 ± 1.4 a | 3 | |
VI (7) | Benzophenone | 119-61-9 | MS, S | 1704.8 | 1621.0 | 0 a | 0.9 ± 0.1 b | 0 a | 0 a | 2 |
2,4-Di-tert-butylphenol | 96-76-4 | MS | 1524.7 | 1513.0 * | 42 ± 6 ab | 34 ± 3 a | 48 ± 10 bc | 56 ± 15 c | 3 | |
3,5-di-tert-Butyl-4-hydroxybenzaldehyde | 1620-98-0 | MS | 2280.3 | 1774.0 * | 1.9 ± 0.2 a | 2.1 ± 0.1 a | 2.3 ± 0.5 a | 2.3 ± 0.6 a | 1 | |
Decanal | 112-31-2 | MS, S | 1211.2 | 1207.0 | 8.3 ± 0.7 a | 9.4 ± 0.5 a | 9.2 ± 0.8 a | 11 ± 1 b | 2 | |
Cyclododecane | 294-62-2 | MS | 1768.6 | NF | 0 a | 9 ± 1 b | 0 a | 9 ± 1 b | 2 | |
1-Decene | 872-05-9 | MS | 1873.1 | 993.0 * | 9 ± 1 b | 0 a | 9.8 ± 0.5 b | 0 a | 2 | |
2,5-Cyclohexadien-1-one, 2,6-bis(1,1-dimethylethyl)-4-ethylidene- | 6738-27-8 | MS | 1680.7 | NF | 0 a | 0 a | 1.8 ± 0.2 b | 0 a | 2 | |
Number of compounds | 28 | 27 | 26 | 25 |
Attributes | WY | SC | MP | LT | HGs |
---|---|---|---|---|---|
Sight | 7.55 ± 0.69 a | 7.09 ± 1.30 a | 7.91 ± 1.14 ab | 8.55 ± 0.82 b | 3 |
Smell | 14.82 ± 1.99 a | 13.36 ± 2.25 a | 14.64 ± 2.62 a | 13.91 ± 1.81 a | 1 |
Taste | 27.73 ± 3.77 a | 28.82 ± 3.68 a | 30.09 ± 5.26 a | 26.91 ± 3.24 a | 1 |
Overall quality | 21.36 ± 2.69 a | 21.73 ± 2.76 a | 23.73 ± 2.53 a | 21.36 ± 3.04 a | 1 |
Total points | 71.45 ± 7.46 a | 71.00 ± 8.07 a | 76.36 ± 10.18 a | 70.73 ± 6.92 a | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Castells, R.; Moreno, J.; García-Martínez, T.; Mauricio, J.C.; Moreno-García, J. Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast. Fermentation 2023, 9, 1023. https://doi.org/10.3390/fermentation9121023
Muñoz-Castells R, Moreno J, García-Martínez T, Mauricio JC, Moreno-García J. Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast. Fermentation. 2023; 9(12):1023. https://doi.org/10.3390/fermentation9121023
Chicago/Turabian StyleMuñoz-Castells, Raquel, Juan Moreno, Teresa García-Martínez, Juan Carlos Mauricio, and Jaime Moreno-García. 2023. "Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast" Fermentation 9, no. 12: 1023. https://doi.org/10.3390/fermentation9121023
APA StyleMuñoz-Castells, R., Moreno, J., García-Martínez, T., Mauricio, J. C., & Moreno-García, J. (2023). Chemometric Differentiation of White Wines from a Low-Aromatic Grape Obtained by Spontaneous Fermentation, Enriched with Non-Saccharomyces, or with a High-Glutathione-Producing Saccharomyces Yeast. Fermentation, 9(12), 1023. https://doi.org/10.3390/fermentation9121023