Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement of Materials
2.2. Purification of Guar Gum
2.3. Hydrolysis of Guar Gum
2.3.1. Acidic Hydrolysis
2.3.2. Alkaline Hydrolysis
2.3.3. Enzymatic Hydrolysis
2.4. Characterization of Guar Gum
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. X-ray Diffraction
2.4.3. FTIR Analysis
2.5. Prebiotic Potential of PHGG
2.6. Yoghurt Manufacturing
2.7. Physicochemical Analysis of Yoghurt
2.7.1. Viscosity
2.7.2. Syneresis
2.7.3. Water-Holding Capacity (WHC)
2.7.4. Texture Analysis
2.7.5. pH
2.7.6. Titratable Acidity
2.8. Statistical Analysis
3. Results and Discussion
3.1. SEM of Hydrolyses and Non-Hydrolysed Guar Gum
3.2. X-ray Diffraction of Hydrolyses and Non-Hydrolysed Guar Gum
3.3. FTIR Spectroscopy of Hydrolyses and Non-Hydrolyzed Guar Gum
3.4. Prebiotic Potential of PHGG
3.5. pH of Yoghurt Prepared with Hydrolyzed and Non-Hydrolyzed Guar Gum
3.6. Acidity of Yoghurt Prepared with Hydrolyzed and Non-Hydrolyzed Guar Gum
3.7. Syneresis of Yoghurt Prepared with Hydrolyzed and Non-hydrolyzed Guar Gum
3.8. Water-Holding Capacity (WHC) of the Yoghurt Prepared with Hydrolyzed and Non-Hydrolyzed Guar Gum
3.9. Textural Analysis of the Prepared Yoghurt with Hydrolyzed and Non-Hydrolyzed Guar Gum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McRorie, J.W., Jr. The physics of fiber in the gastrointestinal tract: Laxation, antidiarrheal, and irritable bowel syndrome. In Dietary Interventions in Gastrointestinal Diseases; Elsevier: San Diego, CA, USA, 2019; pp. 19–32. [Google Scholar]
- Niv, E.; Halak, A.; Tiommny, E.; Yanai, H.; Strul, H.; Naftali, T.; Vaisman, N. Randomized clinical study: Partially hydrolyzed guar gum (PHGG) versus placebo in the treatment of patients with irritable bowel syndrome. Nutr. Metab. 2016, 13, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.Y.; Ahmad, A.F.; Woo, S.S.; Selvarajoo, T.; Jamhuri, N.; Kahairudin, Z. Integrate partial hydrolyzed guar gum in postoperative ileostomy nutritional management. J. Med. Res. Innov. 2020, 4, e000206. [Google Scholar] [CrossRef]
- Mudgil, D. Partially hydrolyzed guar gum: Preparation and properties. In Polymers for Food Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 529–549. [Google Scholar]
- Singh, V.; Tiwari, A. Hydrolytic fragmentation of seed gums under microwave irradiation. Int. J. Biol. Macromol. 2009, 44, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-J.; Chu, D.-C.; Raj Juneja, L. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber. J. Clin. Biochem. Nutr. 2008, 42, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Zahoor, T.; Akhtar, S.; Ismail, A.; Hameed, A. Thermal stability and haemolytic effects of depolymerized guar gum derivatives. J. Food Sci. Technol. 2018, 55, 1047–1055. [Google Scholar] [CrossRef]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H. Prebiotic effects of partially hydrolyzed guar gum on the composition and function of the human microbiota—Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- El Fray, M.; Pilaszkiewicz, A.; Swieszkowski, W.; Kurzydlowski, K.J. Morphology assessment of chemically modified cryostructured poly (vinyl alcohol) hydrogel. Eur. Polym. J. 2007, 43, 2035–2040. [Google Scholar] [CrossRef]
- Birkholz, M. Thin Film Analysis by X-ray Scattering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Afzaal, M.; Saeed, F.; Saeed, M.; Azam, M.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal and thermal conditions. Int. J. Food Prop. 2020, 23, 1899–1912. [Google Scholar] [CrossRef]
- Azam, M.; Saeed, M.; Yasmin, I.; Afzaal, M.; Ahmed, S.; Khan, W.A.; Iqbal, M.W.; Hussain, H.T.; Asif, M. Characterization, Microencapsulation and invitro characterization of Bifidobacterium animalis for improved survival. J. Food Meas. Charact. 2021, 15, 2591–2600. [Google Scholar] [CrossRef]
- Fukui, H.; Oshima, T.; Tanaka, Y.; Oikawa, Y.; Makizaki, Y.; Ohno, H.; Tomita, T.; Watari, J.; Miwa, H. Effect of probiotic Bifidobacterium bifidum G9-1 on the relationship between gut microbiota profile and stress sensitivity in maternally separated rats. Sci. Rep. 2018, 8, 12384. [Google Scholar] [CrossRef]
- Lim, H.J.; Shin, H.S. Antimicrobial and immunomodulatory effects of bifidobacterium strains: A review. J. Microbiol. Biotechnol. 2020, 30, 1793–1800. [Google Scholar] [CrossRef]
- Azam, M.; Saeed, M.; Ahmad, T.; Yamin, I.; Khan, W.A.; Iqbal, M.W.; Mahmood, S.; Rizwan, M.; Riaz, T. Characterization, Characterization of biopolymeric encapsulation system for improved survival of Lactobacillus brevis. J. Food Meas. Charact. 2022, 16, 2292–2299. [Google Scholar] [CrossRef]
- Ofori-Kwakye, K.; Asantewaa, Y.; Kipo, S.L. Physicochemical and binding properties of cashew tree gum in metronidazole tablet formulations. Int. J. Pharm. Pharm. Sci. 2010, 2, 105–109. [Google Scholar]
- Chauhan, K.; Chauhan, G.S.; Ahn, J.-H. Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents. Bioresour. Technol. 2009, 100, 3599–3603. [Google Scholar] [CrossRef]
- Beltrán, O.; de Pinto, G.L.; Rincón, F.; Picton, L.; Cozic, C.; Le Cerf, D.; Muller, G. Acacia macracantha gum as a possible source of arabinogalactan–protein. Carbohydr. Polym. 2008, 72, 88–94. [Google Scholar] [CrossRef]
- Cheng, Y.; Prud’homme, R.K. Enzymatic degradation of guar and substituted guar galactomannans. Biomacromol. 2000, 1, 782–788. [Google Scholar] [CrossRef]
- Sen, G.; Mishra, S.; Jha, U.; Pal, S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)—Characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int. J. Biol. Macromol. 2010, 47, 164–170. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int. J. Biol. Macromol. 2012, 50, 1035–1039. [Google Scholar] [CrossRef]
- Gupta, S.; Shah, B.; Sanyal, B.; Variyar, P.S.; Sharma, A. Role of initial apparent viscosity and moisture content on post irradiation rheological properties of guar gum. Food Hydrocoll. 2009, 23, 1785–1791. [Google Scholar] [CrossRef]
- Đurđević-Denin, J.D.; Maćej, O.D.; Jovanović, S.T. Viscosity of set-style yogurt as influenced by heat treatment of milk and added demineralized whey powder. J. Agric. Sci. 2002, 47, 45–56. [Google Scholar]
- Hasan, M.; Huma, N.; Sameen, A.; Rafiq, S.; Gulzar, N. Use of meteroxylon sagu as a stabilizing agent in yoghurt. J. Food Chem. Nutr. 2014, 2, 19–26. [Google Scholar]
- Wacher-Rodarte, C.; Galvan, M.V.; Farres, A.; Gallardo, F.; Marshall, V.M.; Garcia-Garibay, M. Yogurt production from reconstituted skim milk powders using different polymer and non-polymer forming starter cultures. J. Dairy Res. 1993, 60, 247–254. [Google Scholar] [CrossRef]
- Singh, G.; Muthukumarappan, K. Influence of calcium fortification on sensory, physical and rheological characteristics of fruit yogurt. LWT-Food Sci. Technol. 2008, 41, 1145–1152. [Google Scholar] [CrossRef]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Tech. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Hara, H.; Suzuki, T.; Kasai, T.; Aoyama, Y.; Ohta, A. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats. J. Nutr. 1999, 129, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Scholz-Ahrens, K.E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Aςil, Y.; Glüer, C.-C.; Schrezenmeir, J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr. 2007, 137, 838S–846S. [Google Scholar] [CrossRef]
- Wang, L.-F.; Pan, S.-Y.; Hu, H.; Miao, W.-H.; Xu, X.-Y. Synthesis and properties of carboxymethyl kudzu root starch. Carbohydr. Polym. 2010, 80, 174–179. [Google Scholar] [CrossRef]
- Zheng, J.; Cui, Z.-p.; Li, Z.-b.; Gao, Y.-h.; Zhang, J.-x. In preparation and characteristics of guar gum-sodium alginate complexed bone adhesive material. In Proceeding of the International Seminar on Future Biomedical Information Engineering, Wuhan, China, 18 December 2008; pp. 353–356. [Google Scholar]
- Wang, Q.; Ellis, P.R.; Ross-Murphy, S.B. Dissolution kinetics of guar gum powders—III. Effect of particle size. Carbohydr. Polym. 2006, 64, 239–246. [Google Scholar] [CrossRef]
- Cunha, P.L.; Castro, R.R.; Rocha, F.A.; de Paula, R.C.; Feitosa, J.P. Low viscosity hydrogel of guar gum: Preparation and physicochemical characterization. Int. J. Biol. Macromol. 2005, 37, 99–104. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydr. Polym. 2012, 90, 224–228. [Google Scholar] [CrossRef]
- Prasad, S.S.; Rao, K.M.; Reddy, P.R.S.; Reddy, N.S.; Rao, K.K.; Subha, M. Synthesis and characterisation of guar gum-g-poly (acrylamidoglycolic acid) by redox initiator. Ind. J. Adv. Chem. Sci. 2012, 1, 28–32. [Google Scholar]
- López-Franco, Y.; Cervantes-Montaño, C.; Martínez-Robinson, K.; Lizardi-Mendoza, J.; Robles-Ozuna, L. Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.). Food Hydrocoll. 2013, 30, 656–660. [Google Scholar] [CrossRef]
- Sun, J.; Sun, X.; Sun, R.; Su, Y. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr. Polym. 2004, 56, 195–204. [Google Scholar] [CrossRef]
- Shobha, M.; Vishukumar, A.; Tharanathan, R.; Koka, R.; Gaonkar, A. Modification of guar galactomannan with the aid of pectinase. Carbohydr. Polym. 2005, 62, 267–273. [Google Scholar] [CrossRef]
- Gong, H.; Liu, M.; Chen, J.; Han, F.; Gao, C.; Zhang, B. Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydr. Polym. 2012, 88, 1015–1022. [Google Scholar] [CrossRef]
- Dodi, G.; Hritcu, D.; Popa, M. Carboxymethylation of guar gum: Synthesis and characterization. Cellul. Chem. Technol. 2011, 45, 171–176. [Google Scholar]
- Kačuráková, M.; Wilson, R. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr. Polym. 2001, 44, 291–303. [Google Scholar] [CrossRef]
- Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Wang, J.; Somasundaran, P. Study of galactomannose interaction with solids using AFM, IR and allied techniques. J. Colloid Interface Sci. 2007, 309, 373–383. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: Processing, properties and food applications—A Review. J. Food Sci. Technol. 2014, 51, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.; Cavalcanti, R.; Guerreiro, L.; Sant’Ana, A.; Nogueira, L.; Oliveira, C.; Deliza, R.; Cunha, R.; Faria, J.; Bolini, H. Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. J. Food Eng. 2013, 114, 323–330. [Google Scholar] [CrossRef]
- Mazloomi, S.; Shekarforoush, S.; Ebrahimnejad, H.; Sajedianfard, J. Effect of adding inulin on microbial and physicochemical properties of low fat probiotic yogurt. Iran. J. Vet. Res. 2011, 12, 93–98. [Google Scholar]
- Prasanna, P.; Grandison, A.; Charalampopoulos, D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res. Int. 2013, 51, 15–22. [Google Scholar] [CrossRef]
- Shaghaghi, M.; Pourahmad, R.; Adeli, H.M. Synbiotic yogurt production by using prebiotic compounds and probiotic lactobacilli. J. Basic Appl. Sci. 2013, 5, 839–846. [Google Scholar]
- Khalifa, M.; Elgasim, A.; Zaghloul, A.; Mahfouz, M. Applications of inulin and mucilage as stabilizers in yoghurt production. Am. J. Food Technol. 2011, 6, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Fadela, C.; Abderrahim, C.; Ahmed, B. Use of lactic strains isolated from Algerian ewe’s milk in the manufacture of a natural yogurt. Afr. J. Biotechnol. 2008, 7, 1181–1186. [Google Scholar]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Karaca, O.B. Effects of different prebiotic stabilisers and types of molasses on physicochemical, sensory, colour and mineral characteristics of probiotic set yoghurt. Int. J. Dairy Technol. 2013, 66, 490–497. [Google Scholar] [CrossRef]
- Hematyar, N.; Samarin, A.M.; Poorazarang, H.; Elhamirad, A.H. Effect of gums on yogurt characteristics. World Appl. Sci. J. 2012, 20, 661–665. [Google Scholar]
- Bahrami, M.; Ahmadi, D.; Alizadeh, M.; Hosseini, F. Physicochemical and sensorial properties of probiotic yogurt as affected by additions of different types of hydrocolloid. Food Sci. Anim. Resour. 2013, 33, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Akalın, A.; Unal, G.; Dinkci, N.; Hayaloglu, A. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. J. Dairy Sci. 2012, 95, 3617–3628. [Google Scholar] [CrossRef]
- Ekinci, F.; Gurel, M. Effect of using propionic acid bacteria as an adjunct culture in yogurt production. J. Dairy Sci. 2008, 91, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Yadav, H.; Jain, S.; Sinha, P. Evaluation of changes during storage of probiotic Dahi at 7 C. Int. J. Dairy Technol. 2007, 60, 205–210. [Google Scholar] [CrossRef]
- Seckin, A.K.; Ozkilinc, A.Y. Effect of some prebiotics usage on quality properties of concentrated yogurt. J. Anim. Vet. Adv. 2011, 10, 1117–1123. [Google Scholar] [CrossRef]
- Fadela, C.; Abderrahim, C.; Ahmed, B. Sensorial and physicochemical characteristics of yoghurt manufactured with ewe’s and skim milk. World J. Dairy Food Sci. 2009, 4, 136–140. [Google Scholar]
- Gustaw, W.; Kordowska-Wiater, M.; Kozioł, J. The influence of selected prebiotics on the growth of lactic acid bacteria for bio-yoghurt production. Acta Sci. Pol. Technol. Aliment. 2011, 10, 455–466. [Google Scholar]
Groups | Control | Guar Gum | Hydrolyzed Guar Gum | B. bifidum (%) | |||
---|---|---|---|---|---|---|---|
CGG (%) | PGG (%) | AHGG (%) | BHGG (%) | EHGG (%) | |||
To | No GG | - | - | - | - | - | - |
To′ | No GG | - | - | - | - | - | 0.001 |
T1 | - | 0.1 | - | - | - | - | 0.001 |
T2 | - | 0.5 | - | - | - | - | 0.001 |
T3 | - | 1 | - | - | - | - | 0.001 |
T4 | - | - | 0.1 | - | - | - | 0.001 |
T5 | - | - | 0.5 | - | - | - | 0.001 |
T6 | - | - | 1 | - | - | - | 0.001 |
T7 | - | - | - | 0.1 | - | - | 0.001 |
T8 | - | - | - | 0.5 | - | - | 0.001 |
T9 | - | - | - | 1 | - | - | 0.001 |
T10 | - | - | - | - | 0.1 | - | 0.001 |
T11 | - | - | - | - | 0.5 | - | 0.001 |
T12 | - | - | - | - | 1 | - | 0.001 |
T13 | - | - | - | - | - | 0.1 | 0.001 |
T14 | - | - | - | - | - | 0.5 | 0.001 |
T15 | - | - | - | - | - | 1 | 0.001 |
Compound | Functional Group | CGG | PGG | AHGG | BHGG | EHGG |
---|---|---|---|---|---|---|
C-Cl stretch | Alkyl halides | - | - | 852.8397 | 847.1211 | 827.1060 |
C-N stretch | Aliphatic amines | 1041.5537 | 1147.3479 | 1038.6944 | - | 1198.8154 |
N-O symmetric stretch | Nitro compounds | 1341.7805 | 1301.7503 | 1301.7503 | 1367.5142 | 1359.7391 |
N-O asymmetric stretch | Nitro compounds | 1504.7608 | 1507.6201 | 1505.7042 | 1501.9015 | - |
C-C stretch (in-ring) | Aromatics | 1559.0875 | - | - | 1521.9166 | - |
N-H bond | Amines | 1629.5945 | 1636.2887 | 1647.7259 | - | 1627.7108 |
C=O stretch | Ketones | 1782.1130 | 1833.5806 | - | - | 1719.2085 |
–C≡C– stretch | Alkynes | - | 2236.7423 | 2156.6818 | - | 2082.3399 |
C≡N stretch | Nitriles | 2313.9435 | 2325.3807 | 2313.9431 | - | 2339.6772 |
N-H | Ammonium ions | 2356.8330 | - | 2379.7074 | 2359.6923 | 2365.4109 |
O-H stretch | Carboxylic acids | 2619.8889 | 2611.3110 | 2625.6075 | 2694.3551 | - |
H-C=O: C-H stretch | Aldehydes | 2685.6528 | 2780.0098 | 2802.8842 | - | 2788.5877 |
C-H stretch | Alkanes | 2911.5377 | 2851.4924 | - | - | 2894.3819 |
Time (h) | Basel Media (log CFU/mL) | Basel Media Guar Gum (log CFU/mL) | Basel Media Acid Hydrolyzed Guar Gum (log CFU/mL) | Basel Media Basic Hydrolyzed Guar Gum (log CFU/mL) | Enzyme Hydrolyzed Guar Gum (log CFU/mL) |
---|---|---|---|---|---|
0 | 7.40 ± 0.57 | 7.44 ± 0.06 | 7.45 ± 0.06 | 7.48 ± 0.53 | 7.52 ± 0.37 |
6 | 7.61 ± 0.32 | 7.63 ± 0.22 | 8.23 ± 0.22 | 8.35 ± 0.42 | 8.43 ± 0.62 |
12 | 7.90 ± 0.27 | 7.92 ± 0.19 | 8.52 ± 0.39 | 8.71 ± 0.57 | 9.01 ± 0.79 |
24 | 8.10 ± 0.89 | 8.13 ± 0.29 | 8.98 ± 0.29 | 9.04 ± 0.49 | 9.43 ± 0.21 |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | 0 | 7 | 14 | 21 | 28 |
T0 | 4.53 ± 0.01 a | 4.42 ± 0.01 de | 4.32 ± 0.01 jk | 4.21 ± 0.02 tu | 4.14 ± 0.01 yz |
T0′ | 4.51 ± 0.02 ab | 4.38 ± 0.01 fg | 4.29 ± 0.02 mn | 4.22 ± 0.01 st | 4.16 ± 0.01 xy |
T1 | 4.48 ± 0.01 ab | 4.37 ± 0.01 gh | 4.26 ± 0.02 op | 4.19 ± 0.01 vw | 4.13 ± 0.01 za |
T2 | 4.46 ± 0.01 bc | 4.33 ± 0.02 ij | 4.28 ± 0.02 no | 4.21 ± 0.01 tu | 4.18 ± 0.02 wx |
T3 | 4.44 ± 0.02 cd | 4.36 ± 0.02 hi | 4.27 ± 0.01 op | 4.18 ± 0.02 wx | 4.12 ± 0.01 ab |
T4 | 4.48 ± 0.06 ab | 4.37 ± 0.01 gh | 4.32 ± 0.01 jk | 4.26 ± 0.02 pq | 4.17 ± 0.01 wx |
T5 | 4.45 ± 0.01 cd | 4.35 ± 0.01 hi | 4.31 ± 0.02 kl | 4.25 ± 0.01 qr | 4.19 ± 0.01 vw |
T6 | 4.44 ± 0.03 cd | 4.36 ± 0.02 gh | 4.33 ± 0.01 ij | 4.27 ± 0.01 op | 4.20 ± 0.01 uv |
T7 | 4.44 ± 0.03 cd | 4.35 ± 0.02 hi | 4.29 ± 0.01 mn | 4.20 ± 0.01 uv | 4.11 ± 0.02 bc |
T8 | 4.43 ± 0.01 cd | 4.33 ± 0.01 ij | 4.28 ± 0.02 no | 4.21 ± 0.01 tu | 4.12 ± 0.02 ab |
T9 | 4.40 ± 0.02 ef | 4.32 ± 0.01 jk | 4.28 ± 0.01 no | 4.22 ± 0.02 st | 4.14 ± 0.01 yz |
T10 | 4.51 ± 0.02 ab | 4.34 ± 0.01 ij | 4.30 ± 0.01 lmn | 4.24 ± 0.01 rs | 4.19 ± 0.01 vw |
T11 | 4.47 ± 0.01 bc | 4.35 ± 0.02 hi | 4.28 ± 0.01 no | 4.19 ± 0.01 vw | 4.11 ± 0.01 bc |
T12 | 4.46 ± 0.01 bc | 4.34 ± 0.01 ij | 4.27 ± 0.02 op | 4.18 ± 0.0 wx | 4.12 ± 0.01 ab |
T13 | 4.47 ± 0.02 bc | 4.32 ± 0.01 jk | 4.29 ± 0.01 mn | 4.20 ± 0.01 uv | 4.13 ± 0.02 za |
T14 | 4.44 ± 0.02 cd | 4.33 ± 0.02 ij | 4.25 ± 0.01 qr | 4.16 ± 0.01 xy | 4.10 ± 0.02 c |
T15 | 4.43 ± 0.02 cd | 4.32 ± 0.01 jk | 4.28 ± 0.01 no | 4.19 ± 0.02 vw | 4.11 ± 0.01 bc |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | 0 | 7 | 14 | 21 | 28 |
T0 | 1.040 ± 0.010 ij | 1.047 ± 0.006 hi | 1.077 ± 0.035 fg | 1.110 ± 0.050 ef | 1.150 ± 0.070 cd |
T0′ | 0.980 ± 0.040 qr | 1.043 ± 0.005 hi | 1.067 ± 0.015 fg | 1.090 ± 0.050 fg | 1.123 ± 0.050 de |
T1 | 0.940 ± 0.010 uv | 0.993 ± 0.005 mn | 1.067 ± 0.050 fg | 1.083 ± 0.010 fg | 1.250 ± 0.015 a |
T2 | 0.770 ± 0.030 z | 0.773 ± 0.030 vw | 0.933 ± 0.035 hi | 1.043 ± 0.025 hi | 1.047 ± 0.025 hi |
T3 | 0.940 ± 0.010 uv | 1.020 ± 0.010 jk | 1.037 ± 0.015 ij | 1.043 ± 0.005 hi | 1.147 ± 0.046 cd |
T4 | 0.993 ± 0.015 mn | 1.010 ± 0.010 kl | 1.060 ± 0.040 gh | 1.060 ± 0.040 gh | 1.093 ± 0.006 fg |
T5 | 0.950 ± 0.036 tu | 0.980 ± 0.030 qr | 1.020 ± 0.020 jk | 1.047 ± 0.006 hi | 1.090 ± 0.040 fg |
T6 | 0.897 ± 0.045 xy | 1.013 ± 0.025 kl | 1.013 ± 0.015 ij | 1.050 ± 0.020 hi | 1.243 ± 0.015 ab |
T7 | 0.990 ± 0.010 op | 1.000 ± 0.010 lm | 1.020 ± 0.020 jk | 1.087 ± 0.015 fg | 1.133 ± 0.025 de |
T8 | 0.910 ± 0.010 wx | 0.973 ± 0.035 rs | 1.033 ± 0.015 ij | 1.030 ± 0.030 jk | 1.193 ± 0.015 bc |
T9 | 0.990 ± 0.020 op | 1.040 ± 0.010 ij | 1.097 ± 0.005 fg | 1.123 ± 0.020 de | 1.207 ± 0.035 ab |
T10 | 0.897 ± 0.015 y | 0.987 ± 0.005 qr | 1.040 ± 0.010 ij | 1.093 ± 0.035 fg | 1.280 ± 0.036 a |
T11 | 0.933 ± 0.057 vw | 0.980 ± 0.005 pq | 1.010 ± 0.010 kl | 1.040 ± 0.010 ij | 1.060 ± 0.020 gh |
T12 | 0.960 ± 0.020 st | 0.993 ± 0.015 mn | 0.997 ± 0.005 mn | 1.010 ± 0.020 kl | 1.237 ± 0.045 ab |
T13 | 0.960 ± 0.010 st | 0.977 ± 0.015 qr | 0.990 ± 0.010 op | 0.997 ± 0.015 mn | 1.270 ± 0.010 a |
T14 | 0.987 ± 0.012 qr | 1.007 ± 0.005 kl | 1.030 ± 0.010 jk | 1.080 ± 0.010 fg | 1.153 ± 0.005 bc |
T15 | 0.930 ± 0.026 vw | 0.973 ± 0.020 rs | 1.007 ± 0.015 kl | 1.193 ± 0.045 ab | 1.233 ± 0.015 ab |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | 0 | 7 | 14 | 21 | 28 |
To | 42 ± 0.02 mn | 56 ± 0.03 fg | 70 ± 0.02 de | 73 ± 0.02 ab | 80 ± 0.03 a |
Toʹ | 46 ± 0.02 op | 48 ± 0.02 gh | 60 ± 0.02 bc | 65 ± 0.21 ab | 70 ± 0.05 ab |
T1 | 40 ± 0.03 v | 60 ± 0.02 lm | 66 ± 0.14 ij | 70 ± 0.02 fg | 72 ± 0.02 ef |
T2 | 60 ± 0.01 lm | 70 ± 0.02 fg | 75 ± 0.24 jk | 82 ± 0.02 bc | 85 ± 0.03 ab |
T3 | 58 ± 0.02 no | 64 ± 0.02 fg | 65 ± 0.07 ef | 78 ± 0.15 bc | 80 ± 0.01 ab |
T4 | 50 ± 0.05 qr | 58 ± 0.73 mn | 60 ± 0.15 lm | 65 ± 0.15 jk | 82 ± 0.02 ab |
T5 | 55 ± 0.05 pq | 68 ± 0.02 fg | 78 ± 0.09 cd | 80 ± 0.5 ab | 83 ± 0.01 a |
T6 | 56 ± 0.04 uv | 70 ± 0.04 no | 73 ± 0.03 ef | 78 ± 0.02 ef | 80 ± 0.02 ab |
T7 | 44 ± 0.02 tu | 52 ± 0.02 no | 60 ± 0.02 hi | 65 ± 0.08 fg | 80 ± 0.03 ab |
T8 | 43 ± 0.01 v | 50 ± 0.01 pq | 60 ± 0.02 kl | 70 ± 0.15 de | 80 ± 0.03 ab |
T9 | 48 ± 0.01 uv | 58 ± 0.02 lm | 65 ± 0.01 gh | 70 ± 0.24 fg | 74 ± 0.07 de |
T10 | 40 ± 0.02 v | 54 ± 0.25 op | 66 ± 0.02 ij | 70 ± 0.03 fg | 80 ± 0.01 ab |
T11 | 52 ± 0.02 qr | 70 ± 0.12 lm | 77 ± 0.02 ij | 80 ± 0.10 fg | 84 ± 0.02 ab |
T12 | 50 ± 0.02 st | 60 ± 0.03 rs | 66 ± 0.01 lm | 70 ± 0.5 jk | 80 ± 0.12 fg |
T13 | 44 ± 0.02 rs | 56 ± 0.15 mn | 67 ± 0.01 jk | 70 ± 0.11 fg | 80 ± 0.12 de |
T14 | 40 ± 0.01 uv | 52 ± 0.02 qr | 62 ± 0.02 lm | 65 ± 0.09 fg | 80 ± 0.02 ab |
T15 | 42 ± 0.02 v | 60 ± 0.10 pq | 68 ± 0.01 lm | 70 ± 0.02 jk | 74 ± 0.01 ab |
Days of Storage | |||||
---|---|---|---|---|---|
Treatments | 0 | 7 | 14 | 21 | 28 |
T0 | 68.67 ± 0.76 mn | 68.11 ± 0.11 no | 64.33 ± 0.61 st | 51 ± 0.5 yz | 43.62 ± 0.38 gh |
T0′ | 71.03 ± 1.27 jk | 66.75 ± 0.25 pq | 60.6 ± 0.6 v | 50.9 ± 0.45 yz | 40.57 ± 0.33 i |
T1 | 73.98 ± 0.49 d | 72.5 ± 0.5 hi | 58.05 ± 0.05 w | 46.33 ± 0.15 cd | 42.4 ± 0.4 h |
T2 | 32.5 ± 0.5 m | 38.14 ± 0.144 k | 68.52 ± 0.66 mn | 28.52 ± 0.49 op | 28.4 ± 0.4 op |
T3 | 74.5 ± 0.35 cde | 68.05 ± 0.05 no | 46.5 ± 0.5 bcd | 38.27 ± 0.27 k | 34.67 ± 0.21 l |
T4 | 73.91 ± 0.41 c | 72.73 ± 0.11 ef | 71.98 ± 0.40 w | 43.28 ± 0.06 ab | 36.04 ± 0.14 de |
T5 | 42.3 ± 0.15 h | 44.69 ± 0.1 fg | 44.65 ± 0.15 fg | 26.8 ± 0.4 q | 39.9 ± 0.45 ij |
T6 | 72.8 ± 0.36 fg | 65.02 ± 0.02 rs | 63.36 ± 0.12 tu | 40.3 ± 0.1 ij | 30.48 ± 0.15 n |
T7 | 80 ± 2 b | 70.18 ± 0.18 kl | 50.87 ± 0.175 z | 46.69 ± 1.04 bc | 30.14 ± 0.03 n |
T8 | 82.33 ± 0.38 a | 69.03 ± 0.03 lm | 62.68 ± 0.18 u | 57.84 ± 0.34 w | 47.8 ± 0.4 ab |
T9 | 83.07 ± 0.07 a | 69.65 ± 0.05 kl | 66 ± 0.25 qr | 63.37 ± 0.07 tu | 48.49 ± 0.49 a |
T10 | 73.5 ± 0.5 b | 68.68 ± 0.18 cd | 62.21 ± 0.1 cde | 52.34 ± 0.34 x | 38.96 ± 0.46 fg |
T11 | 39.48 ± 0.1 no | 40.1 ± 0.1 ij | 54.94 ± 0.05 rs | 35.29 ± 0.06 l | 30.87 ± 0.30 n |
T12 | 68.41 ± 0.02 mno | 64.34 ± 0.04 st | 58.56 ± 0.06 w | 45.29 ± 0.21 def | 27.17 ± 0.17 pq |
T13 | 75.5 ± 0.16 de | 73.3 ± 0.3 ghi | 58.77 ± 0.09 ij | 47.34 ± 0.34 gh | 45.5 ± 0.25 l |
T14 | 80.8 ± 0.4 ef | 75.04 ± 0.06 mn | 74.21 ± 0.21 u | 53.4 ± 0.4 xy | 44.6 ± 0.3 jk |
T15 | 74.46 ± 0.21 cd | 67.5 ± 0.15 op | 62.84 ± 0.32 u | 45.21 ± 0.02 ef | 38.96 ± 0.31 jk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Akhtar, S.; Khalid, N.; Azam, M.; Iqbal, M.W.; Ismail, T.; Khan, I.M.; Walayat, N.; Mehany, T.; Esatbeyoglu, T.; et al. Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt. Fermentation 2023, 9, 45. https://doi.org/10.3390/fermentation9010045
Hussain M, Akhtar S, Khalid N, Azam M, Iqbal MW, Ismail T, Khan IM, Walayat N, Mehany T, Esatbeyoglu T, et al. Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt. Fermentation. 2023; 9(1):45. https://doi.org/10.3390/fermentation9010045
Chicago/Turabian StyleHussain, Majid, Saeed Akhtar, Nazia Khalid, Muhammad Azam, Muhammad Waheed Iqbal, Tariq Ismail, Imran Mahmood Khan, Noman Walayat, Taha Mehany, Tuba Esatbeyoglu, and et al. 2023. "Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt" Fermentation 9, no. 1: 45. https://doi.org/10.3390/fermentation9010045
APA StyleHussain, M., Akhtar, S., Khalid, N., Azam, M., Iqbal, M. W., Ismail, T., Khan, I. M., Walayat, N., Mehany, T., Esatbeyoglu, T., & Korma, S. A. (2023). Hydrolysis, Microstructural Profiling and Utilization of Cyamopsis tetragonoloba in Yoghurt. Fermentation, 9(1), 45. https://doi.org/10.3390/fermentation9010045