Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Preparation of Pumpkin Seed Milk (PSM)
2.3. Fermented Camel Milk Manufacture
2.4. Chemical Composition, Physicochemical Analysis, and Sensory Evaluation of the Fermented Camel Milk Treatments
2.5. Experimental Design of the Biological Study
2.6. Biochemical Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Raw Camel Milk and PSM
3.2. Chemical, Physicochemical, and Phytochemical Properties of Fermented Camel Milk Containing PSM
3.3. Sensory Properties of Fermented Camel Milk Containing PSM
3.4. Effect of Fermented Camel Milk Containing PSM on Final Weight and Body Weight Gain in Rats with Oxidative Stress
3.5. Effect of Fermented Camel Milk Containing PSM on the Serum Lipid Profile of Oxidative Stress Rats
3.6. Effect of Fermented Camel Milk Containing PSM on Liver Function Parameters in Oxidative Stress Rats
3.7. Effect of Fermented Camel Milk Containing PSM on Kidney Function and Oxidative Stress Markers in Oxidative Stress Rats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, S.; Meead, G.; El-Rashody, F.M. Physicochemical and sensory properties of ice cream made from camel milk and fortified with dates products. Int. J. Humanit. Arts Med. Sci. 2017, 5, 29–40. [Google Scholar]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Kaskous, S. Importance of camel milk for human health. Emir. J. Food Agric. 2016, 28, 158–163. [Google Scholar] [CrossRef]
- Meena, S.; Rajput, Y.; Sharma, R. Comparative fat digestibility of goat, camel, cow and buffalo milk. Int. Dairy J. 2014, 35, 153–156. [Google Scholar] [CrossRef]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef]
- Solanki, D.; Hati, S. Fermented camel milk: A Review on its bio-functional properties. Emir. J. Food Agric. 2018, 30, 268–274. [Google Scholar]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, Physicochemical and Sensory Properties of Probiotic Yoghurt Made from Whole Milk Powder Reconstituted in Aqueous Fennel Extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Shori, A.B. Camel milk and its fermented products as a source of potential probiotic strains and novel food cultures: A mini review. PharmaNutrition 2017, 5, 84–88. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; El-Zahar, K.M.; Elmaadawy, A.A.; Hijazy, H.H.A.; Sitohy, M.Z.; Albrakati, A.; Elmahallawy, E.K. Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. Fermentation 2022, 8, 41. [Google Scholar] [CrossRef]
- Swelam, S.; Zommara, M.A.; Abd El-Aziz, A.E.-A.M.; Elgammal, N.A.; Baty, R.S.; Elmahallawy, E.K. Insights into Chufa Milk Frozen Yoghurt as Cheap Functional Frozen Yoghurt with High Nutritional Value. Fermentation 2021, 7, 255. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.; Hernández-Mendoza, A.; Torres-Llanez, M.; González-Córdova, A.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Albrakati, A.; Elmahallawy, E.K. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022, 8, 112. [Google Scholar] [CrossRef]
- Elkot, W.F.; Ateteallah, A.H.; Al-Moalem, M.H.; Shahein, M.R.; Alblihed, M.A.; Abdo, W.; Elmahallawy, E.K. Functional, Physicochemical, Rheological, Microbiological, and Organoleptic Properties of Synbiotic Ice Cream Produced from Camel Milk Using Black Rice Powder and Lactobacillus acidophilus LA-5. Fermentation 2022, 8, 187. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Elkot, W.F.; Hijazy, H.H.A.; Kassab, R.B.; Alblihed, M.A.; Elmahallawy, E.K. The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation 2022, 8, 192. [Google Scholar] [CrossRef]
- Shahein, M.R.A.; Atwaa, E.S.H.; Babalghith, A.O.; Alrashdi, B.M.; Radwan, H.A.; Umair, M.; Abdalmegeed, D.; Mahfouz, H.; Dahran, N.; Cacciotti, I.; et al. Impact of incorporation of Hawthorn (C. oxyanatha) leaves aqueous extract on yogurt properties and its therapeutic effects against oxidative stress in Rats induced by carbon tetrachloride. Fermentation 2022, 8, 200. [Google Scholar]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Ďuračková, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Free radicals: Health implications and their mitigation by herbals. Br. J. Med. Med. Res. 2015, 7, 438–457. [Google Scholar] [CrossRef]
- Kim, Y.S.; Young, M.R.; Bobe, G.; Colburn, N.H.; Milner, J.A. Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prev. Res. 2009, 2, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. [Google Scholar]
- Samuel, S.A.; Francis, A.O.; Anthony, O.O. Role of the kidneys in the regulation of intra-and extra-renal blood pressure. Ann. Clin. Hypertens. 2018, 2, 48–58. [Google Scholar]
- Tomsa, A.M.; Alexa, A.L.; Junie, M.L.; Rachisan, A.L.; Ciumarnean, L. Oxidative stress as a potential target in acute kidney injury. PeerJ 2019, 7, e8046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Butnariu, M.; Grozea, I. Antioxidant (Antiradical) Compounds. J. Bioequivalence Bioavailab. 2012, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Charalampopoulos, D.; Wang, R.; Pandiella, S.; Webb, C. Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 2002, 79, 131–141. [Google Scholar] [CrossRef]
- Atwaa, E.; Hassan, M.; Ramadan, M.F. Production of probiotic stirred yoghurt from camel milk and oat milk. J. Food Dairy Sci. 2020, 11, 259–264. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, e00575. [Google Scholar] [CrossRef]
- Staff, T.P. PDR for Herbal Medicines; Physician’s Desk Reference (PDR): New York, NY, USA, 2004. [Google Scholar]
- Stovel, D. Pumpkin, a Super Food for All 12 Months of the Year; Storey Publishing: North Adams, MA, USA, 2012. [Google Scholar]
- Csikós, E.; Horváth, A.; Ács, K.; Papp, N.; Balázs, V.L.; Dolenc, M.S.; Kenda, M.; Kočevar Glavač, N.; Nagy, M.; Protti, M. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021, 26, 7141. [Google Scholar] [CrossRef]
- Caili, F.; Huan, S.; Quanhong, L. A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods Hum. Nutr. 2006, 61, 70–77. [Google Scholar] [CrossRef]
- Matus, Z.; Molnár, P.; Szabó, L.G. Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumpkin (Cucurbita pepo convar. pepo var. styriaca). Acta Pharm. Hung. 1993, 63, 247–256. [Google Scholar] [PubMed]
- Aktaş, N.; Uzlaşır, T.; Tuncil, Y.E. Pre-roasting treatments significantly impact thermal and kinetic characteristics of pumpkin seed oil. Thermochim. Acta 2018, 669, 109–115. [Google Scholar] [CrossRef]
- Glew, R.; Glew, R.; Chuang, L.-T.; Huang, Y.-S.; Millson, M.; Constans, D.; Vanderjagt, D. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp.) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods Hum. Nutr. 2006, 61, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Jain, S.; Tomar, R.; Prasad, G.; Yadav, H. Medicinal and biological potential of pumpkin: An updated review. Nutr. Res. Rev. 2010, 23, 184–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broznić, D.; Čanadi Jurešić, G.; Milin, Č. Involvement of α-, γ-and δ-tocopherol isomers from pumpkin (Cucurbita pepo L.) seed oil or oil mixtures in the biphasic DPPH disappearance kinetics. Food Technol. Biotechnol. 2016, 54, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Naziri, E.; Mitić, M.N.; Tsimidou, M.Z. Contribution of tocopherols and squalene to the oxidative stability of cold-pressed pumkin seed oil (Cucurbita pepo L.). Eur. J. Lipid Sci. Technol. 2016, 118, 898–905. [Google Scholar] [CrossRef]
- Abou-Zeid, S.M.; AbuBakr, H.O.; Mohamed, M.A.; El-Bahrawy, A. Ameliorative effect of pumpkin seed oil against emamectin induced toxicity in mice. Biomed. Pharmacother. 2018, 98, 242–251. [Google Scholar] [CrossRef]
- Aghaei, S.; Nikzad, H.; Taghizadeh, M.; Tameh, A.A.; Taherian, A.; Moravveji, A. Protective effect of Pumpkin seed extract on sperm characteristics, biochemical parameters and epididymal histology in adult male rats treated with Cyclophosphamide. Andrologia 2014, 46, 927–935. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, S.Y.; Jeong, D.W.; Choi, E.J.; Kim, Y.J.; Lee, J.G.; Yi, Y.H.; Cha, H.S. Effect of pumpkin seed oil on hair growth in men with androgenetic alopecia: A randomized, double-blind, placebo-controlled trial. Evid. Based Complementary Altern. Med. 2014, 2014, 549721. [Google Scholar] [CrossRef] [Green Version]
- Ezea, B.O.; Ogbole, O.O.; Ajaiyeoba, E.O. In vitro anthelmintic properties of root extracts of three Musa species. J. Pharm. Bioresour. 2019, 16, 145–151. [Google Scholar] [CrossRef]
- Jayaprakasam, B.; Seeram, N.P.; Nair, M.G. Anticancer and antiinflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett. 2003, 189, 11–16. [Google Scholar] [CrossRef]
- Balbino, S.; Dorić, M.; Vidaković, S.; Kraljić, K.; Škevin, D.; Drakula, S.; Voučko, B.; Čukelj, N.; Obranović, M.; Ćurić, D. Application of cryogenic grinding pretreatment to enhance extractability of bioactive molecules from pumpkin seed cake. J. Food Process Eng. 2019, 42, e13300. [Google Scholar] [CrossRef]
- Fruhwirth, G.O.; Wenzl, T.; El-Toukhy, R.; Wagner, F.S.; Hermetter, A. Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. Eur. J. Lipid Sci. Technol. 2003, 105, 266–274. [Google Scholar] [CrossRef]
- Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A. Attenuation of benign prostatic hyperplasia by optimized tadalafil loaded pumpkin seed oil-based self nanoemulsion: In vitro and in vivo evaluation. Pharmaceutics 2019, 11, 640. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kumar, V. Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Front. 2022, 3, 182–193. [Google Scholar] [CrossRef]
- Reeves, P.G. Purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Hassan, A.A.; Aly, M.; El-Hadidie, S.T. Production of cereal-based probiotic beverages. World Appl. Sci. J. 2012, 19, 1367–1380. [Google Scholar]
- Tamime, A.; Robinson, R. Yoghurt. Science and Technology; Woodhead Publishing Limited England: Cambridge, UK, 1999. [Google Scholar]
- Chemists, A.; Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Aryana, K.J. Folic acid fortified fat-free plain set yoghurt. Int. J. Dairy Technol. 2003, 56, 219–222. [Google Scholar] [CrossRef]
- Maksimović, Z.; Malenčić, Đ.; Kovačević, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.-I.; Shetty, K. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innov. Food Sci. Emerg. Technol. 2007, 8, 46–54. [Google Scholar] [CrossRef]
- Kujawska, M.; Ignatowicz, E.; Murias, M.; Ewertowska, M.; Mikołajczyk, K.; Jodynis-Liebert, J. Protective effect of red beetroot against carbon tetrachloride-and N-nitrosodiethylamine-induced oxidative stress in rats. J. Agric. Food Chem. 2009, 57, 2570–2575. [Google Scholar] [CrossRef] [PubMed]
- Caraway, W.T. Determination of uric acid in serum by a carbonate method. Am. J. Clin. Pathol. 1955, 25, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Bonsens, K.; Taussky, D. Determination of serum creatinine. J. Chem. Inv. 1984, 27, 648–660. [Google Scholar]
- Marsh, W.H.; Fingerhut, B.; Miller, H. Automated and manual direct methods for the determination of blood urea. Clin. Chem. 1965, 11, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Kei, S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 1978, 90, 37–43. [Google Scholar] [CrossRef]
- Bergmeyer, H.; Harder, M. A colorimetric method of the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Clin. Biochem. 1986, 24, 1–488. [Google Scholar]
- Dougnon, T.V.; Bankolé, H.S.; Klotoé, J.R.; Sènou, M.; Fah, L.; Koudokpon, H.; Akpovi, C.; Dougnon, T.J.; Addo, P.; Loko, F. Treatment of hypercholesterolemia: Screening of Solanum macrocarpon Linn (Solanaceae) as a medicinal plant in Benin. Avicenna J. Phytomed. 2014, 4, 160–169. [Google Scholar] [CrossRef]
- Devi, R.; Sharma, D. Hypolipidemic effect of different extracts of Clerodendron colebrookianum Walp in normal and high-fat diet fed rats. J. Ethnopharmacol. 2004, 90, 63–68. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- McClave, J.; Benson, P. Statistical for Business and Economics; Maxwell Macmillan International editions; Dellen Publishing Co.: New York, NY, USA, 1991; Volume 1991, pp. 272–295. [Google Scholar]
- Fouzia, R.; Noureddine, S.; Mebrouk, K. Evaluation of the factors affecting the variation of the physicochemical composition of Algerian camel’s raw milk during different seasons. Adv. Environ. Biol. 2013, 7, 4879–4884. [Google Scholar]
- Bouhaddaoui, S.; Chabir, R.; Errachidi, F.; El Ghadraoui, L.; El Khalfi, B.; Benjelloun, M.; Soukri, A. Study of the biochemical biodiversity of camel milk. Sci. World J. 2019, 2019, 2517293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiretti, P.G.; Meineri, G.; Gai, F.; Longato, E.; Amarowicz, R. Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Nat. Prod. Res. 2017, 31, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Galeboe, O.; Seifu, E.; Sekwati-Monang, B. Production of camel milk yoghurt: Physicochemical and microbiological quality and consumer acceptability. Int. J. Food Stud. 2018, 7, 51–63. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Gâtlan, A.-M.; Sănduleac, E.T.; Rusu, L. Effects of some vegetable proteins addition on yogurt quality. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 181–192. [Google Scholar]
- Johari, S.; Hosseini Ghaboos, S.H.; Shahi, T. Investigation on the rheological properties of fortified yogurt containing pumpkin powder. Food Sci. Technol. 2021, 18, 349–358. [Google Scholar] [CrossRef]
- Peng, M.; Lu, D.; Liu, J.; Jiang, B.; Chen, J. Effect of Roasting on the Antioxidant Activity, Phenolic Composition, and Nutritional Quality of Pumpkin (Cucurbita pepo L.) Seeds. Front. Nutr. 2021, 8, 647354. [Google Scholar] [CrossRef]
- Soliman, T.N.; Shehata, S.H. Characteristics of fermented camel’s milk fortified with kiwi or avocado fruits. Acta Sci. Pol. Technol. Aliment. 2019, 18, 53–63. [Google Scholar]
- Barakat, H.; Hassan, M.F. Chemical, nutritional, rheological, and organoleptical characterizations of stirred pumpkin-yoghurt. Food Nutr. Sci. 2017, 8, 746–759. [Google Scholar] [CrossRef] [Green Version]
- Barakat, L.A.; Mahmoud, R.H. The antiatherogenic, renal protective and immunomodulatory effects of purslane, pumpkin and flax seeds on hypercholesterolemic rats. North Am. J. Med. Sci. 2011, 3, 411–417. [Google Scholar] [CrossRef]
- Ghahremanloo, A.; Hajipour, R.; Hemmati, M.; Moossavi, M.; Mohaqiq, Z. The beneficial effects of pumpkin extract on atherogenic lipid, insulin resistance and oxidative stress status in high-fat diet-induced obese rats. J. Complementary Integr. Med. 2018, 15, 20170051. [Google Scholar] [CrossRef]
- Dikhanbayeva, F.; Zhaxybayeva, E.; Smailova, Z.; Issimov, A.; Dimitrov, Z.; Kapysheva, U.; Bansal, N. The effect of camel milk curd masses on rats blood serum biochemical parameters: Preliminary study. PLoS ONE 2021, 16, e0256661. [Google Scholar] [CrossRef] [PubMed]
- Makni, M.; Fetoui, H.; Gargouri, N.; Garoui, E.M.; Jaber, H.; Makni, J.; Boudawara, T.; Zeghal, N. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in ω-3 and ω-6 fatty acids in hypercholesterolemic rats. Food Chem. Toxicol. 2008, 46, 3714–3720. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Kaya, E.; Kisacam, M.A. The effect on oxidative stress of aflatoxin and protective effect of lycopene on aflatoxin damage. Aflatoxin Control Anal. Detect. Health Risks 2017, 30, 67–90. [Google Scholar]
- Zeni, A.L.B.; Moreira, T.D.; Dalmagro, A.P.; Camargo, A.; Bini, L.A.; Simionatto, E.L.; Scharf, D.R. Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. An. Acad. Bras. Ciências 2017, 89, 2805–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, R.P.; Saran, S.; Sharma, P.; Gupta, R.P.; Kochar, D.K.; Sahani, M.S. Effect of camel milk on residual β-cell function in recent onset type 1 diabetes. Diabetes Res. Clin. Pract. 2007, 3, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Mudgil, P.; Palakkott, A.; Iratni, R.; Gan, C.-Y.; Maqsood, S.; Ayoub, M.A. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. J. Dairy Sci. 2021, 104, 61–77. [Google Scholar] [CrossRef]
- Mailam, A. A Comparative Study On Antidiabetic Effect Of Buffalo And Camel Fermented Milk In Induced Diabetic Rats. Adv. Food Sci. 2017, 39, 124–132. [Google Scholar]
- Rouag, M.; Berrouague, S.; Djaber, N.; Khaldi, T.; Boumendjel, M.; Taibi, F.; Abdennour, C.; Boumendjel, A.; Messarah, M. Pumpkin seed oil alleviates oxidative stress and liver damage induced by sodium nitrate in adult rats: Biochemical and histological approach. Afr. Health Sci. 2020, 20, 413–425. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. Dietary flavonoids as xanthine oxidase inhibitors: Structure–affinity and structure–activity relationships. J. Agric. Food Chem. 2015, 63, 7784–7794. [Google Scholar] [CrossRef]
- Chiu, T.H.; Liu, C.-H.; Chang, C.-C.; Lin, M.-N.; Lin, C.-L. Vegetarian diet and risk of gout in two separate prospective cohort studies. Clin. Nutr. 2020, 39, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Alvirdizadeh, S.; Yuzbashian, E.; Mirmiran, P.; Eghtesadi, S.; Azizi, F. A prospective study on total protein, plant protein and animal protein in relation to the risk of incident chronic kidney disease. BMC Nephrol. 2020, 21, 489. [Google Scholar] [CrossRef]
- Nair, G.G.; Nair, C.K.K. Radioprotective effects of gallic acid in mice. BioMed Res. Int. 2013, 2013, 953079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koc, M.; Taysi, S.; Buyukokuroglu, M.E.; Bakan, N. Melatonin protects rat liver against irradiation-induced oxidative injury. J. Radiat. Res. 2003, 44, 211–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, H.; Gargouri, M.; Boulila, S.; Chaari, F.; Ghrab, F.; Kallel, R.; Ghannoudi, Z.; Boudawara, T.; Chaabouni, S.; El Feki, A. Fermented camel milk prevents carbon tetrachloride induced acute injury in kidney of mice. J. Dairy Res. 2018, 85, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zahar, K.M.; Hassan, M.F.; Al-Qaba, S.F. Protective Effect of Fermented Camel Milk Containing Bifidobacterium longum BB536 on Blood Lipid Profile in Hypercholesterolemic Rats. J. Nutr. Metab. 2021, 2021, 1557945. [Google Scholar] [CrossRef]
Components (%) | Camel Milk | Pumpkin Seed Milk |
---|---|---|
Total Solids | 14.14 ± 0.46 b | 21.60 ± 1.04 a |
Protein | 3.94 ± 0.14 b | 7.84 ± 0.82 a |
Fat | 3.12 ± 0.18 b | 6.90 ± 0.55 a |
Ash | 0.82 ± 0.05 b | 0.92 ± 0.04 a |
Fiber | 0.00 b | 3.42 ± 0.24 a |
Total phenolic content (mg/100 g) | 3.62 ± 0.28 b | 234.20 ± 5.62 a |
DPPH inhibition % activity | 12.86 ± 0.92 b | 56.70 ± 2.14 a |
Items | Treatments | ||
---|---|---|---|
C | T1 | T2 | |
Chemical composition (%) | |||
Total Solids | 14.22 ± 0.86 c | 15.94 ± 0.74 b | 16.54 ± 0.48 a |
Protein | 3.98 ± 0.32 c | 4.92 ± 0. 48 b | 5.86 ± 0.28 a |
Fat | 3.18 ± 0.24 c | 4.04 ± 0.12 b | 4.96 ± 0.32 a |
Ash | 0.85 ± 0.06 c | 0.87 ± 0.04 b | 0.90 ± 0.03 a |
Fiber | 0.00 c | 0.82 ± 0.03 b | 1.55 ± 0.09 a |
Physicochemical properties | |||
Acidity [as lactic acid percentage (%)] | 0.75 ± 0.04 c | 0.80 ± 0.02 b | 0.84 ± 0.03 a |
pH values | 4.82 ± 0.06 a | 4.76 ± 0.04 b | 4.68 ± 0.05 c |
Viscosity (cP) | 2160 ± 54 c | 2420 ± 84 b | 2590 ± 98 a |
Phytochemical properties | |||
Total phenolic content (mg/100 g) | 4.06 ± 0.22 c | 58.54 ± 1.64 b | 108.65 ± 4.42 a |
DPPH inhibition % activity | 13.40 ± 0.34 c | 15.24 ± 0.56 b | 18.12 ± 0.74 a |
Attributes | Treatments | ||
---|---|---|---|
C | T1 | T2 | |
Flavor (60) | 40.7 ± 2.30 c | 44.3 ± 2.60 b | 46.2 ± 3.12 a |
Body and Texture (30) | 22.2 ± 1.18 c | 25.4 ± 1.74 b | 27.9 ± 1.58 a |
Appearance (10) | 7.8 ± 0.50 c | 8.4 ± 0.82 b | 9.2 ± 0.60 a |
Total Scores (100) | 70.7 ± 3.10 c | 78.1 ± 3.24 b | 83.3 ± 3.46 a |
Group | Parameters | |||
---|---|---|---|---|
Initial Weight (g) | Final Weight (g) | Percentage of Increase in Body Weight (%) | BWG (%) | |
Group (1) | 168.2 ± 3.8 a | 222.3 ± 4.8 a | 32.16 ± 1.3 a | 24.33 ± 1.5 a |
Group (2) | 169.6 ± 2.9 a | 202.6 ± 3.5 d | 19.45 ± 0.96 d | 16.28 ± 1.4 d |
Group (3) | 168.3 ± 4.3 a | 210.5 ± 4.8 c | 25.07 ± 1.7 c | 20.04 ± 1.6 c |
Group (4) | 169.1 ± 4.6 a | 216.4 ± 4.4 b | 27.97 ± 1.6 b | 21.80 ± 1.2 b |
Groups | Parameters | |||
---|---|---|---|---|
Total Cholesterol (TC) (mg/dL) | Triglycerides (TG) (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | |
Group (1) | 70.6 ± 2.5 d | 80.2 ± 2.2 c | 39.4 ± 1.8 a | 15.16 ± 1.1 d |
Group (2) | 92.4 ± 3.2 a | 103.4 ± 3.2 a | 28.6 ± 1.5 d | 43.12 ± 1.3 a |
Group (3) | 85.8 ± 2.8 b | 87.3 ± 2.4 b | 32.9 ± 1.7 c | 35.44 ± 1.2 b |
Group (4) | 75.6 ± 2.3 c | 78.5 ± 2.6 c | 36.4 ± 1.6 b | 23.50 ± 1.6 c |
Group | Aspartate Aminotransferase (AST U/L) | Alanine Aminotransferase (ALT U/L) | Total Protein (g/dL) | Total Albumin (g/dL) |
---|---|---|---|---|
Group (1) | 37.2 ± 1.14 d | 44.2 ± 2.12 d | 6.22 ± 0.48 a | 3.94 ± 0.22 a |
Group (2) | 82.5 ± 2.30 a | 85.6 ± 3.25 a | 5.54 ± 0.62 c | 2.82 ± 0.17 c |
Group (3) | 44.6 ± 1.62 b | 52.9 ± 2.14 b | 5.86 ± 0.35 b | 3.18 ± 0.20 b |
Group (4) | 39.8 ± 1.26 c | 46.8 ± 3.10 c | 6.04 ± 0.32 ab | 3.74 ± 0.24 a |
Group | Creatinine (mg/dL) | Urea (mg/dL) | Malondialdehyde (MDA) (μmol/L) |
---|---|---|---|
Group (1) | 0.48 ± 0.04 d | 16.2 ± 0.42 d | 43.60 ± 1.5 d |
Group (2) | 0.84 ± 0.06 a | 25.8 ± 0.25 a | 68.40 ± 2.2 a |
Group (3) | 0.66 ± 0.03 b | 21.3 ± 0.34 b | 51.92 ± 1.6 b |
Group (3) | 0.54 ± 0.02 c | 18.2 ± 0.22 c | 46.38 ± 1.2 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahein, M.R.; Atwaa, E.S.H.; Alrashdi, B.M.; Ramadan, M.F.; Abd El-Sattar, E.S.; Siam, A.A.H.; Alblihed, M.A.; Elmahallawy, E.K. Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats. Fermentation 2022, 8, 223. https://doi.org/10.3390/fermentation8050223
Shahein MR, Atwaa ESH, Alrashdi BM, Ramadan MF, Abd El-Sattar ES, Siam AAH, Alblihed MA, Elmahallawy EK. Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats. Fermentation. 2022; 8(5):223. https://doi.org/10.3390/fermentation8050223
Chicago/Turabian StyleShahein, Magdy Ramadan, El Sayed Hassan Atwaa, Barakat M. Alrashdi, Mahytab Fawzy Ramadan, El Sayed Abd El-Sattar, Adel Abdel Hameed Siam, Mohamed A. Alblihed, and Ehab Kotb Elmahallawy. 2022. "Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats" Fermentation 8, no. 5: 223. https://doi.org/10.3390/fermentation8050223
APA StyleShahein, M. R., Atwaa, E. S. H., Alrashdi, B. M., Ramadan, M. F., Abd El-Sattar, E. S., Siam, A. A. H., Alblihed, M. A., & Elmahallawy, E. K. (2022). Effect of Fermented Camel Milk Containing Pumpkin Seed Milk on the Oxidative Stress Induced by Carbon Tetrachloride in Experimental Rats. Fermentation, 8(5), 223. https://doi.org/10.3390/fermentation8050223