Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Campaign
2.2. Samples Processing and S. cerevisiae Isolation
2.3. Identification and Genotyping Characterization of S. cerevisiae Strains
2.4. Fermentation Trials
2.5. Analytical Determinations
2.6. Data Analyses
3. Results
3.1. Occurrence of S. cerevisiae on Grapes in Winery Environment and in Uninoculated Fermentations
3.2. Biotypes of S. cerevisiae: Frequency and Distribution
3.3. Oenological Characterization of Predominant Native S. cerevisiae Isolated Strains
3.3.1. Fermentation Kinetics
3.3.2. Analytical Characteristics
3.3.3. Volatile Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bordet, F.; Roullier-Gall, C.; Ballester, J.; Vichi, S.; Quintanilla-Casas, B.; Gougeon, R.D.; Ortiz, A.J.; Schmitt Kopplin, P.; Alexandre, H. Different wines from different yeasts? “Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine”. Microorganisms 2021, 9, 2327. [Google Scholar] [CrossRef] [PubMed]
- Vaughan-Martini, A.; Martini, A. Saccharomyces meyen ex reess (1870). In The Yeasts, a Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 733–746. [Google Scholar]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romaniello, R.; Condelli, N.; Romano, P. Selected indigenous Saccharomyces cerevisiae strains as profitable strategy to preserve typical traits of primitivo wine. Fermentation 2019, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Fleet, G.H.; Heard, G.M. Yeasts: Growth during fermentation. In Wine Microbiology and Biotechnology; Fleet, G.M., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993; pp. 27–54. [Google Scholar]
- Le Jeune, C.; Erny, C.; Demuyter, C.; Lollier, M. Evolution of the population of Saccharomyces cerevisiae from grape to wine in a spontaneous fermentation. Food Microbiol. 2006, 23, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.; Capece, A.; Serafino, V.; Romaniello, R.; Poeta, C. Biodiversity of wild strains of Saccharomyces cerevisiae as tool to complement and optimize wine quality. World J. Microbiol. Biotechnol. 2008, 24, 1797–1802. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef]
- Valero, E.; Schuller, D.; Cambon, B.; Casal, M.; Dequin, S. Dissemination and survival of commercial wine yeast in the vineyard: A large-scale, three-years study. FEMS Yeast Res. 2005, 5, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Santamaría, P.; López, R.; del Patrocinio Garijo, M.; Escribano, R.; González-Arenzana, L.; López-Alfaro, I.; Gutiérrez, A.R. Biodiversity of Saccharomyces cerevisiae Yeasts in Spontaneous Alcoholic Fermentations: Typical Cellar or Zone Strains? In Advances in Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [Green Version]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Romero, D.; Guillén, F.; Valverde, J.M.; Bailén, G.; Zapata, P.; Serrano, M.; Castrillo, S.; Valero, D. Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. Int. J. Food Microbiol. 2007, 115, 144–148. [Google Scholar] [CrossRef]
- Raspor, P.; Milek, D.M.; Polanc, J.; Možina, S.S.; Čadež, N. Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Int. J. Food Microbiol. 2006, 109, 97–102. [Google Scholar] [CrossRef]
- Franco-Duarte, R.; Bigey, F.; Carreto, L.; Mendes, I.; Dequin, S.; Santos, M.A.; Pais, C.; Schuller, D. Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Res. 2015, 15, fov063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From vineyard soil to wine fermentation: Microbiome approximations to explain the “terroir” concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, J.A.; van der Lelie, D.; Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison-Whittle, P.; Goddard, M.R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J. 2015, 9, 2003–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, C.; Pinho, D.; Cardoso, R.; Custódio, V.; Fernandes, J.; Sousa, S.; Pinheiro, M.; Egas, C.; Gomes, A.C. Wine fermentation microbiome: A landscape from different Portuguese wine appellations. Front. Microbiol. 2015, 6, 905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.W.; Tsai, P.; Anfang, N.; Ross, H.A.; Goddard, M.R. Pyrosequencing reveals regional differences in fruit‐associated fungal communities. Environ. Microbiol. 2014, 16, 2848–2858. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [Green Version]
- Drumonde-Neves, J.; Franco-Duarte, R.; Lima, T.; Schuller, D.; Pais, C. Association between grape yeast communities and the vineyard ecosystems. PLoS ONE 2017, 12, e0169883. [Google Scholar] [CrossRef]
- Gao, F.; Chen, J.; Xiao, J.; Cheng, W.; Zheng, X.; Wang, B.; Shi, X. Microbial community composition on grape surface controlled by geographical factors of different wine regions in Xinjiang, China. Food Res. Int. 2019, 122, 348–360. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Ciani, M.; Comitini, F. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. PLoS ONE 2019, 14, e0217385. [Google Scholar] [CrossRef] [Green Version]
- Mercado, L.; Dalcero, A.; Masuelli, R.; Combina, M. Diversity of Saccharomyces strains on grapes and winery surfaces: Analysis of their contribution to fermentative flora of Malbec wine from Mendoza (Argentina) during two consecutive years. Food Microbiol. 2007, 24, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Schuller, D.; Casal, M. The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl. Microbiol. Biotechnol. 2005, 68, 292–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, R.; Polsinelli, M. On the origins of wine yeast. Res. Microbiol. 1999, 150, 199–204. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Mancabelli, L.; Milani, C.; Ventura, M.; Ciani, M.; Comitini, F. The influence of fungicide treatments on mycobiota of grapes and its evolution during fermentation evaluated by metagenomic and culture-dependent methods. Microorganisms 2019, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martini, A.; Ciani, M.; Scorzetti, G. Direct enumeration and isolation of wine yeasts from grape surfaces. Am. J. Enol. Vitic. 1996, 47, 435–440. [Google Scholar]
- Mercado, L.; Sturm, M.E.; Rojo, M.C.; Ciklic, I.; Martínez, C.; Combina, M. Biodiversity of Saccharomyces cerevisiae populations in Malbec vineyards from the “Zona Alta del Río Mendoza” region in Argentina. Int. J. Food Microbiol. 2011, 151, 319–326. [Google Scholar] [CrossRef]
- Ciani, M.; Maccarelli, F. Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J. Microbiol. Biotechnol. 1997, 14, 199–203. [Google Scholar] [CrossRef]
- Ciani, M.; Comitini, F. Yeast ecology of wine production. In Yeasts in the Production of Wine; Romano, P., Ciani, M., Fleet, G.H., Eds.; Springer: NewYork, NY, USA, 2019; pp. 1–42. [Google Scholar]
- Ocón, E.; Gutiérrez, A.R.; Garijo, P.; López, R.; Santamaría, P. Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time. Food Microbiol. 2010, 27, 1023–1027. [Google Scholar] [CrossRef]
- Vaughan-Martini, A.; Martini, A. Facts, myths and legends on the prime industrial microorganism. J. Ind. Microbiol. 1995, 14, 514–522. [Google Scholar] [CrossRef]
- Legras, J.L.; Karst, F. Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, G.; Ruiz-Moyano, S.; Hernández, A.; Benito, M.J.; Córdoba, M.G.; Pérez-Nevado, F.; Martín, A. Application of ISSR-PCR for rapid strain typing of Debaryomyces hansenii isolated from dry-cured Iberian ham. Food Microbiol. 2014, 42, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Larpin, S.; Mondoloni, C.; Goerges, S.; Vernoux, J.P.; Guéguen, M.; Desmasures, N. Geotrichum candidum dominates in yeast population dynamics in Livarot, a French red-smear cheese. FEMS Yeast Res. 2006, 6, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EC Regulation No. 2870/00; Community reference methods for the analysis of spirit drinks. Official Journal of the European Communities: Luxembourg, 19 December 2000.
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/Nacetyl-L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar]
- Helrich, K. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Rockville, MD, USA, 1990. [Google Scholar]
- Canonico, L.; Comitini, F.; Ciani, M. Influence of vintage and selected starter on Torulaspora delbrueckii/Saccharomyces cerevisiae sequential fermentation. Eur. Food Res. Technol. 2015, 241, 827–833. [Google Scholar] [CrossRef]
- Vaudano, E.; Quinterno, G.; Costantini, A.; Pulcini, L.; Pessione, E.; García-Moruno, E. Yeast distribution in Grignolino grapes growing in a new vineyard in Piedmont and the technological characterization of indigenous Saccharomyces spp. strains. Int. J. Food Microbiol. 2019, 289, 154–161. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, C.; Barbe, J.C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Le Menn, N.; et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines. Oeno One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Bisson, L.F. Geographic origin and diversity of wine strains of Saccharomyces. Am. J. Enol. Vitic. 2012, 63, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Börlin, M.; Venet, P.; Claisse, O.; Salin, F.; Legras, J.L.; Masneuf-Pomarede, I. Cellar-associated Saccharomyces cerevisiae population structure revealed high level diversity and perennial persistence at Sauternes wine estates. Appl. Environ. Microbiol. 2016, 82, 2909–2918. [Google Scholar] [CrossRef] [Green Version]
- Granchi, L.; Ganucci, D.; Buscioni, G.; Mangani, S.; Guerrini, S. The biodiversity of Saccharomyces cerevisiae in spontaneous wine fermentation: The occurrence and persistence of winery-strains. Fermentation 2019, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Torija, M.J.; Rozes, N.; Poblet, M.; Guillamón, J.M.; Mas, A. Yeast population dynamics in spontaneous fermentations: Comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 2001, 79, 345–352. [Google Scholar] [CrossRef]
- Ganucci, D.; Guerrini, S.; Mangani, S.; Vincenzini, M.; Granchi, L. Quantifying the effects of ethanol and temperature on the fitness advantage of predominant Saccharomyces cerevisiae strains occurring in spontaneous wine fermentations. Front. Microbiol. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, P.; Ramilo, A.; Cerdeira, M.; Orriols, I. Genetic diversity of wine Saccharomyces cerevisiae strains in an experimental winery from Galicia (NW Spain). Antonie Van Leeuwenhoek 2006, 89, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Cheng, C.; Li, Z.; Chen, J.Y.; Yan, B.; Han, B.Z.; Reeves, M. Yeast species associated with wine grapes in China. Int. J. Food Microbiol. 2010, 138, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Schuller, D.; Cardoso, F.; Sousa, S.; Gomes, P.; Gomes, A.C.; Santos, M.A.S.; Casal, M. Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from different grape varieties and winemaking regions. PLoS ONE 2012, 7, e32507. [Google Scholar] [CrossRef] [Green Version]
- Franco-Duarte, R.; Mendes, I.; Gomes, A.C.; Santos, M.A.; de Sousa, B.; Schuller, D. Genotyping of Saccharomyces cerevisiae strains by interdelta sequence typing using automated microfluidics. Electrophoresis 2011, 32, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, H. Wine yeast terroir: Separating the wheat from the chaff—for an open debate. Microorganisms 2020, 8, 787. [Google Scholar] [CrossRef]
- Pérez-Torrado, R.; Rantsiou, K.; Perrone, B.; Navarro-Tapia, E.; Querol, A.; Cocolin, L. Saccharomyces cerevisiae strains: Insight into the dominance phenomenon. Sci. Rep. 2017, 7, 43603. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A. Yeasts and wine flavour. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 251–274. [Google Scholar]
- Mendes, I.; Sanchez, I.; Franco-Duarte, R.; Camarasa, C.; Schuller, D.; Dequin, S.; Sousa, M.J. Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genom. 2017, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, E.; Soufleros, E.H.; Bouloumpasi, E.; Tzanetakis, N. Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiol. 2006, 23, 205–211. [Google Scholar] [CrossRef]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Pollon, M.; Fracassetti, D.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Food Chem. 2018, 257, 350–360. [Google Scholar] [CrossRef]
- Sadoudi, M.; Tourdot-Maréchal, R.; Rousseaux, S.; Steyer, D.; Gallardo-Chacón, J.J.; Ballester, J.; Vichi, S.; Guérin-Schneider, R.; Caixach, J.; Alexandre, H. Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol. 2012, 32, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Soles, R.M.; Ough, C.S.; Kunkee, R.E. Ester concentration differences in wine fermented by various species and strains of yeasts. Am. J. Enol. Vitic. 1982, 33, 94–98. [Google Scholar]
- Franco-Duarte, R.; Umek, L.; Mendes, I.; Castro, C.C.; Fonseca, N.; Martins, R.; Silva-Ferreira, A.C.; Sampaio, P.; Pais, C.; Schuller, D. New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chem. 2016, 211, 509–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisiotou, A.; Sgouros, G.; Mallouchos, A.; Nisiotis, C.S.; Michaelidis, C.; Tassou, C.; Banilas, G. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines. Food Res. Int. 2018, 111, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Dolci, P.; Giacosa, S.; Torchio, F.; Tofalo, R.; Torriani, S.; Suzzi, G.; Rolle, L.; Cocolin, L. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl. Environ. Microbiol. 2012, 78, 1987–1994. [Google Scholar] [CrossRef] [Green Version]
- Banilas, G.; Sgouros, G.; Nisiotou, A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol. Res. 2016, 193, 1–10. [Google Scholar] [CrossRef]
Sampling Year | Source of S. cerevisiae | Number of Samples | Number of Samples with S. cerevisiae | Number of S. cerevisiae Isolated |
---|---|---|---|---|
2016 | Grapes (direct isolation) | 10 | 0 | 0 |
Grapes (after autoenrichment) | 10 | 2 | 10 | |
Winery equipment and environment | 12 | 4 | 13 | |
Spontaneous fermentation | 2 | 2 | 20 | |
2019 | Grapes (direct isolation) | 6 | 0 | 0 |
Grapes (after autoenrichment) | 6 | 2 | 27 | |
Winery equipment and environment | 9 | 1 | 8 | |
Spontaneous fermentation | 2 | 2 | 20 |
Sampling Year | Number of Isolates | Biotype | Origin of Sampling | Total of Yeast for Each Biotype | ||
---|---|---|---|---|---|---|
Grape | Winery Environment | Wine Fermentation | ||||
2016 | 43 | I | 6 (14%) | 12 (28%) | 11 (26%) | 29 (68%) |
II | / * | 1 (2%) | 7 (16%) | 8 (19%) | ||
III | 2 (5%) | / | / | 2 (5%) | ||
IV | 1 (2%) | / | / | 1 (2%) | ||
V | / | / | 1 (2%) | 1 (2%) | ||
VI | 1 (2%) | / | / | 1 (2%) | ||
VII | / | / | 1 (2%) | 1 (2%) | ||
VIII | / | / | / | / | ||
IX | / | / | / | / | ||
2019 | 55 | I | 13 (24%) | 5 (9%) | 6 (11%) | 24 (43%) |
II | 13 (24%) | 3 (5%) | 7 (13%) | 23 (42%) | ||
III | 1 (2%) | / | 2 (4%) | 3 (5%) | ||
IV | / | / | 1 (2%) | 1 (2%) | ||
V | / | / | 2 (4%) | 2 (4%) | ||
VI | / | / | / | / | ||
VII | / | / | / | / | ||
VIII | / | / | 1 (2%) | 1 (2%) | ||
IX | / | / | 1 (2%) | 1 (2%) | ||
2016/2019 | 98 | I | 19 (19%) | 17 (17%) | 17 (17%) | 53 (54%) |
II | 13 (13%) | 4 (4%) | 14 (14%) | 31 (32%) | ||
III | 3 (3%) | / | 2 (2%) | 5 (5%) | ||
IV | 1 (1%) | / | 1 (1%) | 2 (2%) | ||
V | / | / | 3 (3%) | 3 (3%) | ||
VI | 1 (1%) | / | / | 1 (1%) | ||
VII | / | / | 1 (1%) | 1 (1%) | ||
VIII | / | / | 1 (1%) | 1 (1%) | ||
IX | / | / | 1 (1%) | 1 (1%) |
Samples | Fermentation Rate (gCO2/Day) * | Volatile Acidity (g/L) | Total SO2 (mg/L) | Acetaldehyde (mg/L) | Free α-Amino Acids (mgN/L) | Ethanol (% v/v) |
---|---|---|---|---|---|---|
Biotype I | 0.9 ± 0.1 c | 0.7 ± 0.1 a | 4.0 ± 0.0 e | 9.5 ± 0.7 d | 35.8 ± 0.7 d | 12.3 ± 0.1 a |
Biotype II | 1.1 ± 0.0 b | 0.3 ± 0.0 bc | 41.0 ± 1.4 a | 62.5 ± 0.76 a | 32.2 ± 0.6 e | 11.7 ± 0.4 b |
OKAY | 1.1 ± 0.1 bc | 0.3 ± 0.0 c | 11.0 ± 0.7 d | 40.1 ± 0.3 c | 43.6 ± 0.9 b | 12.2 ± 0.2 a |
EC1118 | 1.2 ± 0.0 b | 0.4 ± 0.1 b | 23.0 ± 0.7 b | 48.4 ± 0.9 b | 38.8 ± 0.6 c | 12.3 ± 0.2 a |
VIN13 | 1.4 ± 0.1 a | 0.2 ± 0.0 d | 16.0 ± 0.7 c | 47.3 ± 0.5 b | 46.0 ± 0.7 a | 11.9 ± 0.1 ab |
Samples | Fermentation Rate (gCO2/Day) * | Volatile Acidity (g/L) | Total SO2 (mg/L) | Acetaldehyde (mg/L) | Free α-Amino Acids (mgN/L) | Ethanol (% v/v) |
---|---|---|---|---|---|---|
Biotype I | 1.2 ± 0.1 a | 0.3 ± 0.1 bc | 2.0 ± 0.0 c | 45.7 ± 0.6 b | 40.3 ± 0.5 b | 12.3 ± 0.1 b |
Biotype II | 1.1 ± 0.1 ab | 0.2 ± 0.0 c | 24.0 ± 0.7 a | 19.2 ± 1.0 e | 45.5 ± 0.2 a | 12.1 ± 0.3 b |
OKAY | 1.0 ± 0.1 b | 0.4 ± 0.1 ab | 3.0 ± 0.0 c | 25.3 ± 0.5 c | 45.9 ± 0.3 a | 12.3 ± 0.0 b |
EC1118 | 1.2 ± 0.0 a | 0.3 ± 0.0 bc | 10.0 ± 0.7 b | 21.3 ± 0.9 d | 39.6 ± 0.9 b | 12.7 ± 0.1 a |
VIN13 | 1.2 ± 0.0 a | 0.5 ± 0.1 a | 2.0 ± 0.0 c | 74.6 ± 0.6 a | 45.9 ± 0.9 a | 12.2 ± 0.0 b |
Volatile Compounds | Biotype I | Biotype II | OKAY | EC1118 | VIN13 |
---|---|---|---|---|---|
Alcohols | |||||
Hexanol (µg/L) | 10.0 ± 0.0 b | 20.0 ± 0.0 a | 20.0 ± 0.0 a | 20.0 ± 0.0 a | 20.0 ± 0.0 a b |
β-Phenyl ethanol (mg/L) | 29.1 ± 0.4 b | 24.8 ± 0.4 d | 20.2 ± 0.9 e | 50.5 ± 0.1 a | 27.2 ± 1.1 c |
Esters | |||||
Isoamyl acetate (mg/L) | 2.5 ± 0.1 a | 2.2 ± 0.0 b | 1.2 ± 0.1 e | 1.6 ± 0.1 c | 1.3 ± 0.1 d |
Phenylethyl acetate (mg/L) | 0.3 ± 0.0 c | 0.3 ± 0.0 c | 0.2 ± 0.0 d | 0.6 ± 0.0 b | 0.7 ± 0.0 a |
Ethyl hexanoate (mg/L) | 0.2 ± 0.0 d | 0.4 ± 0.0 a | 0.3 ± 0.0 b | 0.2 ± 0.0 cd | 0.2 ± 0.0 c |
Ethyl butyrate (mg/L) | 0.2 ± 0.0 d | 0.3 ± 0.0 c | 1.4 ± 0.0 a | 0.7 ± 0.0 b | 0.7 ± 0.0 b |
Ethyl octanoate (µg/L) | 50.0 ± 0.1 a | 30.0 ± 0.1 b | 10.0 ± 0.0 b | 20.0 ± 0.0 b | 10.0 ± 0.0 b |
Diethyl succinate (µg/L) | 10.0 ± 0.1 a | 20.0 ± 0.0 a | 10.0 ± 0.1 a | 10.0 ± 0.0 a | 10.0 ± 0.0 a |
Terpenes | |||||
Linalool (µg/L) | 40.0 ± 0.1 a | 50.0 ± 0.1 a | 60.0 ± 0.1 a | 50.0 ± 0.1 a | 10.0 ± 0.0 b |
Nerol (µg/L) | 30.0 ± 0.1 a | 20.0 ± 0.1 a | 20.0 ± 0.1 a | 20.0 ± 0.0 a | 20.0 ± 0.0 a |
Geraniol (µg/L) | 30.0 ± 0.0 a | 40.0 ± 0.1 a | 10.0 ± 0.0 a | 0.0 ± 0.0 a | 10.0 ± 0.0 a |
Enones | |||||
β-Damascenone (µg/L) | 10.0 ± 0.0 ab | 30.0 ± 0.1 a | 10.0 ± 0.0 b | 10.0 ± 0.0 b | 10.0 ± 0.1 b |
Volatile Compounds | Biotype I | Biotype II | OKAY | EC1118 | VIN13 |
---|---|---|---|---|---|
Alcohols | |||||
Hexanol (µg/L) | 20.0 ± 0.0 a | 10.0 ± 0.0 a | 20.0 ± 0.1 a | 10.0 ± 0.0 a | 20.0 ± 0.1 a |
β-Phenyl ethanol (mg/L) | 30.7 ± 3.1 c | 12.9 ± 2.9 e | 35.2 ± 0.7 a | 32.7 ± 2.9 b | 16.3 ± 2.1 d |
Esters | |||||
Isoamyl acetate (mg/L) | 3.8 ± 0.3 a | 1.8 ± 0.1 b | 1.3 ± 0.0 c | 1.1 ± 0.1 c | 1.5 ± 0.0 bc |
Phenylethyl acetate (mg/L) | 0.2 ± 0.0 b | 0.1 ± 0.0 c | 0.1 ± 0.0 bc | 0.4 ± 0.1 a | 0.1 ± 0.0 c |
Ethyl hexanoate (mg/L) | 0.2 ± 0.1 c | 0.4 ± 0.2 b | 0.36 ± 0.04 b | 0.43 ± 0.04 a | 0.21 ± 0.03 c |
Ethyl butyrate (mg/L) | 0.3 ± 0.0 c | 0.4 ± 0.0 c | 1.3 ± 0.2 a | 0.5 ± 0.1 bc | 0.5 ± 0.0 b |
Ethyl octanoate (µg/L) | 40.0 ± 0.1 a | 40.0 ± 0.1 a | 40.0 ± 0.2 a | 10.0 ± 0.0 b | 30.0 ± 0.1 a |
Diethyl succinate µg/L) | 20.0 ± 0.0 b | 10.0 ± 0.0 c | 60.0 ± 0.1 a | 10.0 ± 0.0 c | 10.0 ± 0.0 c |
Terpenes | |||||
Linalool (µg/L) | 40.0 ± 0.01 b | 30.0 ± 0.1 b | 60.0 ± 0.2 a | 40.0 ± 0.1 b | 20.0 ± 0.1 b |
Nerol (µg/L) | 10.0 ± 0.01 b | 30.0 ± 0.0 a | 30.0 ± 0.1 a | 20.0 ± 0.1 b | 10.0 ± 0.0 b |
Geraniol (µg/L) | 10.0 ± 0.0 ab | 0.0 ± 0.0 b | 30.0 ± 0.1 a | 20.0 ± 0.1 ab | 10.0 ± 0.0 a b |
Enones | |||||
β-Damascenone (µg/L) | 10.0 ± 0.0 b | 20.0 ± 0.1 a | 10.0 ± 0.0 b | 10.0 ± 0.0 b | 10.0 ± 0.0 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarbati, A.; Canonico, L.; Comitini, F.; Ciani, M. Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. Fermentation 2022, 8, 224. https://doi.org/10.3390/fermentation8050224
Agarbati A, Canonico L, Comitini F, Ciani M. Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. Fermentation. 2022; 8(5):224. https://doi.org/10.3390/fermentation8050224
Chicago/Turabian StyleAgarbati, Alice, Laura Canonico, Francesca Comitini, and Maurizio Ciani. 2022. "Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery" Fermentation 8, no. 5: 224. https://doi.org/10.3390/fermentation8050224
APA StyleAgarbati, A., Canonico, L., Comitini, F., & Ciani, M. (2022). Ecological Distribution and Oenological Characterization of Native Saccharomyces cerevisiae in an Organic Winery. Fermentation, 8(5), 224. https://doi.org/10.3390/fermentation8050224