Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation of Oat Bran
2.2. Comparative Study of Raw and Fermented Oat Bran
2.2.1. Proximate Composition of Raw and Fermented Oat Bran
2.2.2. Total Dietary Fiber (Soluble and Insoluble)
2.2.3. Mineral Contents
2.2.4. Microstructure of Bran Samples
2.2.5. Total Phenolic Content (TPC)
2.2.6. Total Flavonoid Content (TFC)
2.2.7. Antioxidant Potential
2.2.8. Phytic Acid Content
2.3. Physicochemical Properties
2.3.1. pH
2.3.2. Water-Holding Capacity (WHC)
2.4. Statistical Analysis
3. Results
3.1. Biochemical Composition of Raw and Fermented Oat Bran
3.2. Scanning Electron Microscopy (SEM) Study of Bran Samples
4. Discussion
4.1. Antioxidant Potential
4.1.1. Total Phenolic and Total Flavonoid Content
4.1.2. DPPH Radical Scavenging Activity (DPPH-RSA)
4.1.3. FRAP (Ferric Reducing Antioxidant Power)
4.2. Anti-Nutritional Factor
Phytic Acid (PA) Content
4.3. Physicochemical Properties
4.3.1. pH
4.3.2. Water-Holding Capacity (WHC) of Bran Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeed, F.; Hussain, M.; Arshad, M.S.; Afzaal, M.; Munir, H.; Imran, M.; Tufail, T.; Anjum, F.-M. Functional and nutraceutical properties of maize bran cell wall non-starch polysaccharides. Int. J. Food Prop. 2021, 24, 233–248. [Google Scholar] [CrossRef]
- Manini, F.; Brasca, M.; Plumed-Ferrer, C.; Morandi, S.; Erba, D.; Casiraghi, M.C. Study of the chemical changes and evolution of microbiota during sourdoughlike fermentation of wheat bran. Cereal Chem. 2014, 91, 342–349. [Google Scholar] [CrossRef]
- Miller, K.L. Chemical and Sensory Characterization of Oat Bran from Experimental Oat Lines with Varying Amounts of Total Beta-Glucan. Lowa State University: Ames, IA, USA, 2007. [Google Scholar]
- Hui, X.; Wu, G.; Han, D.; Gong, X.; Stipkovits, L.; Wu, X.; Tang, S.; Brennan, M.A.; Brennan, C.S. Bioactive compounds from blueberry and blackcurrant powder alter the physicochemical and hypoglycaemic properties of oat bran paste. LWT 2021, 143, 111167. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, L.; Huang, L.; Shi, Z.; Dong, J.; Yao, Y.; Shen, R. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. J. Funct. Foods 2020, 69, 103939. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Raigond, P.; Sahu, C.; Mishra, U.N.; Sharma, S.; Lal, M.K. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Int. Food Res. J. 2021, 142, 110193. [Google Scholar] [CrossRef] [PubMed]
- Arbab Sakandar, H.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Rev. Int. 2021, 1–23. [Google Scholar] [CrossRef]
- Zhao, H.M.; Guo, X.N.; Zhu, K.X. Impact of solid-state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef]
- Ozkaya, H.; Ozkaya, B.; Duman, B.; Turksoy, S. Effect of dephytinization by fermentation and hydrothermal autoclaving treatments on the antioxidant activity, dietary fiber, and phenolic content of oat bran. J. Agric. Food Chem. 2017, 65, 5713–5719. [Google Scholar] [CrossRef]
- AACC. Approved Methods of American Association of Cereal Chemists, 10th ed.; American Association Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; [Revised]; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- Stanisavljević, N.S.; Ilić, M.D.; Jovanović, Ž.S.; Čupić, T.; Dabić-Zagorac, D.; Natić, M.; Tešić, Ž.L.; Radovic, S.S. Identification of seed coat phenolic compounds from differently colored pea varieties and characterization of their antioxidant activity. Arch. Biol. Sci. 2015, 67, 829–840. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Lesjak, M.M.; Beara, I.N.; Orčić, D.Z.; Petar, K.N.; Simin, N.Đ.; Emilija, S.Đ.; Mimica-Dukić, N.M. Phytochemical composition and antioxidant, anti-inflammatory and antimicrobial activities of Juniperus macrocarpa Sibth. et Sm. J. Funct. Foods 2014, 7, 257–268. [Google Scholar] [CrossRef]
- Lopez-Contreras, J.J.; Zavala-Garcia, F.; Urias-Orona, V.; Martinez-Avila, G.C.G.; Rojas, R.; Guillermo, N.M. Chromatic, phenolic and antioxidant properties of Sorghum bicolor genotypes. Not. Bot. Horti. 2015, 43, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Hussain, M.; Saeed, F.; Niaz, B.; Afzaal, M.; Ikram, A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical and nutritional profile of maize bran-enriched flour in relation to its end-use quality. Food Sci. Nutr. 2021, 9, 3336–3345. [Google Scholar] [CrossRef] [PubMed]
- Steel, R. Analysis of Variance I: The One-Way Classification. In Principles Procedures of Statistics a Biometrical Approach; McGraw-Hill: New York, NY, USA, 1997; pp. 139–203. [Google Scholar]
- Tu, J.; Zhao, J.; Liu, G.; Tang, C.; Han, Y.; Cao, X.; Jia, J.; Ji, G.; Xiao, H. Solid state fermentation by Fomitopsis pinicola improves physicochemical and functional properties of wheat bran and the bran-containing products. Food Chem. 2020, 328, 127046. [Google Scholar] [CrossRef]
- Yang, X.; Dai, J.; Zhong, Y.; Wei, X.; Wu, M.; Zhang, Y.; Huang, A.; Wang, L.; Huang, Y.; Zhang, C.; et al. Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects. Food Funct. 2021, 12, 6576–6587. [Google Scholar] [CrossRef]
- Mihhalevski, A.; Nisamedtinov, I.; Hälvin, K.; Ošeka, A.; Paalme, T. Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. J. Cereal Sci. 2013, 57, 30–38. [Google Scholar] [CrossRef]
- Frølich, W.; Nyman, M. Minerals, phytate and dietary fibre in different fractions of oat-grain. J. Cereal Sci. 1988, 7, 73–82. [Google Scholar] [CrossRef]
- Marlett, J.A. Sites and Mechanisms for the Hypocholesterolemic Actions of Soluble Dietary Fiber Sources. In Dietary Fiber in Health and Disease; Springer: Boston, MA, USA, 1997; pp. 109–121. [Google Scholar]
- Călinoiu, L.F.; Cătoi, A.F.; Vodnar, D.C. Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef]
- Katina, K.; Laitila, A.; Juvonen, R.; Liukkonen, K.-H.; Kariluoto, S.; Piironen, V.; Landberg, R.; Åman, P.; Poutanen, K. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.S. Food Processing Influencing Iron and Zinc. In Trace Elements in Man and Animals–9: Proceedings of the Ninth International Symposium on Trace Elements in Man and Animals (No. 40702, p. 10); NRC Research Press: Ottawa, ON, Canada, 1997. [Google Scholar]
- Zamudio, M.; Gonzalez, A.; Medina, J.A. Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Khaneghah, A.M. Fermentation of acorn dough by lactobacilli strains: Phytic acid degradation and antioxidant activity. LWT 2019, 100, 144–149. [Google Scholar] [CrossRef]
- Hemdane, S.; Langenaeken, N.A.; Jacobs, P.J.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Study of the role of bran water binding and the steric hindrance by bran in straight dough bread making. Food Chem. 2018, 253, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Jing, Y.; Li, Y.; Zhang, N.; Cao, Y. Eurtium cristatum produced β-hydroxy acid metabolite of monacolin K and improvsd bioactive compound contents as well as functional properties in fermented wheat bran. LWT 2022, 158, 113088. [Google Scholar] [CrossRef]
Nutritional Composition | OAT BRAN | |
---|---|---|
Raw | Fermented | |
Moisture (%) | 7.69 ± 0.08 a | 5.3 ± 0.22 b |
Ash (%) | 2.1 ± 0.01 a | 1.01 ± 0.01 b |
Crude Fat (%) | 1.00 ± 0.04 b | 1.14 ± 0.02 a |
Crude Fiber (%) | 14.36 ± 0.06 b | 15.83 ± 0.08 a |
Crude Protein (%) | 5.54 ± 0.02 b | 9.03 ± 0.04 a |
Phosphorus (mg/100 g) | 531 ± 6.4 b | 569 ± 7.8 a |
Potassium (mg/100 g) | 437 ± 2.7 b | 472.3 ± 3.5 a |
Calcium (mg/100 g) | 47 ± 0.4 b | 52.5 ± 0.6 a |
Copper (mg/100 g) | 1.48 ± 0.03 b | 2.12 ± 0.02 a |
Magnesium (mg/100 g) | 189 ± 1.7 b | 201 ± 2.4 a |
Iron (mg/100 g) | 3.5 ± 0.02 b | 5.1 ± 0.05 a |
Total Dietary Fiber (%) | 24.21 ± 0.9 b | 28.49 ± 1.3 a |
Soluble Dietary Fiber (%) | 5.01 ± 0.02 b | 7.2 ± 0.02 a |
Insoluble Dietary Fiber (%) | 19.2 ± 0.1 b | 21.31 ± 0.2 a |
Bioactive Profile | Oat Bran | |
---|---|---|
Raw | Fermented | |
Total phenolic content (mg GAE/kg) | 2721.2 ± 14.3 b | 2937.4 ± 7.4 a |
Total Flavonoid contents (mg RE/100 g) | 81 ± 1.6 a | 112 ± 1.8 b |
DPPH-RSA (%) | 40 ± 0.2 b | 74 ± 1.5 a |
FRAP (mg TE/100 g) | 14 ± 0.5 b | 18 ± 0.8 a |
Bioactive Profile | Oat Bran | |
---|---|---|
Raw | Fermented | |
pH | 6.3 ± 0.02 a | 4.4 ± 0.02 b |
WHC (H2O/g) | 2.11 ± 0.02 b | 5.68 ± 0.04 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, G.; Arshad, M.U.; Saeed, F.; Afzaal, M.; Niaz, B.; Hussain, M.; Raza, M.A.; Nayik, G.A.; Obaid, S.A.; Ansari, M.J.; et al. Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile. Fermentation 2022, 8, 509. https://doi.org/10.3390/fermentation8100509
Mustafa G, Arshad MU, Saeed F, Afzaal M, Niaz B, Hussain M, Raza MA, Nayik GA, Obaid SA, Ansari MJ, et al. Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile. Fermentation. 2022; 8(10):509. https://doi.org/10.3390/fermentation8100509
Chicago/Turabian StyleMustafa, Ghulam, Muhammad Umair Arshad, Farhan Saeed, Muhammad Afzaal, Bushra Niaz, Muzzamal Hussain, Muhammad Ahtisham Raza, Gulzar Ahmad Nayik, Sami Al Obaid, Mohammad Javed Ansari, and et al. 2022. "Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile" Fermentation 8, no. 10: 509. https://doi.org/10.3390/fermentation8100509
APA StyleMustafa, G., Arshad, M. U., Saeed, F., Afzaal, M., Niaz, B., Hussain, M., Raza, M. A., Nayik, G. A., Obaid, S. A., Ansari, M. J., Nap, M. -E., & Sãlãgean, T. (2022). Comparative Study of Raw and Fermented Oat Bran: Nutritional Composition with Special Reference to Their Structural and Antioxidant Profile. Fermentation, 8(10), 509. https://doi.org/10.3390/fermentation8100509