Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports
Abstract
:1. Introduction
2. Material and Methods
2.1. Maintenance of the Fungus and Culture Medium
2.2. Submerged Cultivation of the Fungus
2.3. Optimization of Production through Factorial Design
2.4. Enzymatic Determination
2.5. Scaling for Bioreactor
- Ni = stirring speed (1/s);
- tm = mixing time constant;
- V = volume of medium;
- Di = impeller diameter.
2.6. Protein Quantification
2.7. Effects of Temperature and pH on the Enzymatic Activity
2.8. Pretreatment of the Crude Extract
2.9. Enzymatic Immobilization through Ionic Adsorption
2.10. Statistical Analyses
3. Results and Discussion
3.1. Optimization of Cultivation with Tamarind Seeds
3.2. Optimization of Cultivation with Jatoba Seeds
3.3. Scaling for the Bioreactor to Increase Enzyme Production
3.4. Biochemical Characterization
3.5. Enzymatic Immobilization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vitcosque, G.L.; Ribeiro, L.F.C.; Lucas, R.C.; Silva, T.M.; Ribeiro, L.F.; Damasio, A.R.L.; Farinas, C.S.; Gonçalves, A.Z.L.; Segato, F.; Buckeridge, M.S.; et al. The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl. Microbiol. Biotechnol. 2016, 100, 9133–9144. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.U.; Buckeridge, M.S. Interaction between cellulose and storage xyloglucans: The influence of the degree of galactosylation. Carbohydr. Polym. 2001, 46, 157–163. [Google Scholar] [CrossRef]
- Buckeridge, M.S.; Souza, A.P. Advances of Basic Science for Second Generation Bioethanol from Sugarcane, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kulkarni, A.D.; Joshi, A.A.; Patil, C.L.; Amale, P.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Chaudhari, K.S.; Pardeshi, C.V. Xyloglucan: A functional biomacromolecule from drug delivery applications. Int. J. Biol. Macromol. 2017, 104, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Von Schantz, L.; Gullfot, F.; Scheer, S.; Filonova, L.; Gunnarsson, L.C.; Flint, J.E.; Daniel, G.; Nordberg-Karlsson, E.; Brumer, H.; Ohlin, M. Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules. BMC Biotechnol. 2009, 9, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, S.C.; York, W.S.; Albersheim, P.; Darvill, A.; Hayashi, T.; Joseleau, J.P.; Kato, Y.; Lorences, E.P.; Maclachlan, G.A.; McNeil, M.; et al. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol. Plant. 1993, 89, 1–3. [Google Scholar] [CrossRef]
- Berezina, O.V.; Herlet, J.; Rykov, S.V.; Kornberger, P.; Zavyalov, A.; Kozlov, D.; Sakhibgaraeva, L.; Krestyanova, I.; Scharwz, W.H.; Zverlov, V.; et al. Thermostable multifunctional GH74 xyloglucanase from Myceliophthora thermophila: High-level expression in Pichia pastoris and characterization of the recombinant protein. Appl. Microbiol. Biotechnol. 2017, 101, 5653–5666. [Google Scholar] [CrossRef]
- Benkö, Z.; Siika-Aho, M.; Viikari, L.; Réczey, K. Evaluation of the role of xyloglucanase in the enzymatic hydrolysis of lignocellulosic substrates. Enzym. Microb. Technol. 2008, 43, 109–114. [Google Scholar] [CrossRef]
- Song, S.; Tang, Y.; Yang, S.; Yan, Q.; Zhou, P.; Jiang, Z. Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei. Appl. Microbiol. Biotechnol. 2013, 97, 10013–10024. [Google Scholar] [CrossRef]
- Damasio, A.R.L.; Rubio, M.V.; Gonçalves, T.A.; Persinoti, G.F.; Segato, F.; Prade, R.A.; Contesini, F.J.; Souza, A.P.; Buckeridge, M.S.; Squina, F.M. Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Appl. Microbiol. Biotechnol. 2017, 101, 2893–2903. [Google Scholar] [CrossRef]
- Brück, S.A.; Contato, A.G.; Gamboa-Trujillo, P.; de Oliveira, T.B.; Cereia, M.; Polizeli, M.L.T.M. Prospection of psychrotrophic filamentous fungi isolated from the High Andean Paramo Region of Northern Ecuador: Enzymatic activity and molecular identification. Microorganisms 2022, 10, 282. [Google Scholar] [CrossRef]
- Greffe, L.; Bessueille, L.; Bulone, V.; Brumer, H. Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiology 2005, 15, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, S.; Suisha, F.; Kawasaki, N.; Shirakawa, M.; Yamatoya, K.; Attwood, D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J. Control. Release 1998, 56, 75–83. [Google Scholar] [CrossRef]
- Lima, D.U.; Oliveira, R.C.; Buckeridge, M.S. Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydr. Polym. 2003, 52, 367–373. [Google Scholar] [CrossRef]
- Gidley, D.W.; Nico, J.S.; Skalsey, M. Direct search for two-photon decay modes of orthopositronium. Phys. Rev. Lett. 1991, 66, 1302–1305. [Google Scholar] [CrossRef]
- Ishida, T.; Yaoi, K.; Hiyoshi, A.; Igarashi, K.; Samejima, M. Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J. 2007, 274, 5727–5736. [Google Scholar] [CrossRef] [PubMed]
- Xian, L.; Wang, F.; Yin, X.; Feng, J.X. Identification and characterization of an acidic and acid-stable endoxyloglucanase from Penicillium oxalicum. Int. J. Biol. Macromol. 2016, 86, 512–518. [Google Scholar] [CrossRef]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; Souza, C.G.M.; Polizeli, M.L.T.M.; Bracht, A.; et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef]
- Wong, H.L.; Hu, N.J.; Juang, T.Y.; Liu, Y.C. Co-Immobilization of xylanase and scaffolding protein onto an immobilized metal ion affinity membrane. Catalysts 2020, 10, 1408. [Google Scholar] [CrossRef]
- Brugnari, T.; Contato, A.G.; Pereira, M.G.; Freitas, E.N.; Bubna, G.A.; Aranha, G.M.; Bracht, A.; Polizeli, M.L.T.M.; Peralta, R.M. Characterisation of free and immobilised laccases from Ganoderma lucidum: Application on bisphenol a degradation. Biocatal. Biotransformation 2020, 39, 71–80. [Google Scholar] [CrossRef]
- Contato, A.G.; Oliveira, T.B.; Aranha, G.M.; Freitas, E.N.; Vici, A.C.; Nogueira, K.M.V.; Lucas, R.C.; Scarcella, A.S.A.; Buckeridge, M.S.; Silva, R.N.; et al. Prospection of fungal lignocellulolytic enzymes produced from jatoba (Hymenaea courbaril) and tamarind (Tamarindus indica) seeds: Scaling for bioreactor and saccharification profile of sugarcane bagasse. Microorganisms 2021, 9, 533. [Google Scholar] [CrossRef]
- Buckeridge, M.S.; Dietrich, S.M.C. Galactomannan from Brazilian legume seeds. Rev. Bras. Bot. 1990, 13, 109–112. [Google Scholar]
- Santos, H.P.; Buckeridge, M.S. The role of the storage carbon of cotyledons in the establishment of seedlings of Hymenaea courbaril under different light conditions. Ann. Bot. 2004, 94, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef] [Green Version]
- Andrades, D.; Graebin, N.G.; Kadowaki, M.K.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Rodrigues, R.C. Immobilization and stabilization of different β-glucosidases using the glutaraldehyde chemistry: Optimal protocol depends on the enzyme. Int. J. Biol. Macromol. 2019, 129, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Sundari, S.S.; Kumar, N.J. Production, isolation and partial purification of xylanases from an Aspergillus sp. World J. Microbiol. Biotechnol. 1995, 11, 242–243. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.I.; Iemma, A.F. Planejamento de Experimentos & Otimização de Processos, 2nd ed.; Editora Cárita: Campinas, Brazil, 2009. [Google Scholar]
- Scarcella, A.S.A.; Pasin, T.M.; de Lucas, R.C.; Ferreira-Nozawa, M.S.; de Oliveira, T.B.; Contato, A.G.; Grandis, A.; Buckeridge, M.S.; Polizeli, M.L.T.M. Holocellulase production by filamentous fungi: Potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Convers. Biorefining 2021, 1–12. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Monteiro, L.M.O.; Pereira, M.G.; Vici, A.C.; Heinen, P.R.; Buckeridge, M.S.; Polizeli, M.L.T.M. Efficient hydrolysis of wine and grape juice anthocyanins by Malbranchea pulchella β-glucosidase immobilized on MANAE-agarose and ConA-Sepharose supports. Int. J. Biol. Macromol. 2019, 136, 1133–1141. [Google Scholar] [CrossRef]
- Agrawal, K.; Verma, P. Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. Biomass Convers. Biorefining 2022, 1–20. [Google Scholar] [CrossRef]
- Contato, A.G.; Inácio, F.D.; Brugnari, T.; de Araújo, C.A.V.; Maciel, G.M.; Haminiuk, C.W.I.; Peralta, R.M.; de Souza, C.G.M. Solid-state fermentation with orange waste: Optimization of Laccase production from Pleurotus pulmonarius CCB-20 and decolorization of synthetic dyes. Acta Sci. Biol. Sci. 2020, 42, e52699. [Google Scholar] [CrossRef]
- Contato, A.G.; Inácio, F.D.; Bueno, P.S.A.; Nolli, M.M.; Janeiro, V.; Peralta, R.M.; de Souza, C.G.M. Pleurotus pulmonarius: A protease-producing white rot fungus in lignocellulosic residues. Int. Microbiol. 2022, 1–8, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jana, U.K.; Suryawanshi, R.K.; Prajapati, B.P.; Soni, H.; Kango, N. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. Bioresour. Technol. 2018, 268, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Neelkant, K.S.; Shankar, K.; Jayalakshmi, S.K.; Sreeramulu, K. Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Prep. Biochem. Biotechnol. 2019, 49, 927–934. [Google Scholar] [CrossRef]
- KC, S.; Upadhyaya, J.; Joshi, D.R.; Lekhak, B.; Chaudhary, D.C.; Pant, B.J.; Bajgai, T.R.; Dhital, R.; Khanal, S.; Koirala, N.; et al. Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation 2020, 6, 59. [Google Scholar] [CrossRef]
- Tai, W.Y.; Tan, J.S.; Lim, V.; Lee, C.K. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnol. Prog. 2019, 35, e2781. [Google Scholar] [CrossRef]
- Ezeilo, U.R.; Wahab, R.A.; Mahat, N.A. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew. Energy 2020, 156, 1301–1312. [Google Scholar] [CrossRef]
- Naidu, Y.; Siddiqui, Y.; Idris, A.S. Comprehensive studies on optimization of ligno-hemicellulolytic enzymes by indigenous white rot hymenomycetes under solid-state cultivation using agro-industrial wastes. J. Environ. Manag. 2020, 259, 110056. [Google Scholar] [CrossRef]
- Singhal, A.; Kumari, N.; Ghosh, P.; Singh, Y.; Garg, S.; Shah, M.P.; Jha, P.K.; Chauhan, D.K. Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models. Environ. Technol. Innov. 2022, 27, 102805. [Google Scholar] [CrossRef]
- Master, E.R.; Zheng, Y.; Storms, R.; Tsang, A.; Powlowski, J. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: Recombinant expression, purification and characterization. Biochem. J. 2008, 411, 161–170. [Google Scholar] [CrossRef] [Green Version]
- McGregor, N.; Morar, M.; Fenger, T.H.; Stogios, P.; Lenfant, N.; Yin, V.; Xu, X.; Evdokimova, E.; Cui, H.; Henrissat, B.; et al. Structure-function analysis of a mixed-linkage β-glucanase/xyloglucanase from the key ruminal bacteroidetes Prevotella bryantii B14. J. Biol. Chem. 2016, 291, 1175–1197. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ban, Q.; Li, H.; Hou, Y.; Jin, M.; Han, S.; Rao, J. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening. Sci. Rep. 2016, 6, 39155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Quintana, L.; Beltrán, D.; Mendez-Yañez, Á.; Valenzuela-Riffo, F.; Herrera, R.; Moya-León, M.A. Characterization of FcXTH2, a novel xyloglucan endotransglycosylase/hydrolase enzyme of Chilean strawberry with hydrolase activity. Int. J. Mol. Sci. 2020, 21, 3380. [Google Scholar] [CrossRef]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Zhou, X.; You, C. Efficient multi-enzymes immobilized on porous microspheres for producing inositol from starch. Front. Bioeng. Biotechnol. 2020, 8, 380. [Google Scholar] [CrossRef]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- Soares, J.M.; Carneiro, L.A.; Barreto, M.Q.; Ward, R.J. Co-immobilization of multiple enzymes on ferromagnetic nanoparticles for the depolymerization of xyloglucan. Biofuels Bioprod. Biorefining 2022. [Google Scholar] [CrossRef]
- Menon, V.; Prakash, G.; Rao, M. Enzymatic hydrolysis and ethanol production using xyloglucanase and Debaromyces hansenii from tamarind kernel powder: Galactoxyloglucan predominant hemicellulose. J. Biotechnol. 2010, 148, 233–239. [Google Scholar] [CrossRef]
−1.41 | −1 | 0 | 1 | 1.41 | |
---|---|---|---|---|---|
Temperature (°C) | 23.95 | 25.0 | 30.0 | 35.0 | 37.05 |
Carbon source (%) | 0.3 | 0.5 | 1.0 | 1.5 | 1.7 |
Temperature (°C) | Tamarind Seeds (%) | Stationary | Under Agitation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | 24 h | 48 h | 72 h | 96 h | |||
1 | −1 (25) | −1 (0.5) | 87.60 | 66.41 | 31.34 | 6.41 | 19.94 | 27.12 | 25.64 | 7.12 |
2 | 1 (35) | −1 (0.5) | 27.78 | 102.82 | 114.67 | 138.88 | 7.48 | 12.86 | 135.68 | 168.80 |
3 | −1 (25) | 1 (1.5) | 66.24 | 82.32 | 120.37 | 62.32 | 42.73 | 214.38 | 74.78 | 62.32 |
4 | 1 (35) | 1(1.5) | 55.20 | 280.97 | 289.28 | 415.58 | 31.52 | 326.33 | 451.19 | 526.69 |
5 | −1.41 (22.95) | 0 (1) | 71.04 | 75.85 | 83.33 | 48.08 | 74.78 | 518.14 | 430.54 | 399.56 |
6 | 1.41 (37.05) | 0 (1) | 30.98 | 61.25 | 59.47 | 105.05 | 56.98 | 333.68 | 431.96 | 632.99 |
7 | 0 (30) | −1.41 (0.295) | nd | nd | 190.52 | 411.66 | nd | 110.04 | 92.59 | 145.29 |
8 | 0 (30) | 1.41 (1.705) | 153.13 | 545.56 | 545.92 | 433.74 | 99.0 | 227.91 | 817.28 | 658.09 |
9 | 0 (30) | 0 (1) | 56.89 | 312.31 | 522.42 | 537.02 | 38.31 | 148.49 | 525.04 | 375.70 |
10 | 0 (30) | 0 (1) | 59.11 | 314.62 | 585.38 | 628.40 | 30.32 | 142.44 | 517.80 | 414.76 |
11 | 0 (30) | 0 (1) | 56.62 | 335.24 | 602.90 | 633.17 | 33.47 | 215.44 | 517.81 | 444.78 |
Temperature (°C) | Jatoba Seeds (%) | Stationary | Under Agitation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 96 h | 24 h | 48 h | 72 h | 96 h | |||
1 | −1 (25) | −1 (0.5) | 27.06 | 14.60 | 11.40 | 4.11 | 4.99 | 26.71 | 25.28 | 8.25 |
2 | 1 (35) | −1 (0.5) | 21.72 | 113.89 | 127.48 | 117.52 | 12.82 | 143.16 | 305.54 | 337.59 |
3 | −1 (25) | 1 (1.5) | 26.35 | 68.02 | 87.24 | 78.24 | 91.52 | 100.07 | 82.62 | 62.80 |
4 | 1 (35) | 1(1.5) | 70.51 | 254.26 | 406.68 | 138.88 | 69.09 | 254.26 | 305.19 | 475.41 |
5 | −1.41 (22.95) | 0 (1) | 89.74 | 90.81 | 90.81 | 49.50 | 25.64 | 155.98 | 205.65 | 54.49 |
6 | 1.41 (37.05) | 0 (1) | 66.59 | 55.55 | 55.55 | 26.24 | 72.65 | 264.23 | 590.43 | 559.45 |
7 | 0 (30) | −1.41 (0.295) | 2.0 | 113.96 | 340.44 | 430.18 | 7.47 | 75.5 | 336.53 | 450.84 |
8 | 0 (30) | 1.41 (1.705) | 96.5 | 115.5 | 642.07 | 319.43 | 96.15 | 419.5 | 652.40 | 540.58 |
9 | 0 (30) | 0 (1) | 67.31 | 312.31 | 394.0 | 449.23 | 101.49 | 566.79 | 621.12 | 508.82 |
10 | 0 (30) | 0 (1) | 62.41 | 254.55 | 398.19 | 379.26 | 180.62 | 593.99 | 622.0 | 521.88 |
11 | 0 (30) | 0 (1) | 68.02 | 256.04 | 398.87 | 400.09 | 137.1 | 491.79 | 622.10 | 501.58 |
Temperature (°C) | T50 (min) |
---|---|
40 | 138 |
50 | 185 |
60 | 67 |
70 | 66 |
Derivative | Total Immobilized Proteins (%) | Derivative Activity (U/g) | Immobilization Efficiency (%) | Hyperactivation |
---|---|---|---|---|
CM-cellulose | 18.61 | 1.16 | 100 | 1.81 |
DEAE-cellulose | 15.69 | 0.89 | 100 | 1.39 |
MANAE | 27.63 | 0.32 | 49 | nd |
PEI | 28.73 | 0.01 | 21 | nd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contato, A.G.; Vici, A.C.; Pinheiro, V.E.; Oliveira, T.B.d.; Freitas, E.N.d.; Aranha, G.M.; Valvassora Junior, A.L.A.; Rechia, C.G.V.; Buckeridge, M.S.; Polizeli, M.d.L.T.d.M. Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports. Fermentation 2022, 8, 510. https://doi.org/10.3390/fermentation8100510
Contato AG, Vici AC, Pinheiro VE, Oliveira TBd, Freitas ENd, Aranha GM, Valvassora Junior ALA, Rechia CGV, Buckeridge MS, Polizeli MdLTdM. Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports. Fermentation. 2022; 8(10):510. https://doi.org/10.3390/fermentation8100510
Chicago/Turabian StyleContato, Alex Graça, Ana Claudia Vici, Vanessa Elisa Pinheiro, Tássio Brito de Oliveira, Emanuelle Neiverth de Freitas, Guilherme Mauro Aranha, Almir Luiz Aparecido Valvassora Junior, Carem Gledes Vargas Rechia, Marcos Silveira Buckeridge, and Maria de Lourdes Teixeira de Moraes Polizeli. 2022. "Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports" Fermentation 8, no. 10: 510. https://doi.org/10.3390/fermentation8100510
APA StyleContato, A. G., Vici, A. C., Pinheiro, V. E., Oliveira, T. B. d., Freitas, E. N. d., Aranha, G. M., Valvassora Junior, A. L. A., Rechia, C. G. V., Buckeridge, M. S., & Polizeli, M. d. L. T. d. M. (2022). Comparison of Trichoderma longibrachiatum Xyloglucanase Production Using Tamarind (Tamarindus indica) and Jatoba (Hymenaea courbaril) Seeds: Factorial Design and Immobilization on Ionic Supports. Fermentation, 8(10), 510. https://doi.org/10.3390/fermentation8100510