Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules
Abstract
:1. Introduction
2. Material and Methods
2.1. Milk- and Water-Kefir Grains
2.2. Goat Milk Whey Obtention and Juice Mix Preparation
2.3. Combined Dual-Mix L-Optimal Response Surface Design
2.4. Physical-Chemical and Microbiological Determinations of the Fermented Beverages
2.5. Sensory Analysis and Overall Acceptability Score
2.6. Antioxidant Measurement
3. Results
3.1. Combined Dual-Mix L-Optimal Experiments
3.2. Optimisation Dual-Mix L-Optimal Models
3.3. Validation of the Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, S.; García, M.B.M. A 100-Year Review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- Getaneh, G.; Mebrat, A.; Wubie, W.; Kendie, H. Review on Goat Milk Composition and its Nutritive Value. J. Nutr. Health Sci. 2016, 3, 401. [Google Scholar] [CrossRef]
- Ushakova, Y.V.; Makarova, S.Y.; Zabelina, M.V.; Saukenova, M.M.; Rysmukhambetova, G.E. Study of quality of goat’s milk as raw material for functional foods. Food Technol. 2019, 2–3, 50–53. [Google Scholar] [CrossRef]
- Antsyperova, M.; Arseneva, T.; Volkova, O.; Iakovchenko, N. Development of Formulation and Technology of Low-lactose Dairy Beverage Made from Goat Milk. KnE Life Sci. 2020, 5, 203–210. [Google Scholar] [CrossRef]
- Park, Y. Hypo-allergenic and therapeutic significance of goat milk. Small Rumin. Res. 1994, 14, 151–159. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, H.; Wang, C.; Cheng, M.; Wang, L.; Huang, M.; Zhao, Q. Physicochemical and functional properties of goat milk whey protein and casein obtained during different lactation stages. J. Dairy Sci. 2021, 104, 3936–3946. [Google Scholar] [CrossRef]
- Paskaš, S.; Miočinović, J.; Lopičić-Vasić, T.; Mugoša, I.; Pajić, M.; Becskei, Z. Consumer attitudes towards goat milk and goat milk products in Vojvodina. Mljekarstvo 2020, 70, 171–183. [Google Scholar] [CrossRef]
- Adewumi, O.O.; Irhekore, O.T.; Ogundipe, T.G.; Tona, G.O.; Oso, O.A. Sensory evaluation and acceptability of goat milk in Odeda Local Government Area of Ogun state. Niger. J. Anim. Prod. 2018, 45, 317–324. [Google Scholar] [CrossRef]
- Costa, M.P.; Balthazar, C.F.; Franco, R.M.; Mársico, E.T.; Cruz, A.G.; Conte Junior, C.A. Changes on expected taste perception of probiotic and conventional yogurts made from goat milk after rapidly repeated exposure. J. Dairy Sci. 2014, 97, 2610–2618. [Google Scholar] [CrossRef]
- Tranjan, B.C.; Cruz, A.G.; Walter, E.H.M.; Faria, J.A.F.; Bolini, H.M.A.; Moura, M.R.L.; Carvalho, L.M.J. Development of goat cheese whey-flavoured beverages. Int. J. Dairy Technol. 2009, 62, 438–443. [Google Scholar] [CrossRef]
- Buriti, F.C.A.; Freitas, S.C.; Egito, A.S.; dos Santos, K.M.O. Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. LWT-Food Sci. Technol. 2014, 59, 196–203. [Google Scholar] [CrossRef]
- Settanni, L.; Cruciata, M.; Guarcello, R.; Francesca, N.; Moschetti, G.; La Carrubba, V.; Gaglio, R. Valorisation of Dairy Wastes Through Kefir Grain Production. Waste Biomass Valorization 2020, 11, 3979–3985. [Google Scholar] [CrossRef]
- Korma, S.A.; Li, L.; Khalifa, S.A.; Abdrabo, K.A.E.; Huang, Y.; An, P.; Fu, J. Microbiological, physicochemical, and sensory properties of goat milk co-fermented with isolated new yeasts. J. Food Meas. Charact. 2021, 15, 5296–5309. [Google Scholar] [CrossRef]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. Food Rev. Int. 2020, 38, 1343–1367. [Google Scholar] [CrossRef]
- Edger, P.P.; Poorten, T.J.; VanBuren, R.; Hardigan, M.A.; Colle, M.; McKain, M.R.; Smith, R.D.; Teresi, S.J.; Nelson, A.D.L.; Wai, C.M.; et al. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 2019, 51, 541–547. [Google Scholar] [CrossRef]
- Luaces-Regueira, M.; Pereira, T.; Campos-Toimil, M. New insights on the effects of prebiotics, probiotics and synbiotics in the gastrointestinal diseases and cancer. J. Food Microbiol. 2018, 2, 19–22. [Google Scholar]
- Guzel-Seydim, Z.B.; Gökırmaklı, Ç.; Greene, A.K. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci. Technol. 2021, 113, 42–53. [Google Scholar] [CrossRef]
- Gökırmaklı, Ç.; Güzel-Seydim, Z.B. Water kefir grains vs. milk kefir grains: Physical, microbial and chemical comparison. J. Appl. Microbiol. 2022, 132, 4349–4358. [Google Scholar] [CrossRef]
- Magalhães-Guedes, K.T.; Magalhães, K.T.; Schwan, R.F. Chemical and Therapeutic Aspects of Kefir. Int. J. Pharmacovigil. 2016, 1, 3. [Google Scholar] [CrossRef]
- Sharifi, M.; Moridnia, A.; Mortazavi, D.; Salehi, M.; Bagheri, M.; Sheikhi, A. Kefir: A powerful probiotics with anticancer properties. Med. Oncol. 2017, 34, 183. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Iraporda, C.; Garrote, G.L.; Abraham, A.G. Kefir micro-organisms: Their role in grain assembly and health properties of fermented milk. J. Appl. Microbiol. 2019, 126, 686–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, B.; Gürakan, G.C.; Ünlü, G. Kefir: A Multifaceted Fermented Dairy Product. Probiotics Antimicrob. Proteins 2014, 6, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Çevik, T.; Aydoğdu, N.S.; Özdemir, N.; Taş, T.K. The Effect of Different Sugars on Water Kefir Grains. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 40–45. [Google Scholar] [CrossRef]
- Alves, E.; Rijo, P.; Rodrigues, L.M.; Rosado, C. Acceptability of kefir produced by fermentation of Portuguese milk with CIDCA AGK1 grains in a sample of Portuguese consumers. J. Biomed. Biopharm. Res. 2021, 18, 83–91. [Google Scholar] [CrossRef]
- Moretti, A.F.; Moure, M.C.; Quiñoy, F.; Esposito, F.; Simonelli, N.; Medrano, M.; León-Peláez, Á. Water kefir, a fermented beverage containing probiotic microorganisms: From ancient and artisanal manufacture to industrialized and regulated commercialization. Futur. Foods 2022, 5, 100123. [Google Scholar] [CrossRef]
- Tzavaras, D.; Papadelli, M.; Ntaikou, I. From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. Fermentation 2022, 8, 135. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Ghaly, M.F.; El-Naggar, A.K. Milk Kefir: Ultrastructure, Antimicrobial Activity and Efficacy on Aflatoxin B1 Production by Aspergillus flavus. Curr. Microbiol. 2011, 62, 1602–1609. [Google Scholar] [CrossRef]
- Nurliyani, N.; Harmayani, E.; Sunarti, S. Synbiotic goat milk kefir improves health status in rats fed a high-fat and high-fructose diet. Vet. World 2022, 15, 173–181. [Google Scholar] [CrossRef]
- Setiawati, A.E.; Kusnadi, J. Optimization of fermentation time and grain concentration for water kefir production from butterfly pea flower (Clitoria ternatea). IOP Conf. Ser. Earth Environ. Sci. 2021, 924, 012081. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, J. Dynamic Analysis of Organic Acids in a Mixture of Vegetable and Fruit Juices during Fermentation and Changes in Antioxidant Activity and Functional Constituents during Simulated Gastrointestinal Digestion. Food Sci. 2021, 42, 90–97. [Google Scholar] [CrossRef]
- Tavares, P.P.L.G.; dos Anjos, E.A.; Nascimento, R.Q.; da Silva Cruz, L.F.; Lemos, P.V.F.; Druzian, J.I.; de Oliveira, T.T.B.; de Andrade, R.B.; de Costa Souza, A.L.; Magalhães-Guedes, K.T.; et al. Chemical, microbiological and sensory viability of low-calorie, dairy-free kefir beverages from tropical mixed fruit juices. CyTA J. Food 2021, 19, 457–464. [Google Scholar] [CrossRef]
- M’Hir, S.; Mejri, A.; Atrous, H.; Ayed, L. Optimization of Parameters Using Response Surface Methodology to Develop a Novel Kefir-Like Functional Beverage from Cheese Whey Enriched with Myrtle Juice. J. Chem. 2021, 2021, 2984470. [Google Scholar] [CrossRef]
- Rattray, F.P.; O’Connell, M.J. Kefir. In Encyclopedia of Dairy Sciences; Academic Press: San Diego, CA, USA, 2022. [Google Scholar]
- John, S.M.; Deeseenthum, S. Properties and benefits of kefir–A review. Songklanakarin J. Sci. Technol. 2015, 37, 275–282. [Google Scholar]
- de Oliveira Leite, A.M.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz. J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Rafie, N.; Hamedani, S.G.; Ghiasvand, R.; Miraghajani, M. Kefir and Cancer: A Systematic Review of Literatures. Arch. Iran. Med. 2015, 18, 852–857. [Google Scholar]
- Dias, P.A.; Silva, D.T.; Timm, C.D. Antimicrobial activity of microorganisms isolated from kefir grains. Ciênc. Anim. Bras. 2018, 19, 1–8. [Google Scholar] [CrossRef]
- Panghal, A.; Patidar, R.; Jaglan, S.; Chhikara, N.; Khatkar, S.K.; Gat, Y.; Sindhu, N. Whey valorization: Current options and future scenario–A critical review. Nutr. Food Sci. 2018, 48, 520–535. [Google Scholar] [CrossRef]
- Jelen, P. Whey processing: Utilization and Products. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2011; pp. 731–737. [Google Scholar] [CrossRef]
- Herrero, M.; Laca, A.; Laca, A.; Díaz, M. Application of life cycle assessment to food industry wastes. In Food Industry Wastes; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. J. Environ. Manag. 2012, 110, 48–68. [Google Scholar] [CrossRef]
- Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey utilization: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef]
- Spălățelu, C. Biotechnological valorisation of whey. Innov. Rom. Food Biotechnol. 2012, 10, 1–8. [Google Scholar]
- Pais-Chanfrau, J.M.; Pérez, J.N.; Lara Fiallos, M.V.; Rivera Intriago, L.M.; Trujillo Toledo, L.E.; Cuaran Guerrero, M.J. Milk whey valorization: An overview from Biotechnology. Bionatura 2017, 2, 468–476. [Google Scholar] [CrossRef]
- Zygmunt, L.C.; Anderson, E.; Behrens, B.; Bowers, R.; Bussey, M.; Cohen, G.; Colon, M.; Deis, C.; Given, P.S.; Granade, A.; et al. High Pressure Liquid Chromatographic Determination of Mono- and Disaccharides in Presweetened Cereals: Collaborative Study. J. Assoc. Off. Anal. Chem. 1982, 65, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N.J.; Anderson, S.; Gildemeister, B.; Adcock, W.; Boedigheimer, J.; Bogren, E.; Coffin, R.; Conway, K.; DeBaker, A.; Frankenius, E.; et al. Crude Fat, Hexanes Extraction, in Feed, Cereal Grain, and Forage (Randall/Soxtec/Submersion Method): Collaborative Study. J. AOAC Int. 2003, 86, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Thiex, N.J.; Manson, H.; Anderson, S.; Persson, J.; Bogren, E.; Bolek, G.; Budde, D.; Ellis, C.; Eriksson, S.; Field, G.; et al. Determination of Crude Protein in Animal Feed, Forage, Grain, and Oilseeds by Using Block Digestion with a Copper Catalyst and Steam Distillation into Boric Acid: Collaborative Study. J. AOAC Int. 2002, 85, 309–317. [Google Scholar] [CrossRef]
- Zilliox, E.H.; Mitchell, D.J.; Frary, G.G. Determination of the Titratable Acidity of Milk. J. AOAC Int. 1947, 30, 130–134. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- De Oliveira, D.F.; Granato, D.; Barana, A.C. Development and optimization of a mixed beverage made of whey and water-soluble soybean extract flavored with chocolate using a simplex-centroid design. Food Sci. Technol. 2018, 38, 413–420. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Sabokbar, N.; Moosavi-Nasab, M.; Khodaiyan, F. Preparation and characterization of an apple juice and whey based novel beverage fermented using kefir grains. Food Sci. Biotechnol. 2015, 24, 2095–2104. [Google Scholar] [CrossRef]
- Carrera Acosta, L.D. Obtención de Kefirán a Partir de Suero y Gránulos de Kéfir. Bachelor’s Thesis, Universidad Técnica del Norte (UTN), Cantón Antonio Ante, Ecuador, 2018. [Google Scholar]
- Nutrition Division. Probiotics in Food Health and Nutritional Properties and Guidelines for Evaluation FAO Food and Nutrition Paper; FAO Food Nutrition Paper 85; FAO: Rome, Italy, 2006. [Google Scholar]
- Sabokbar, N.; Khodaiyan, F.; Moosavi-Nasab, M. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3422–3432. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Total phenolic content and antioxidant activities of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2016, 53, 739–747. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F. Characterization of pomegranate juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3711–3718. [Google Scholar] [CrossRef] [Green Version]
- Bo, L.; Xin, G.; Na, L.; Jun, M. Fermentation process of mulberry juice-whey based Tibetan kefir beverage production. Czech J. Food Sci. 2018, 36, 494–501. [Google Scholar] [CrossRef]
- Agarbati, A.; Ciani, M.; Canonico, L.; Galli, E.; Comitini, F. Exploitation of Yeasts with Probiotic Traits for Kefir Production: Effectiveness of the Microbial Consortium. Fermentation 2022, 8, 9. [Google Scholar] [CrossRef]
Mix 1 | Mix 2 | Responses | ||||||
---|---|---|---|---|---|---|---|---|
Block | Run | (x1) A GMW a | (x2) B JMX b | (x3) C MKG c | (x4) D WKG d | LAB e (CFU/mL) | Yeast (CFU/mL) | Acceptability (-) |
week 1 | 1 | 0.77 | 0.23 | 0.77 | 0.23 | 7.34 × 106 | 3.60 × 107 | 5.25 |
2 | 0.00 | 1.00 | 0.50 | 0.50 | 9.25 × 107 | 4.04 × 107 | 5.00 | |
3 | 0.53 | 0.47 | 0.55 | 0.45 | 5.13 × 107 | 2.96 × 107 | 6.00 | |
4 | 0.93 | 0.08 | 0.26 | 0.74 | 3.94 × 107 | 3.73 × 107 | 5.50 | |
5 | 0.00 | 1.00 | 0.50 | 0.50 | 1.66 × 107 | 4.60 × 107 | 4.75 | |
6 | 0.50 | 0.50 | 0.00 | 1.00 | 2.30 × 107 | 4.28 × 107 | 6.25 | |
7 | 0.50 | 0.50 | 0.00 | 1.00 | 4.90 × 107 | 5.92 × 107 | 6.50 | |
8 | 0.00 | 1.00 | 1.00 | 0.00 | 1.80 × 107 | 3.57 × 107 | 5.75 | |
week 2 | 9 | 0.50 | 0.50 | 1.00 | 0.00 | 3.67 × 108 | 2.38 × 109 | 6.50 |
10 | 1.00 | 0.00 | 0.51 | 0.49 | 1.49 × 109 | 4.97 × 109 | 4.75 | |
11 | 1.00 | 0.00 | 0.51 | 0.49 | 1.74 × 109 | 4.88 × 109 | 4.25 | |
12 | 0.55 | 0.45 | 0.46 | 0.54 | 4.85 × 108 | 2.16 × 109 | 5.75 | |
13 | 0.26 | 0.74 | 0.21 | 0.79 | 2.72 × 108 | 2.70 × 109 | 5.75 | |
14 | 1.00 | 0.00 | 0.00 | 1.00 | 7.67 × 108 | 1.91 × 109 | 5.00 | |
15 | 0.50 | 0.50 | 1.00 | 0.00 | 8.87 × 108 | 3.61 × 109 | 6.75 | |
16 | 0.26 | 0.74 | 0.21 | 0.79 | 7.50 × 108 | 1.96 × 109 | 5.25 | |
week 3 | 17 | 1.00 | 0.00 | 1.00 | 0.00 | 5.68 × 108 | 7.27 × 108 | 5.00 |
18 | 0.42 | 0.58 | 0.50 | 0.50 | 8.86 × 107 | 5.09 × 108 | 6.50 | |
19 | 0.24 | 0.76 | 0.77 | 0.23 | 6.18 × 108 | 1.20 × 109 | 5.25 | |
20 | 0.66 | 0.34 | 0.22 | 0.78 | 6.49 × 108 | 5.87 × 108 | 5.50 | |
21 | 0.00 | 1.00 | 0.00 | 1.00 | 6.09 × 108 | 2.15 × 109 | 6.50 | |
22 | 0.00 | 1.00 | 0.00 | 1.00 | 5.89 × 108 | 2.08 × 109 | 6.25 | |
23 | 1.00 | 0.00 | 1.00 | 0.00 | 5.88 × 108 | 6.97 × 108 | 5.00 | |
week 4 | 24 | 0.71 | 0.29 | 0.00 | 1.00 | 1.50 × 109 | 3.86 × 108 | 6.50 |
25 | 0.00 | 1.00 | 0.00 | 1.00 | 4.49 × 108 | 8.20 × 108 | 6.30 | |
26 | 0.21 | 0.79 | 0.75 | 0.25 | 3.56 × 108 | 5.69 × 108 | 6.10 | |
27 | 0.99 | 0.01 | 1.00 | 0.00 | 5.52 × 108 | 3.79 × 108 | 6.20 | |
28 | 0.52 | 0.48 | 1.00 | 0.00 | 7.58 × 107 | 4.46 × 108 | 5.70 | |
29 | 0.00 | 1.00 | 1.00 | 0.00 | 5.95 × 107 | 4.51 × 108 | 5.90 | |
30 | 0.71 | 0.29 | 0.00 | 1.00 | 1.38 × 109 | 4.25 × 108 | 6.75 | |
31 | 0.00 | 1.00 | 1.00 | 0.00 | 1.19 × 108 | 4.82 × 108 | 6.30 | |
32 | 0.52 | 0.48 | 1.00 | 0.00 | 1.16 × 108 | 3.66 × 108 | 6.30 | |
33 | 0.99 | 0.01 | 1.00 | 0.00 | 4.63 × 108 | 2.89 × 108 | 6.15 | |
34 | 0.21 | 0.79 | 0.75 | 0.25 | 3.76 × 108 | 6.18 × 108 | 5.70 | |
35 | 0.00 | 1.00 | 0.00 | 1.00 | 4.09 × 108 | 8.61 × 108 | 6.40 | |
36 | 0.71 | 0.29 | 0.00 | 1.00 | 1.47 × 109 | 4.05 × 108 | 6.80 | |
37 | 0.00 | 1.00 | 0.00 | 1.00 | 4.79 × 108 | 8.40 × 108 | 6.10 | |
38 | 0.21 | 0.79 | 0.75 | 0.25 | 4.27 × 108 | 6.38 × 108 | 6.70 | |
39 | 0.99 | 0.01 | 1.00 | 0.00 | 4.93 × 108 | 4.09 × 108 | 6.50 | |
40 | 0.52 | 0.48 | 1.00 | 0.00 | 9.54 × 107 | 4.06 × 108 | 5.60 | |
41 | 0.00 | 1.00 | 1.00 | 0.00 | 8.96 × 107 | 3.63 × 108 | 5.80 |
ANOVA for Dual-Mix Model of Transformed: LAB (CFU/mL) | |||||
---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
Block | 49.76 | 3 | 16.59 | ||
Model | 23.37 | 7 | 3.34 | 19.37 | <0.0001 |
Linear × Linear mixture | 10.97 | 3 | 3.66 | 21.22 | <0.0001 |
ABC | 2.03 | 1 | 2.03 | 11.76 | 00018 |
ABD | 0.0507 | 1 | 0.0507 | 0.2940 | 0.5917 |
ABC (A − B) | 9.73 | 1 | 9.73 | 56.42 | <0.0001 |
ABD (A − B) | 7.52 | 1 | 7.52 | 43.63 | <0.0001 |
Residual | 5.17 | 30 | 0.1724 | ||
Lack of Fit | 2.11 | 11 | 0.1917 | 1.19 | 0.3563 |
Pure Error | 3.06 | 19 | 0.1612 | ||
Cor. Total | 78.30 | 40 | |||
ANOVA for Dual-Mix Model of Transformed: Yeast (CFU/mL) | |||||
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
Block | 78.30 | 3 | 26.10 | ||
Model | 4.74 | 9 | 0.5271 | 31.42 | <0.0001 |
Linear × Linear mixture | 1.98 | 3 | 0.6600 | 39.35 | <0.0001 |
ABC | 0.0008 | 1 | 0.0008 | 0.0501 | 0.8245 |
ABD | 0.0565 | 1 | 0.0565 | 3.37 | 0.0771 |
ACD | 0.6926 | 1 | 0.6926 | 41.29 | <0.0001 |
BCD | 0.0534 | 1 | 0.0534 | 3.18 | 0.0852 |
ABCD | 0.6423 | 1 | 0.6423 | 38.29 | <0.0001 |
BCD (C − D) | 1.08 | 1 | 1.08 | 64.24 | <0.0001 |
Residual | 0.4697 | 28 | 0.0168 | ||
Lack of Fit | 0.1241 | 9 | 0.0138 | 0.7581 | 0.6546 |
Pure Error | 0.3456 | 19 | 0.0182 | ||
Cor. Total | 83.52 | 40 | |||
ANOVA for Dual-Mix Model ofAcceptability (-) | |||||
Block | 3.84 | 3 | 1.28 | ||
Model | 9.14 | 12 | 0.7617 | 5.14 | 0.0003 |
Linear × Linear mixture | 1.11 | 3 | 0.3707 | 2.50 | 0.0826 |
ABC | 0.0702 | 1 | 0.0702 | 0.4732 | 0.4979 |
ABD | 0.1039 | 1 | 0.1039 | 0.7005 | 0.4105 |
ACD | 1.35 | 1 | 1.35 | 9.09 | 0.0058 |
BCD | 3.18 | 1 | 3.18 | 21.46 | <0.0001 |
ABCD | 1.88 | 1 | 1.88 | 12.66 | 0.0015 |
ABC (A − B) | 0.8924 | 1 | 0.8924 | 6.02 | 0.0215 |
ABD (A − B) | 1.69 | 1 | 1.69 | 11.43 | 0.0024 |
ABCD (A − B) | 1.17 | 1 | 1.17 | 7.89 | 0.0095 |
ABCD (AC − AD – BC + BD) | 1.00 | 1 | 1.00 | 6.75 | 0.0155 |
Residual | 3.71 | 25 | 0.1483 | ||
Lack of Fit | 2.23 | 6 | 0.3714 | 4.77 | 0.0040 |
Pure Error | 1.48 | 19 | 0.0778 | ||
Cor. Total | 16.69 | 40 |
No. | GMW (-) | JMX (-) | MKG (-) | WKG (-) | (-) | D (-) | ||
---|---|---|---|---|---|---|---|---|
1 | 0.729 | 0.271 | 0.000 | 1.000 | 15.6 | 4.4 | 6.99 | 0.8 |
2 | 0.000 | 1.000 | 0.000 | 1.000 | 5.4 | 10.1 | 6.61 | 0.8 |
3 | 0.114 | 0.886 | 0.789 | 0.211 | 4.2 | 7.9 | 6.80 | 0.8 |
4 | 0.000 | 1.000 | 0.672 | 0.328 | 1.7 | 9.1 | 8.01 | 0.7 |
5 | 0.981 | 0.019 | 1.000 | 0.000 | 3.9 | 3.9 | 6.80 | 0.7 |
6 | 1.000 | 0.000 | 0.229 | 0.771 | 2.0 | 4.9 | 6.52 | 0.7 |
7 | 0.550 | 0.450 | 0.921 | 0.079 | 0.8 | 4.8 | 6.80 | 0.6 |
8 | 0.537 | 0.463 | 1.000 | 0.000 | 0.8 | 4.3 | 6.80 | 0.6 |
Optima | Responses | Predicted Mean | Predicted Median | Std Dev | 95% P.I. Low | Data Mean | 95% P.I. High |
---|---|---|---|---|---|---|---|
OPT1 | 15.63 | 14.34 | 6.78 | 7.76 | 13.08 | 26.51 | |
4.43 | 4.40 | 0.58 | 3.72 | 4.54 | 5.20 | ||
6.99 | 6.99 | 0.38 | 6.27 | 6.62 | 7.71 | ||
OPT2 | 5.41 | 4.96 | 2.35 | 2.88 | 5.07 | 8.57 | |
10.10 | 9.98 | 8.38 | 8.38 | 9.79 | 11.90 | ||
6.61 | 6.61 | 6.05 | 6.05 | 6.06 | 7.17 | ||
OPT3 | 4.20 | 3.86 | 1.82 | 2.22 | 3.95 | 3.95 | |
7.88 | 7.81 | 1.02 | 6.38 | 6.52 | 9.57 | ||
6.80 | 6.80 | 0.38 | 5.84 | 5.90 | 7.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nastar Marcillo, D.A.; Olmedo Galarza, V.; Pinto Mosquera, N.S.; Espín Valladares, R.d.C.; Núñez Pérez, J.; Pais-Chanfrau, J.M. Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. Fermentation 2022, 8, 500. https://doi.org/10.3390/fermentation8100500
Nastar Marcillo DA, Olmedo Galarza V, Pinto Mosquera NS, Espín Valladares RdC, Núñez Pérez J, Pais-Chanfrau JM. Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. Fermentation. 2022; 8(10):500. https://doi.org/10.3390/fermentation8100500
Chicago/Turabian StyleNastar Marcillo, Diana Alexandra, Valeria Olmedo Galarza, Nicolás Sebastián Pinto Mosquera, Rosario del Carmen Espín Valladares, Jimmy Núñez Pérez, and José Manuel Pais-Chanfrau. 2022. "Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules" Fermentation 8, no. 10: 500. https://doi.org/10.3390/fermentation8100500
APA StyleNastar Marcillo, D. A., Olmedo Galarza, V., Pinto Mosquera, N. S., Espín Valladares, R. d. C., Núñez Pérez, J., & Pais-Chanfrau, J. M. (2022). Multi-Objective Optimization of Beverage Based on Lactic Fermentation of Goat’s Milk Whey and Fruit Juice Mixes by Kefir Granules. Fermentation, 8(10), 500. https://doi.org/10.3390/fermentation8100500