Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Sample
2.2. DPPH and ABTS Radical Scavenging Activity
2.3. Cell Culture
2.4. NO Production and Cell Viability
2.5. mRNA Extraction and Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)
2.6. Simulated Gastrointestinal Tract Stability
2.7. Adhesion to HT-29 Cells
2.8. Statistical Analysis
3. Results
3.1. Antioxidant Activity of the LAB Strains
3.2. LAB Strains Suppressed NO Production in LPS-Activated RAW264.7 Cells
3.3. LAB Strains Reduced iNOS/COX-2 Gene Expression in LPS-Activated RAW264.7 Cells
3.4. Viability of LAB Strains in Simulated Gastrointestinal Fluid
3.5. Adhesion of the LAB Strains on HT-29 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Río, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Fenster, C.P.; Weinsier, R.L.; Darley-Usmar, V.M.; Patel, R.P. Obesity, aerobic exercise, and vascular disease: The role of oxidant stress. Obes. Res. 2002, 10, 964–968. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Choi, H.-S.; Lee, O.-H.; Jeon, Y.-J.; Lee, B.-Y. Inhibition of reactive oxygen species (ROS) and nitric oxide (NO) by Gelidium elegans using alternative drying and extraction conditions in 3T3-L1 and RAW264.7 cells. Prev. Nutr. Food Sci. 2012, 17, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-S.; Hsu, W.-H.; Huang, J.-J.; Wu, S.-C. Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide-and lipopolysaccharide-treated RAW264. 7 macrophages. Food Funct. 2012, 3, 1294–1301. [Google Scholar] [CrossRef]
- Sekhar, S.; Sampath-Kumara, K.K.; Niranjana, S.R.; Prakash, H.S. Attenuation of reactive oxygen/nitrogen species with suppression of inducible nitric oxide synthase expression in RAW264.7 macrophages by bark extract of Buchanania lanzan. Pharmacogn. Mag. 2015, 11, 283. [Google Scholar]
- Albrecht, E.W.; Stegeman, C.A.; Tiebosch, A.T.; Tegzess, A.M.; Van Goor, H. Expression of inducible and endothelial nitric oxide synthases, formation of peroxynitrite and reactive oxygen species in human chronic renal transplant failure. Am. J. Transplant. 2002, 2, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Takumida, M.; Popa, R.; Anniko, M. Lipopolysaccharide-induced expression of reactive oxygen species and peroxynitrite in the guinea pig vestibular organ. ORL 1998, 60, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Liang, K.; Ding, Y. Increased nitric oxide inactivation by reactive oxygen species in lead-induced hypertension. Kidney Int. 1999, 56, 1492–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Kim, Y.A.; Yokozawa, T. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells. Toxicology 2010, 270, 106–111. [Google Scholar] [CrossRef]
- Kim, Y.J. Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages. J. Nutr. Health 2016, 49, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Park, J.-Y.; Kim, D.H.; Choi, S.J.; Jang, G.Y.; Seo, K.H. Chemical composition and protective effect of essential oils derived from medicinal plant on PC12 neuro-cells induced by oxidative stress. Korean J. Food Nutr. 2020, 33, 215–221. [Google Scholar]
- Kang, C.-H.; Han, S.H.; Kim, Y.; Jeong, Y.; Paek, N.-S. Antibacterial activity and probiotic properties of lactic acid bacteria isolated from traditional fermented foods. KSBB J. 2017, 32, 199–205. [Google Scholar] [CrossRef]
- AlKalbani, N.S.; Turner, M.S.; Ayyash, M.M. Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microb. Cell Fact. 2019, 18, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riane, K.; Sifour, M.; Ouled-Haddar, H.; Idoui, T.; Bounar, S.; Boussebt, S. Probiotic properties and antioxidant efficiency of Lactobacillus plantarum 15 isolated from milk. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 516–520. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Jagelaviciute, J. Investigation of antibacterial activity and probiotic properties of strains belonging to Lactobacillus and Bifidobacterium genera for their potential application in functional food and feed products. Probiotics Antimicrob. Proteins 2021, 13, 1387–1403. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Y.; Zhang, L.; Zhang, X.; Huang, L.; Li, D.; Niu, C.; Yang, Z.; Wang, Q. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 2012, 135, 1914–1919. [Google Scholar] [CrossRef] [PubMed]
- Pieniz, S.; Andreazza, R.; Anghinoni, T.; Camargo, F.; Brandelli, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 2014, 37, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Song, M.W.; Chung, Y.; Kim, K.T.; Hong, W.S.; Chang, H.J.; Paik, H.D. Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. LWT-Food Sci. Technol. 2020, 128, 109452. [Google Scholar] [CrossRef]
- Kang, C.H.; Kim, J.S.; Park, H.M.; Kim, S.; Paek, N.S. Antioxidant activity and short-chain fatty acid production of lactic acid bacteria isolated from Korean individuals and fermented foods. 3 Biotech 2021, 11, 217. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.S.; Kim, Y.G.; Jeong, Y.; Kim, J.E.; Pack, N.S.; Kang, C.H. Antioxidant and probiotic properties of Lactobacilli and Bifidobacteria of human origins. Biotechnol. Bioprocess Eng. 2020, 25, 421–430. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, J.Y.; Park, C.G.; Kim, D.H.; Ji, Y.J.; Choi, S.J.; Oh, M.W.; Lee, Y.; Jeong, J.; Lee, J.H.; et al. Validation of a method and evaluation of antioxidant activity for the simultaneous determination of riboflavin and coixol in Coix lacryma-jobi var. ma-yuen stapf sprouts. Korean J. Crop Sci. 2019, 64, 452–458. [Google Scholar]
- Kang, C.H.; Koo, J.R.; So, J.S. Inhibitory effects of Aralia cordata thunb extracts on nitric oxide synthesis in RAW264.7 macrophage cells. Korean J. Food Sci. Technol. 2012, 44, 621–627. [Google Scholar] [CrossRef]
- Aziz, D.M. Assessment of bovine sperm viability by MTT reduction assay. Anim. Reprod. Sci. 2006, 92, 1–8. [Google Scholar] [CrossRef]
- Qi, X.; Simsek, S.; Chen, B.; Rao, J. Alginate-based double-network hydrogel improves the viability of encapsulated probiotics during simulated sequential gastrointestinal digestion: Effect of biopolymer type and concentrations. Int. J. Biol. Macromol. 2020, 165, 1675–1685. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.; Jeong, Y.; Kang, C.H. Lactic acid bacteria exert a hepatoprotective effect against ethanol-induced liver injury in HepG2 cells. Microorganisms 2021, 9, 1844. [Google Scholar] [CrossRef]
- Lin, M.Y.; Yen, C.L. Antioxidative ability of lactic acid bacteria. J. Agric. Food. Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef]
- Hamed, E. Isolation, characterization and identification of lactic acid bacteria as probiotic. Ann. Agric. Sci. Moshtohor 2021, 59, 311–322. [Google Scholar] [CrossRef]
- Tang, W.; Li, C.; He, Z.; Pan, F.; Pan, S.; Wang, Y. Probiotic properties and cellular antioxidant activity of Lactobacillus plantarum MA2 isolated from Tibetan Kefir grains. Probiotics Antimicrob. Proteins 2018, 10, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Chae, S.A.; Bang, W.Y.; Ban, O.H.; Kim, S.J.; Jung, Y.H.; Yang, J. Anti-inflammatory Effect of Lactobacillus Plantarum IDCC 3501 and Its Safety Evaluation. Braz. J. Microbiol. 2021, 52, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Z.A.; Lu, Y.; Liu, S.Q. In vitro bioactivities of coffee brews fermented with the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. Food Res. Int. 2021, 149, 110693. [Google Scholar] [CrossRef] [PubMed]
- De Marco, S.; Sichetti, M.; Muradyan, D.; Piccioni, M.; Traina, G.; Pagiotti, R.; Pietrella, D. Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid. Based Complement. Alternat. Med. 2018, 2018, 1756308. [Google Scholar] [CrossRef]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef]
- Davis, C.D.; Milner, J.A. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Btochem. 2009, 20, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Lee, S.H.; Kim, M.G.; Lee, H.J.; Kim, G.B. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264. 7 cells and a dextran sulfate sodium–induced colitis animal model. J. Dairy Sci. 2019, 102, 6718–6725. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, L.; Xu, S.; Pan, J.; Zhang, Q.; Lu, R. Surface-layer protein from Lactobacillus acidophilus NCFM inhibits lipopolysaccharide-induced inflammation through MAPK and NF-κB signaling pathways in RAW264. 7 cells. J. Agric. Food Chem. 2018, 66, 7655–7662. [Google Scholar] [CrossRef] [PubMed]
- Son, S.H.; Jeon, H.L.; Yang, S.J.; Sim, M.H.; Kim, Y.J.; Lee, N.K.; Paik, H.D. Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity. Food Sci. Biotechnol. 2018, 27, 123–129. [Google Scholar] [CrossRef]
- Douillard, F.P.; Ribbera, A.; Kant, R.; Pietilä, T.E.; Järvinen, H.M.; Messing, M.; Randazzo, C.L.; Paulin, L.; Laine, P.; Ritari, J.; et al. Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genet. 2013, 9, e1003683. [Google Scholar] [CrossRef]
- Kleeman, E.G.; Klaenhammer, T.R. Adherence of Lactobacillus species to human fetal intestinal cells. J. Dairy Sci. 1982, 65, 2063–2069. [Google Scholar] [CrossRef]
- Devi, S.M.; Kurrey, N.K.; Halami, P.M. In vitro anti-inflammatory activity among probiotic Lactobacillus species isolated from fermented foods. J. Funct. Foods 2018, 47, 19–27. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, S.Y.; Han, K.J.; Eom, S.J.; Paik, H.D. Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-Food Sci. Technol. 2014, 58, 130–134. [Google Scholar] [CrossRef]
Species | Strain | Radical Scavenging (%) | |
---|---|---|---|
DPPH | ABTS | ||
L-ascorbic Acid (10 µg/mL) | 37.15 ± 1.74 a | 66.93 ± 0.13 b | |
Leuconostoc mesenteroides | MG860 | 4.06 ± 2.12 bc | 54.36 ± 0.50 d |
Leuconostoc citreum | MG210 | 6.25 ± 0.86 b | 24.35 ± 0.76 k |
Pediococcus acidilactici | MG5001 | 2.55 ± 1.01 c | 50.94 ± 0.22 e |
Pediococcus pentosaceus | MG5078 | 4.17 ± 1.22 bc | 42.51 ± 0.25 f |
Weissella cibaria | MG5223 | 5.16 ± 1.73 bc | 19.69 ± 1.64 l |
MG5090 | 5.52 ± 0.59 bc | 37.35 ± 0.45 g | |
MG5215 | 4.01 ± 0.72 bc | 59.74 ± 0.70 c | |
MG5285 | 5.37 ± 1.41 bc | 52.11 ± 0.25 e | |
Levilactobacillus brevis | MG5250 | 6.77 ± 1.33 b | 59.16 ± 0.98 c |
MG5280 | 6.41 ± 1.52 b | 30.52 ± 0.63 ij | |
MG5306 | 5.00 ± 0.33 bc | 28.56 ± 1.20 j | |
MG5311 | 4.12 ± 0.74 bc | 31.69 ± 0.67 hi | |
Latilactobacillus curvatus | MG5020 | 5.32 ± 0.45 bc | 86.26 ± 0.76 a |
Latilactobacillus sakei | MG5048 | 6.88 ± 1.02 b | 37.86 ± 0.44 g |
MG5031 | 6.83 ± 0.31 b | 33.50 ± 0.58 h |
Species | Strain | Initial Count (Log CFU/mL) | Survival in Simulated Gastrointestinal Fluid | |
---|---|---|---|---|
Log CFU/mL | % | |||
Leu. mesenteroides | MG860 | 7.92 ± 0.00 | 3.50 ± 0.10 | 44.20 |
Leu. citreum | MG210 | 7.53 ± 0.04 | 3.65 ± 0.03 | 48.50 |
P. acidilactici | MG5001 | 7.89 ± 0.04 | 6.34 ± 0.09 | 80.42 |
P. pentosaceus | MG5078 | 7.90 ± 0.02 | 5.48 ± 0.01 | 69.40 |
W. cibaria | MG5090 | 7.88 ± 0.02 | 3.33 ± 0.10 | 42.28 |
L. brevis | MG5306 | 7.76 ± 0.06 | 6.77 ± 0.01 | 87.17 |
L. curvatus | MG5020 | 7.52 ± 0.04 | 3.59 ± 0.11 | 47.74 |
L. sakei | MG5048 | 7.59 ± 0.06 | 5.45 ± 0.05 | 71.80 |
Species | Strain | Initial Count (Log CFU/mL) | Viability in 2 h (Log CFU/mL) | Adhesion Ability (%) |
---|---|---|---|---|
Leu. mesenteroides | MG860 | 9.04 ± 0.01 | 5.81 ± 0.03 | 64.29 |
Leu. citreum | MG210 | 8.64 ± 0.02 | 5.45 ± 0.03 | 63.02 |
P. acidilactici | MG5001 | 9.12 ± 0.01 | 6.69 ± 0.06 | 73.39 |
P. pentosaceus | MG5078 | 8.76 ± 0.04 | 7.44 ± 0.04 | 84.91 |
W. cibaria | MG5090 | 8.44 ± 0.08 | 6.19 ± 0.02 | 73.34 |
L. brevis | MG5306 | 8.35 ± 0.01 | 6.87 ± 0.02 | 82.35 |
L. curvatus | MG5020 | 8.51 ± 0.03 | 5.57 ± 0.06 | 65.50 |
L. sakei | MG5048 | 8.56 ± 0.04 | 6.10 ± 0.01 | 71.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation 2022, 8, 29. https://doi.org/10.3390/fermentation8010029
Kim S, Lee JY, Jeong Y, Kang C-H. Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation. 2022; 8(1):29. https://doi.org/10.3390/fermentation8010029
Chicago/Turabian StyleKim, Seonyoung, Ji Yeon Lee, Yulah Jeong, and Chang-Ho Kang. 2022. "Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria" Fermentation 8, no. 1: 29. https://doi.org/10.3390/fermentation8010029
APA StyleKim, S., Lee, J. Y., Jeong, Y., & Kang, C. -H. (2022). Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation, 8(1), 29. https://doi.org/10.3390/fermentation8010029