Aroma Perception of Rose Oxide, Linalool and α-Terpineol Combinations in Gewürztraminer Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Base
2.2. Chemicals
2.3. Standards and Wine Treatments
2.4. Sensory Analysis
2.5. Triangle Test Procedure
2.6. CATA
2.7. Descriptive Analysis for Aroma Intensity
2.8. Statistical Analysis
3. Results
3.1. Triangle Test
3.2. CATA
3.3. Descriptive Analysis Results
4. Discussion
4.1. Triangle Test
4.2. Descriptive Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, S.M.; Coutinho, P.; Coelho, E.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A. Relationships between the Varietal Volatile Composition of the Musts and White Wine Aroma Quality. A Four Year Feasibility Study. LWT-Food Sci. Technol. 2010, 43, 1508–1516. [Google Scholar] [CrossRef]
- Peynaud, E.; Blouin, J. The Taste of smell. In The Taste of Wine, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1996; Volume 1, pp. 50–78. [Google Scholar] [CrossRef]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef] [PubMed]
- Francis, I.L.; Newton, J.L. Determining Wine Aroma from Compositional Data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Styger, G.; Prior, B.; Bauer, F.F. Wine Flavor and Aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Zalazain, A.; Marín, J.; Alonso, G.L.; Salinas, M.R. Analysis of wine primary aroma compounds by stir bar sorptive extraction. Talanta 2007, 71, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R. Wine Tasting A Professional Handbook, 2nd ed.; Academic Press: Berkeley, CA, USA, 2009; Volume 1, pp. 1–22. [Google Scholar]
- Grainger, K.; Tattersall, H. Chapter 3 Nose. In Wine Quality: Tasting and Selection; John Wiley & Sons, Ltd.: Ames, IA, USA, 2009; pp. 35–39. Available online: https://ebookcentral.proquest.com/lib/osu/detail.action?docID=416557 (accessed on 25 October 2021).
- Mori, K. Unique Characteristics of the olfactory system. In The Olfactory System; Springer: Tokyo, Japan, 2014; pp. 1–18. [Google Scholar] [CrossRef]
- Lozano, J.; Santos, J.; Horrillo, M. Classification of White Wine Aromas with an Electronic Nose. Talanta 2005, 67, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Terashini, R.; Buttery, G.; Shahidi, F. Enantioselectivity in Odor Perception. In Flavor Chemistry Trends and Development, 3rd ed.; ACS Symposium Series; American Chemical Society: Washington DC, USA, 1989; pp. 155–157. [Google Scholar]
- Bentley, R. The Nose as a Stereochemistry. Enantiomers Odor. Chem. Rev. 2006, 106, 4099–4112. [Google Scholar] [CrossRef]
- Buettner, A. Influence of mastication on the concentrations of aroma volatiles—Some aspects of flavour release and flavour perception. Food Chem. 2000, 71, 347–354. [Google Scholar] [CrossRef]
- Ager, D. Terpenes: The expansion of the Chiral Pool. In Handbook of Chiral Chemicals; CRC Press: New York, NY, USA, 2005; pp. 59–74. [Google Scholar]
- Buettner, A. Wine. In Springer Handbook of Odor; Springer: New York, NY, USA, 2017; pp. 143–162. [Google Scholar]
- Ganjitabar, H.; Hadidi, R.; Garcia, G.A.; Nahon, L.; Powis, I. Vibrationally-Resolved Photoelectron Spectroscopy and Photoelectron Circular Dichroism of Bicyclic Monoterpene Enantiomers. J. Mol. Spectrosc. 2018, 353, 11–19. [Google Scholar] [CrossRef]
- Tomasino, E.; Song, M.; Fuentes, C. Odor Perception Interactions between Free Monoterpene Isomers and Wine Composition of Pinot Gris Wines. J. Agric. Food Chem. 2020, 68, 3220–3227. [Google Scholar] [CrossRef]
- Laska, M. Olfactory Discrimination Ability of Human Subjects for Ten Pairs of Enantiomers. Chem. Senses 1999, 24, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Xia, Y.; Tomasino, E. Investigation of a Quantitative Method for the Analysis of Chiral Monoterpenes in White Wine by HS-SPME-MDGC-MS of Different Wine Matrices. Molecules 2015, 20, 7359–7378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katarína, F.; Katarína, M.; Katarína, Ď.; Ivan, Š.; Fedor, M. Influence of Yeast Strain on Aromatic Profile of Gewürztraminer Wine. LWT-Food Sci. Technol. 2014, 59, 256–262. [Google Scholar] [CrossRef]
- Marais, J. Terpenes in the Aroma of Grapes and Wines: A Review. S. Afr. J. Enol. Vitic. 2017, 4, 49–58. [Google Scholar] [CrossRef]
- Song, M.; Fuentes, C.; Loos, A.; Tomasino, E. Free Monoterpene Isomer Profiles of Vitis Vinifera, L. Cv. White Wines. Foods 2018, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Mateo, J.J.; Jiménez, M. Monoterpenes in Grape Juice and Wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Dziadas, M.; Jeleń, H.H. Analysis of Terpenes in White Wines Using SPE–SPME–GC/MS Approach. Anal. Chim. Acta 2010, 677, 43–49. [Google Scholar] [CrossRef]
- Rapp, A. Volatile Flavour of Wine: Correlation between Instrumental Analysis and Sensory Perception. Food/Nahrung 1998, 42, 351–363. [Google Scholar] [CrossRef]
- Katarína, F.; Bajnociová, L.; Feder, M.; Spanik, I. Investigation of volatile profile of varietal of gewürztraminer wines using two-dimensional gas chromatography. J. Agric. Nutr. Res. 2017, 56, 73–85. [Google Scholar]
- Ong, P.K.C.; Acree, T.E. Similarities in the Aroma Chemistry of Gewürztraminer Variety Wines and Lychee (Litchi chinesis Sonn.) Fruit. J. Agric. Food Chem. 1999, 47, 665–670. [Google Scholar] [CrossRef]
- Wiest, R. Apendix A A Quick Reference Guide to Varietal Wines. In A Guide to the Elite Estates of the Mosel-Saar-Ruwer Wine Region; Board and Bench Publishing: San Francisco, CA, USA, 1983. [Google Scholar]
- Guth, H. Identification of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3022–3026. [Google Scholar] [CrossRef]
- Lukić, I.; Radeka, S.; Grozaj, N.; Staver, M.; Peršurić, Đ. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest. Food Chem. 2016, 196, 1048–1057. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J.M. Determination of Odorants in Varietal Wines from International Grape Cultivars (Vitis vinífera) Grown in NW Spain. S. Afr. J. Enol. Vitic. 2016, 34, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, L.; Hellín, P.; Flores, P.; Fenoll, J. Prediction of Muscat Aroma in Table Grape by Analysis of Rose Oxide. Food Chem. 2014, 154, 151–157. [Google Scholar] [CrossRef]
- Koslitz, S.; Renaud, L.; Kohler, M.; Wüst, M. Stereoselective Formation of the Varietal Aroma Compound Rose Oxide during Alcoholic Fermentation. J. Agric. Food Chem. 2008, 56, 1371–1375. [Google Scholar] [CrossRef]
- Yamamoto, T.; Matsuda, H.; Utsumi, Y.; Hagiwara, T.; Kanisawa, T. Synthesis and odor of optically active rose oxide. Tetrahedron Lett. 2002, 43, 9077–9080. [Google Scholar] [CrossRef]
- Buettner, A. Biosynthesis of Plant-Derived Odorants. In Springer Handbook of Odor; Springer: New York, NY, USA, 2017; pp. 13–33. [Google Scholar]
- Dunlevy, J.D.; Kalua, C.M.; Keyzers, R.A.; Boss, P.K. The production of flavour and aroma compounds in grape berries. In Grapevine Molecular Physiology & Biotechnology, 2nd ed.; Springer: New York, NY, USA, 2009; pp. 293–340. [Google Scholar]
- Chen, Q.; Fan, D.; Wang, G. Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol. Plant 2015, 8, 1434–1437. [Google Scholar] [CrossRef] [Green Version]
- Padrayuttawat, A.; Yoshizawa, T.; Tamura, H.; Tokunaga, T. Optical isomers and odor thresholds of volatile constituents in Citrus sudachi. Food Sci. Technol. Int. Tokyo 1997, 3, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Hanke, S.; Herrmann, M.; Rückerl, J.; Schönberger, C.; Back, W. Hop volatile compounds (Part II): Transfer rates of hop compounds from hop pellets to wort and beer. Brew. Sci. 2008, 61, 140–147. [Google Scholar]
- Niu, Y.; Sun, X.; Xiao, Z.; Wang, P.; Wang, R. Olfactory impact of terpene alcohol on terpenes aroma expression in Chrysanthemum essential oils. Molecules 2018, 23, 2803. [Google Scholar] [CrossRef] [Green Version]
- Takoi, K.; Koichiro, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of Hop-Derived Monoterpene Alcohols by Lager Yeast and Their Contribution to the Flavor of Hopped Beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [Google Scholar] [CrossRef] [PubMed]
- Burdock, G.A.; Fenaroli, G. Fenaroli’s Handbook of Flavor Ingredients; Taylor & Francis Group: Milton Park, UK, 2009. [Google Scholar]
- Buettner, A. Coffee. In Springer Handbook of Odor; Springer: New York, NY, USA, 2017; pp. 107–128. [Google Scholar]
- Moreno, J.; Peinado, R. Must Aromas. In Enological Chemistry; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA, 2012; pp. 23–40. [Google Scholar]
- Sekiwa, Y.; Mizuno, Y.; Yamamoto, Y.; Kubota, K.; Kobayashi, A.; Koshino, H. Isolation of some glucosides as aroma precursors from ginger. Biosci. Biotechnol. Biochem. 1999, 63, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capone, D.; Barker, A.; Williamson, P.; Francis, I. The role of potent thiols in Chardonnay wine aroma. Aust. J. Grape Wine Res. 2018, 24, 38–50. [Google Scholar] [CrossRef]
- Jordán, M.J.; Goodner, K.L.; Shaw, P.E. Volatile components in tropical fruit essences: Yellow passion fruit (Passiflora edulis Sims, F. flavicarpa Degner) and banana (Musa sapientum L.). Fla. State Hortic. Soc. 2000, 113, 284–286. [Google Scholar]
- Maróstica, M.R.; Pastore, G.M. Tropical fruit flavour. In Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; pp. 189–201. [Google Scholar]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem.-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Buettner, A. Fruits. In Springer Handbook of Odor; Springer: New York, NY, USA, 2017; pp. 171–190. [Google Scholar]
- Nisperos-Carriedo, M.O.; Shaw, P.E. Comparison of volatile flavor components in fresh and processed orange juices. J. Agric. Food Chem. 1990, 38, 1048–1052. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Q.; Quan, J.; Zheng, Q.; Xi, W. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 2016, 205, 112–121. [Google Scholar] [CrossRef]
- Siebert, T.E.; Barter, S.R.; de Barros Lopes, M.A.; Herderich, M.J.; Francis, I.L. Investigation of ‘stone fruit’aroma in Chardonnay, Viognier and botrytis Semillon wines. Food Chem. 2018, 256, 286–296. [Google Scholar] [CrossRef]
Wines | (−) Rose Oxide | (+) Rose Oxide | Linalool | α-Terpineol |
---|---|---|---|---|
Model 1 a | 15 | 5 | ||
Model 2 b | 14 | 6 | ||
Model 3 c | 13 | 7 | ||
Model 4 d | 12 | 8 | ||
Model 5 e | 50 | |||
Model 6 f | 50 | |||
Model 7 b,g | 14 | 6 | 50 | 50 |
Model 8 c,g | 13 | 7 | 50 | 50 |
Model 9 b,h | 14 | 6 | 20 | 15 |
Model 10 c,h | 13 | 7 | 20 | 15 |
Model 11 b,i | 14 | 6 | 100 | 100 |
Model 12 c,i | 13 | 7 | 100 | 100 |
Attribute | Amount per Glass | Components | Image |
---|---|---|---|
Honey | 1 tsp * | Clover Honey a | |
Honeysuckle | 1 drop | Honey suckle essential oil b | |
Rose | 4 drops | Rosewater concentrate c | |
Dried Fruit d | 1 tsp | Golden raisins mix with DI water | |
Stone Fruit | 1 tsp pf each | White peach e and apricot puree e | |
Pome | 1 tsp of each | Green apple e and Pear puree e | |
Melon | 1 tsp and 1 drop of each | Honeydew puree made f and melon essential oil g | |
Orange | 1 tsp | Orange pure made h | |
Grapefruit | 1 tsp | Grapefruit pure made h | |
Lemon | 1 tsp | Lemon pure made h | |
Lychee | 1 tsp | Lychee pure i | |
Tropical fruit | 1 tsp of each | Mango e and passion fruit puree i | |
Ginger | tsp | Ground ginger j |
Comparison | Number of Participants | Number of Correct Responses | p-Value |
---|---|---|---|
Model 1 vs. Model 2 | 65 | 24 | 0.3156 |
Model 1 vs. Model 3 | 65 | 25 | 0.296 |
Model 1 vs. Model 4 | 65 | 17 | >0.5 |
Model 2 vs. Model 3 | 65 | 37 | <0.001 *** |
Model 2 vs. Model 4 | 65 | 21 | >0.5 |
Model 3 vs. Model 4 | 65 | 17 | >0.5 |
Components | Detection | Double DI Water [38] | Water | Beer [39] | Carbonated Water/Ethanol (5%) | Water/Ethanol (10%) |
---|---|---|---|---|---|---|
(−)-cis-Rose oxide | 50 [34] | - | - | - | - | - |
(+)-cis-Rose oxide | 50 [34] | - | - | - | - | - |
cis-Rose oxide | - | - | 0.1 [27] | - | - | 0.2 [29] |
(−)-trans-Rose oxide | 160 [34] | - | - | - | - | - |
(+)-trans-Rose oxide | 80 [34] | - | - | - | - | - |
Linalool | - | (−) 0.8 (+) 0.7 | 1 [40] | 5 | 3 [41] | 15 [29] |
α-Terpineol | 280–350 [42] | (−) 9180 (+) 6800 | 460 [37] | 2000 | 450 [41] | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chigo-Hernandez, M.M.; DuBois, A.; Tomasino, E. Aroma Perception of Rose Oxide, Linalool and α-Terpineol Combinations in Gewürztraminer Wine. Fermentation 2022, 8, 30. https://doi.org/10.3390/fermentation8010030
Chigo-Hernandez MM, DuBois A, Tomasino E. Aroma Perception of Rose Oxide, Linalool and α-Terpineol Combinations in Gewürztraminer Wine. Fermentation. 2022; 8(1):30. https://doi.org/10.3390/fermentation8010030
Chicago/Turabian StyleChigo-Hernandez, Mildred Melina, Aubrey DuBois, and Elizabeth Tomasino. 2022. "Aroma Perception of Rose Oxide, Linalool and α-Terpineol Combinations in Gewürztraminer Wine" Fermentation 8, no. 1: 30. https://doi.org/10.3390/fermentation8010030
APA StyleChigo-Hernandez, M. M., DuBois, A., & Tomasino, E. (2022). Aroma Perception of Rose Oxide, Linalool and α-Terpineol Combinations in Gewürztraminer Wine. Fermentation, 8(1), 30. https://doi.org/10.3390/fermentation8010030