Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characterization of FW, CD and Co-Digestion of FW with CD
2.2. Biochemical Methane Potential (BMP) Test without Mixing (WM) and with Continuous Mixing (CM)
2.3. Continuous Study for Single Substrate of FW, CD and Codigestion of FWCD
2.4. Analytical Method
2.5. Kinetic Analysis: The Effect of Mixing on Kinetic Parameters and Correlation of Kinetic Parameters with Bioreactor Performance
2.6. Electrical Energy Generation Conversion
3. Results and Discussion
3.1. Summary of BMP Test of AD for FW, CD, and Codigestion of FWCD
3.2. Kinetic Analysis of Biogas Production from BMP Test
3.3. Effect of Mixing on Kinetic Parameters
3.4. Effect of Kinetic Parameters on Process Performances
3.5. Continuous Study of FW, CD, and Codigestion of FWCD at Increasing OLRs
3.5.1. Biogas Production at Different OLRs
3.5.2. Summary of the Performance for Semicontinuous System
3.6. Energy Generation by Laboratory-Scale (LS) and On-Farm-Scale (OFS) Anaerobic Reactors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krista, L.T.; David, J.T.; Jessica, G. Quantification of Food Waste Disposal in the United States: A Meta-Analysis. Environ. Sci. Technol. 2015, 49, 13946–13953. [Google Scholar]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399. [Google Scholar] [CrossRef]
- Karmee, S.K. Liquid biofuels from food waste: Current trends, prospect and limitation. Renew. Sustain. Energy 2016, 53, 945–953. [Google Scholar] [CrossRef]
- Lytras, G.; Lytras, C.; Mathioudakis, D.; Papadopoulou, K.; Lyberatos, G. Food waste valorization based on anaerobic digestion. Waste Biomass Valoriz. 2021, 12, 1677–1697. [Google Scholar] [CrossRef]
- Wiliams, C.M.; Barker, J.C.; Sims, J.T. Management and utilization of poultry wastes. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 1999; pp. 105–157. [Google Scholar]
- Nsubuga, D.; Banadda, N.; Kiggundu, N. Innovations in Value-Addition of Agricultural By-Products in Uganda. J. Environ. Prot. 2019, 10, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.T. Regulatory Promotion and Benefit Analysis of Biogas-Power and Biogas-Digestate from Anaerobic Digestion in Taiwan’s Livestock Industry. Fermentation 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Tsai, W.T. Valorization of Value-Added Resources from the Anaerobic Digestion of Swine-Raising Manure for Circular Economy in Taiwan. Fermentation 2020, 6, 81. [Google Scholar] [CrossRef]
- Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Hakeem, K.R.; Jawaid, M.; Ibrahim, F.H. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev. 2017, 79, 1285–1302. [Google Scholar] [CrossRef]
- Jurgutis, L.; Slepetiene, A.; Volungevicius, J.; Amaleviciute-Volunge, K. Biogas production from chicken manure at different organic loading rates in a mesophilic full scale anaerobic digestion plant. Biomass Bioenergy 2020, 141, 105693. [Google Scholar] [CrossRef]
- Sun, C.; Cao, W.; Banks, C.J.; Heaven, S.; Liu, R. Biogas production from undiluted chicken manure and maize silage: A study of ammonia inhibition in high solids anaerobic digestion. Bioresour. Technol. 2016, 218, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Bampenrat, A.; Sukkathanyawat, H.; Prommuak, C. Enhanced Energy Recovery from Food Waste by Co-Production of Bioethanol and Biomethane Process. Fermentation 2021, 7, 265. [Google Scholar] [CrossRef]
- Zhao, D.; Yan, B.; Liu, C.; Yao, B.; Luo, L.; Yang, Y.; Liu, L.; Wu, F.; Zhou, Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. Bioresour. Technol. 2021, 338, 125531. [Google Scholar] [CrossRef]
- Hou, T.; Zhao, J.; Lei, Z.; Shimizu, K.; Zhang, Z. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation. Sci. Total Environ. 2021, 761, 143234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Wang, X.; Xing, W.; Li, R.; Yang, T.; Lv, D. Role of trace elements in anaerobic digestion of food waste: Process stability, recovery from volatile fatty acid inhibition and microbial community dynamics. Bioresour. Technol. 2020, 315, 123796. [Google Scholar] [CrossRef] [PubMed]
- Blasius, J.P.; Contrera, R.C.; Maintinguer, S.I.; de Castro, M.C.A.A. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnol. Rep. 2020, 27, e00503. [Google Scholar] [CrossRef]
- Chuenchart, W.; Logan, M.; Leelayouthayotin, C.; Visvanathan, C. Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass Bioenergy 2020, 136, 105541. [Google Scholar] [CrossRef]
- Zhang, L.; Lee, Y.W.; Jahng, D. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresour. Technol. 2011, 102, 5048–5059. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Sun, X.; Li, P.; Yin, L.; Liu, D.; Zhang, Y.; Li, W.; Zheng, G. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure. Bioresour. Technol. 2014, 164, 309–314. [Google Scholar] [CrossRef]
- Slobodkina, L.A.; Akinshina, N.G.; Azizov, A.A. Anaerobic co-digestion of food wastes and chicken dung in lab-scale two-stage system. Issues Biol. Sci. Pharm. Res. 2021, 9, 12–18. [Google Scholar]
- Jijai, S.; Siripatana, C. Kinetic model of biogas production from co-digestion of thai rice noodle wastewater (Khanomjeen) with chicken manure. Energy Procedia 2017, 138, 386–392. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Experimental and kinetic study on anaerobic co-digestion of poultry manure and food waste. Desalin. Water Treat. 2016, 59, 72–76. [Google Scholar] [CrossRef]
- Dhamodharan, K.; Kumar, V.; Kalamdhad, A.S. Effect of different livestock Dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresour. Technol. 2015, 180, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Kalyuzhnyi, S.; Fedorovich, V.; Lens, P.; Pol, L.H.; Lettinga, G. Mathematical modelling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria. Biodegradation 1998, 9, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Bhunia, P.; Dash, R.R. Carbonaceous organics removal kinetics in an upflow anaerobic sludge blanket (UASB) reactor treating physico-chemically pre-treated textile wastewater. Desalin. Water Treat. 2015, 54, 1577–1588. [Google Scholar] [CrossRef]
- Borja, R.; Rincón, B.; Raposo, F. Anaerobic biodegradation of two-phase olive mill solid wastes and liquid effluents: Kinetic studies and process performance. J. Chem. Technol. Biotechnol. 2006, 81, 1450–1462. [Google Scholar] [CrossRef]
- Andrews, J.F. Dynamic models and control strategies for wastewater treatment processes. Water Resour. 1974, 8, 261–289. [Google Scholar] [CrossRef]
- Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 1965, 12, 88–118. [Google Scholar] [CrossRef]
- McCarty, P.L.; Mosey, F.E. Modelling of anaerobic digestion processes (a discussion of concepts). Water Sci. Technol. 1991, 24, 17–33. [Google Scholar] [CrossRef]
- Zahan, Z.; Othman, M.Z.; Muster, T.H. Anaerobic digestion/co-digestion kinetic potentials of different agro-industrial wastes: A comparative batch study for C/N optimisation. Waste Manag. 2018, 71, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Umar, M.; Ding, W.; Mehryar, E.; Zhao, C. Methane enhancement through co-digestion of chicken manure and oxidative cleaved wheat straw: Stability performance and kinetic modeling perspectives. Energy 2017, 141, 2314–2320. [Google Scholar] [CrossRef]
- Pečar, D.; Goršek, A. Kinetics of methane production during anaerobic digestion of chicken manure with sawdust and miscanthus. Biomass Bioenergy 2020, 143, 105820. [Google Scholar] [CrossRef]
- Li, L.; He, Q.; Zhao, X.; Wu, D.; Wang, X.; Peng, X. Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance. Biochem. Eng. J. 2018, 130, 1–9. [Google Scholar] [CrossRef]
- Sumantri, I.; Budiyono, B.; Purwanto, P. Kinetic Study of Anaerobic Digestion of Ketchup Industry Wastewater in a Three-stages Anaerobic Baffled Reactor (ABR). Bull. Chem. React. Eng. Catal. 2019, 14, 326. [Google Scholar] [CrossRef] [Green Version]
- Lindmark, J.; Eriksson, P.; Thorin, E. The effects of different mixing intensities during anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag. 2014, 34, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, A.; Hassan, M.A.; Shirai, Y.; Abd-Aziz, S.; Tabatabaei, M.; Busu, Z.; Yacob, S. The effect of mixing on methane production in a semi-commercial closed digester tank treating palm oil mill effluent. Aust. J. Basic Appl. Sci. 2009, 3, 1577–1583. [Google Scholar]
- Rojas, C.; Fang, S.; Uhlenhut, F.; Borchert, A.; Stein, I.; Schlaak, M. Stirring and biomass starter influences the anaerobic digestion of different substrates for biogas production. Eng. Life Sci. 2010, 10, 339–347. [Google Scholar] [CrossRef]
- Lin, K.C.; Pearce, M.E. Effects of mixing on anaerobic treatment of potato-processing wastewater. Can. J. Civ. Eng. 1991, 18, 504–514. [Google Scholar] [CrossRef]
- Singh, B.; Kovács, K.L.; Bagi, Z.; Nyári, J.; Szepesi, G.L.; Petrik, M.; Siménfalvi, Z.; Szamosi, Z. Enhancing Efficiency of Anaerobic Digestion by Optimization of Mixing Regimes Using Helical Ribbon Impeller. Fermentation 2021, 7, 251. [Google Scholar] [CrossRef]
- De Oliveira Paranhos, A.G.; Adarme, O.F.H.; Barreto, G.F.; de Queiroz Silva, S.; de Aquino, S.F. Methane production by co-digestion of poultry manure and lignocellulosic biomass: Kinetic and energy assessment. Bioresour. Technol. 2020, 300, 122588. [Google Scholar] [CrossRef] [PubMed]
- Safley Jr, L.M.; Vetter, R.L.; Smith, D. Operating a full-scale poultry manure anaerobic digester. Biol. Wastes 1987, 19, 79–90. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Ye, B.; Zhang, X.; Tyagi, R.D.; Gao, X. Energy balance assessment on chicken manure for biogas production in Rabat-Salé-Zemmour-Zaïr of Morocco. J. Environ. Manag. 2021, 299, 113656. [Google Scholar] [CrossRef] [PubMed]
- Curry, N.; Pillay, P. Biogas prediction and design of a food waste to energy system for the urban environment. Renew. Energy 2012, 41, 200–209. [Google Scholar] [CrossRef]
- Xin, X.; Ma, Y.; Liu, Y. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresour. Technol. 2018, 255, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Fei, X.; Jia, W.; Chen, T.; Ling, Y. Life-cycle assessment of two food waste disposal processes based on anaerobic digestion in China. J. Clean. Prod. 2021, 293, 126113. [Google Scholar] [CrossRef]
- Orfanoudaki, A.; Makridakis, G.; Maragkaki, A.; Fountoulakis, M.S.; Kallithrakas-Kontos, N.G.; Manios, T. Anaerobic co-digestion of pig manure and spent coffee grounds for enhanced biogas production. Waste Biomass Valoriz. 2019, 11, 4613–4620. [Google Scholar] [CrossRef]
- Idrus, S.; Banks, C.J.; Heaven, S. Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters. Water Sci. Technol. 2012, 66, 2737–2744. [Google Scholar] [CrossRef] [PubMed]
- Rodger, B.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23th ed.; American Public Health Association: Washington, DC, USA, 2017.
- Muhamad Ng, S.N.; Idrus, S.; Ahsan, A.; Tuan Mohd Marzuki, T.N.; Mahat, S.B. Treatment of Wastewater from a Food and Beverage Industry Using Conventional Wastewater Treatment Integrated with Membrane Bioreactor System: A Pilot-Scale Case Study. Membranes 2021, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Dinh, P.V.; Fujiwara, T.; Phu, S.T.P.; Hoang, M.G. Kinetic of Biogas Production in Co-Digestion of Vegetable waste, horse Dung, and Sludge by Batch Reactors. IOP Conf. Ser. Earth Environ. Sci. 2018, 159, 012041. [Google Scholar] [CrossRef]
- Deepanraj, B.; Sivasubramanian, V.; Jayaraj, S. Experimental and kinetic study on anaerobic digestion of food waste: The effect of total solids and pH. J. Renew. Sustain. Energy 2015, 7, 063104. [Google Scholar] [CrossRef]
- Khanal, S.K.; Li, Y. Biogas Production and Application. In Bioenergy: Principles and Applications, 1st ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 338–360. [Google Scholar]
- Ong, H.; Greenfield, P.; Pullammanappallil, P. Effect of Mixing on Biomethanation of Cattle-Manure Slurry. Environ. Technol. 2002, 23, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Mills, P. Minimisation of energy input requirements of an anaerobic digester. Agric. Wastes 1979, 1, 57–66. [Google Scholar] [CrossRef]
- Sung, S.; Dague, R. Laboratory studies on the anaerobic sequencing batch reactor. Water Environ. Res. 1995, 67, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Loh, K.; Lee, J.; Wang, C.; Dai, Y.; Wah, T.Y. Three-stage anaerobic co-digestion of food waste and horse manure. Sci. Rep. 2017, 7, 1269. [Google Scholar] [CrossRef] [PubMed]
- Ceron-Vivas, A.; Cáceres-Cáceres, K.; Rincón-Pérez, A.; Cajigas, A. Influence of pH and the C/N ratio on the biogas production of wastewater. Rev. Fac. Ing. Univ. Antioq. 2019, 92, 70–79. [Google Scholar] [CrossRef]
- Hu, Y.; Kobayashi, T.; Zhen, G.; Shi, C.; Xu, K. Effects of lipid concentration on thermophilic anaerobic co-digestion of food waste and grease waste in a siphon-driven self-agitated anaerobic reactor. Biotechnol. Rep. 2018, 19, e00269. [Google Scholar] [CrossRef] [PubMed]
- Dasa, K.; Westman, S.; Millati, R.; Cahyanto, M.; Taherzadeh, M.; Niklasson, C. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor. Biomed Res. Int. 2016, 2016, 1–9. [Google Scholar]
- Li, K.; Liu, R.; Sun, C. Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour. Technol. 2015, 198, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Kafulla, S. Anaerobic Digestion of Dairy Manure Wastewater, Food and Fruit Waste, a Sustainable Source of Bio-Energy and Waste Management. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Mao, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Effects of mixing time on methane production from anaerobic co-digestion of food waste and chicken manure: Experimental studies and CFD analysis. Bioresour. Technol. 2019, 294, 122177. [Google Scholar] [CrossRef]
- Bi, S.; Hong, X.; Yang, H.; Yu, X.; Fang, S.; Bai, Y.; Wang, Y. Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste. Renew. Energy 2020, 150, 213–220. [Google Scholar] [CrossRef]
- Rincón, B.; Borja, R.; González, J.; Portillo, M.; Sáiz-Jiménez, C. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Eng. J. 2008, 40, 253–261. [Google Scholar] [CrossRef]
- Musa, M.; Idrus, S.; Hasfalina, C.; Daud, N. Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate. Int. J. Environ. Res. Public Health 2018, 15, 2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; He, S.; Kang, X.; Sun, Y.; Yuan, Z.; Xing, T. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Front. Energy Res. 2020, 8, 89. [Google Scholar] [CrossRef]
- Morales-Polo, C.; Del Mar Cledera-Castro, M.; Moratilla Soria, B.Y. Reviewing the anaerobic digestion of food waste: From waste generation and anaerobic process to its perspectives. Appl. Sci. 2018, 8, 1804. [Google Scholar] [CrossRef] [Green Version]
- Tangkathitipong, P.; Intanoo, P.; Butpan, J.; Chavadej, S. Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR). Renew. Energy 2017, 113, 1077–1085. [Google Scholar] [CrossRef]
- Kleiner, D. NH4+ transport systems. In Alkali Cation Transport Systems in Prokaryotes; Bakker, E., Ed.; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Wiegant, W.M.; Zeeman, G. The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes. Agric. Wastes 1986, 16, 243–253. [Google Scholar] [CrossRef]
- Marzuki, T.N.T.M.; Idrus, S.; Musa, M.A.; Wahab, A.M.A.; Jamali, N.S.; Man, H.C.; Ng, S.N.M. Enhancement of Bioreactor Performance Using Acclimatised Seed Sludge in Anaerobic Treatment of Chicken Slaughterhouse Wastewater: Laboratory Achievement, Energy Recovery, and Its Commercial-Scale Potential. Animals 2021, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Wresta, A.; Andriani, D.; Saepudin, A.; Sudibyo, H. Economic analysis of cow manure biogas as energy source for electricity power generation in small scale ranch. Energy Procedia 2015, 68, 122–131. [Google Scholar] [CrossRef] [Green Version]
Parameters | Unit | FW | CD | FWCD |
---|---|---|---|---|
COD | mg/L | 315,000 ± 350 | 205,000 ± 170 | 198,000 ± 240 |
O & G | mg/L | 211 ± 280 | 15 ± 50 | 38 ± 140 |
TN | mg/L | 5200 ± 320 | 23,000 ± 300 | 9300 ± 300 |
VS | mg/L | 284 ± 220 | 182 ± 150 | 264 ± 190 |
C/N ratio | - | 60.58 | 8.91 | 21.29 |
Model | Mathematical Definition | Source | |
---|---|---|---|
Modified Gompertz | (1) | [37] | |
Logistic | (2) | [36] | |
First Order | (3) | [36,37] | |
Monod | (4) | [36,37] |
FW | CD | FWCD | ||||
---|---|---|---|---|---|---|
WM | CM | WM | CM | WM | CM | |
IA/PA ratio | 0.156 ± 0.12 | 0.149 ± 0.12 | 0.188 ± 0.05 | 0.174 ± 0.05 | 0.13 ± 0.02 | 0.19 ± 0.02 |
pH | 6.69 ± 0.25 | 6.73 ± 0.25 | 7.02 ± 0.05 | 6.85 ± 0.05 | 6.65 ± 0.10 | 6.55 ± 0.10 |
TAN (mg/L) | 130 ± 50 | 126 ± 50 | 183 ± 70 | 198 ± 70 | 73 ± 40 | 68 ± 40 |
SMP (L CH4/VS) | 0.61 | 0.64 | 0.52 | 0.55 | 0.38 | 0.41 |
VS Removal (%) | 82 | 83 | 75 | 78 | 70 | 72 |
Models | Parameter | Units | Sample | ||||||
---|---|---|---|---|---|---|---|---|---|
FW WM | FW CM | CD WM | CD CM | CDFW WM | CDFW CM | ||||
R2 | 0.9208 | 0.8588 | 0.8463 | 0.7750 | 0.9128 | 0.8570 | |||
RMSE | 0.0007 | 0.0007 | 0.0025 | 0.1710 | 0.0009 | 0.0810 | |||
Modified | |||||||||
Gompertz | Difference a | % | 1.22 | 0.16 | 1.80 | 12.67 | 1.85 | 12.98 | |
Difference b | Model | 2.81 | 15.97 | 15.49 | |||||
Difference c | Experimental | 1.47 | 2.06 | 1.09 | |||||
R2 | 0.9208 | 0.8987 | 0.8160 | 0.9942 | 0.9162 | 0.8411 | |||
RMSE | 0.0317 | 0.0515 | 0.0011 | 0.0330 | 0.0013 | 0.0860 | |||
Logistic | Difference a | % | 1.74 | 0.180 | 2.49 | 12.75 | 1.44 | 0.19 | |
Difference b | Model | 3.43 | 16.62 | 2.68 | |||||
Difference c | Experimental | 1.47 | 2.06 | 1.09 | |||||
R2 | 0.8525 | 0.8239 | 0.8199 | 0.8224 | 0.8596 | 0.8995 | |||
RMSE | 0.0025 | 0.0012 | 0.0012 | 0.3500 | 0.0008 | 0.1780 | |||
First | Difference a | % | 2.87 | 0.300 | 2.72 | 23.06 | 1.38 | 25.30 | |
Order | Difference b | Model | 4.55 | 26.64 | 27.12 | ||||
Difference c | Experimental | 1.47 | 2.06 | 1.09 | |||||
R2 | 1.0000 | 1.0000 | 0.8165 | 0.8236 | 0.8870 | 0.9001 | |||
RMSE | 0.1468 | 0.2187 | 0.0011 | 0.3490 | 0.0014 | 0.1770 | |||
Monod | Difference a | % | 0.45 | 1.96 | 0.56 | 22.80 | 1.44 | 24.90 | |
Difference b | Model | 0.01 | 24.81 | 26.78 | |||||
Difference c | Experimental | 1.47 | 2.06 | 1.09 |
Substrate | Optimum OLR (gVS/L/d) | SMP (LCH4/gVS) | Volume of Substrate Used (kg) | Energy (kJ/kgVS) | Electrical Energy Generation (kWh) | Electrical Energy Yield (kWh) |
---|---|---|---|---|---|---|
FW (LS) | 4 | 0.33 | 0.06 | 11,829.18 | 0.00209 | 0.0007 |
FW (OFS) | 4 | 0.33 | 360 | 11,829.18 | 372.62 | 122.96 |
CD (LS) | 5 | 0.26 | 0.12 | 9319.96 | 0.00394 | 0.0013 |
CD (OFS) | 5 | 0.26 | 720 | 9319.96 | 382.12 | 126.10 |
FW + CD (LS) | 7 | 0.25 | 0.1 (FW) and 0.04 (CD) | 8961.50 | 0.00615 | 0.0020 |
FW + CD (OFS) | 7 | 0.25 | 588 (FW) and 252 (CD) | 8961.50 | 518.57 | 171.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaman, K.; Amir, N.; Musa, M.A.; Zainal, A.; Yahya, L.; Abdul Wahab, A.M.; Suhartini, S.; Tuan Mohd Marzuki, T.N.; Harun, R.; Idrus, S. Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation 2022, 8, 28. https://doi.org/10.3390/fermentation8010028
Jaman K, Amir N, Musa MA, Zainal A, Yahya L, Abdul Wahab AM, Suhartini S, Tuan Mohd Marzuki TN, Harun R, Idrus S. Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation. 2022; 8(1):28. https://doi.org/10.3390/fermentation8010028
Chicago/Turabian StyleJaman, Khairina, Nurjannah Amir, Mohammed Ali Musa, Afifi Zainal, Liyana Yahya, Abdul Malek Abdul Wahab, Sri Suhartini, Tuan Nurfarhana Tuan Mohd Marzuki, Razif Harun, and Syazwani Idrus. 2022. "Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential" Fermentation 8, no. 1: 28. https://doi.org/10.3390/fermentation8010028
APA StyleJaman, K., Amir, N., Musa, M. A., Zainal, A., Yahya, L., Abdul Wahab, A. M., Suhartini, S., Tuan Mohd Marzuki, T. N., Harun, R., & Idrus, S. (2022). Anaerobic Digestion, Codigestion of Food Waste, and Chicken Dung: Correlation of Kinetic Parameters with Digester Performance and On-Farm Electrical Energy Generation Potential. Fermentation, 8(1), 28. https://doi.org/10.3390/fermentation8010028