Nutritional Contributions and Health Associations of Traditional Fermented Foods
Abstract
:1. Introduction
2. Traditional Fermented Foods and Beverages in the World, and Their Association with Health
3. Use of Fermented Foods and Beverages as an Adjuvant in the Treatment of Obesity
4. Use of Fermented Foods and Beverages as an Adjuvant in the Treatment of Type 2 Diabetes Mellitus (T2DM)
5. Use of Fermented Foods and Beverages as an Adjuvant in the Treatment of Irritable Bowel Syndrome (IBS)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kabak, B.; Dobson, A.D.W. An Introduction to the Traditional Fermented Foods and Beverages of Turkey. Crit. Rev. Food Sci. Nutr. 2011, 51, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Hurtado, M.d.L.; Escamilla-Hurtado, M.G. Los Alimentos Fermentados Que Comían Nuestros Bisabuelos Prehisánicos. Ciencia 2007, 58, 75–84. [Google Scholar]
- Wang, J.; Jiang, L.; Sun, H. Early Evidence for Beer Drinking in a 9000-Year-Old Platform Mound in Southern China. PLoS ONE 2021, 16, e0255833. [Google Scholar] [CrossRef]
- Silva, K.A.; Uekane, T.M.; de Miranda, J.F.; Ruiz, L.F.; da Motta, J.C.B.; Silva, C.B.; Pitangui, N.d.S.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha Beverage from Non-Conventional Edible Plant Infusion and Green Tea: Characterization, Toxicity, Antioxidant Activities and Antimicrobial Properties. Biocatal. Agric. Biotechnol. 2021, 34, 102032. [Google Scholar] [CrossRef]
- Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The Nutritional Components of Beer and Its Relationship with Neurodegeneration and Alzheimer’s Disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [Green Version]
- Correa-Ascencio, M.; Robertson, I.G.; Cabrera-Cortés, O.; Cabrera-Castro, R.; Evershed, R.P. Pulque Production from Fermented Agave Sap as a Dietary Supplement in Prehispanic Mesoamerica. Proc. Natl. Acad. Sci. USA 2014, 111, 14223–14228. [Google Scholar] [CrossRef] [Green Version]
- Mc Govern, P.E. Pre-Hispanic Distillation? A Biomolecular Archaeological Investigation. Open Access J. Archaeol. Anthropol. 2019, 1. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Bell, V.; Ferrão, J.; Pimentel, L.; Pintado, M.; Fernandes, T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ma, C.; Peng, Q.; Huo, D.; Li, W.; Zhang, J. Microbial Profile and Genetic Polymorphism of Predominant Species in Some Traditional Fermented Seafoods of the Hainan Area in China. Front. Microbiol. 2019, 10, 564. [Google Scholar] [CrossRef]
- Rizo, J.; Guillén, D.; Farrés, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in Traditional Vegetable Fermented Foods and Beverages. Crit. Rev. Food Sci. Nutr. 2020, 60, 791–809. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented Beverages with Health-Promoting Potential: Past and Future Perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.R.; Won, S.B.; Chung, Y.S.; Kwak, C.S.; Kwon, Y.H. Inhibitory Effects of Doenjang, Korean Traditional Fermented Soybean Paste, on Oxidative Stress and Inflammation in Adipose Tissue of Mice Fed a High-Fat Diet. Nutr. Res. Pract. 2015, 9, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, I.S.; Do, M.S.; Kim, S.O.; Jung, H.S.; Kim, Y.I.; Kim, H.J.; Park, K.Y. Antiobesity Effect of Kochujang (Korean Fermented Red Pepper Paste) Extract in 3T3-L1 Adipocytes. J. Med. Food 2006, 9, 15–21. [Google Scholar] [CrossRef]
- Hamadate, N.; Nakamura, K.; Hirai, M.; Yamamoto, T.; Yamaguchi, H.; Iizuka, M.; Yamamoto, E.; Iwama, Y.; Yazawa, K. Effect of a Dietary Supplement Containing Kurozu (a Japanese Traditional Health Drink) Concentrate on Several Obesity-Related Parameters in Obese Japanese Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Funct. Foods Health Dis. 2013, 3, 310. [Google Scholar] [CrossRef]
- Yang, H.J.; Kwon, D.Y.; Kim, M.J.; Kang, S.; Park, S. Meju, Unsalted Soybeans Fermented with Bacillus Subtilis and Aspergilus Oryzae, Potentiates Insulinotropic Actions and Improves Hepatic Insulin Sensitivity in Diabetic Rats. Nutr. Metab. 2012, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, D.Y.; Hong, S.M.; Ahn, I.S.; Kim, Y.S.; Shin, D.W.; Park, S. Kochujang, a Korean Fermented Red Pepper plus Soybean Paste, Improves Glucose Homeostasis in 90% Pancreatectomized Diabetic Rats. Nutrition 2009, 25, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Wilburn, J.R.; Ryan, E.P. Fermented Foods in Health Promotion and Disease Prevention: An Overview; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Rasane, P.; Kailey, R.; Singh, S.K. Fermented Indigenous Indian Dairy Products: Standards, Nutrition, Technological Significance and Opportunities for Its Processing. J. Pure Appl. Microbiol. 2017, 11, 1199–1213. [Google Scholar] [CrossRef]
- Azizi, N.F.; Kumar, M.R.; Yeap, S.K.; Abdullah, J.O.; Khalid, M.; Omar, A.R.; Osman, M.A.; Mortadza, S.A.S.; Alitheen, N.B. Kefir and Its Biological Activities. Foods 2021, 10, 1210. [Google Scholar] [CrossRef]
- Murooka, Y.; Yamshita, M. Traditional Healthful Fermented Products of Japan. J. Ind. Microbiol. Biotechnol. 2008, 35, 791–798. [Google Scholar] [CrossRef]
- Dinçoğlu, A.H.; Rugji, J. Use of Rose Oil in Probiotic Fermented Whey as a Functional Food. J. Food Sci. Technol. 2021, 58, 2705–2713. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef]
- Sáez, G.D.; Flomenbaum, L.; Zárate, G. Lactic Acid Bacteria from Argentinean Fermented Foods: Isolation and Characterization for Their Potential Use as Vegetable Starters. Food Technol. Biotechnol. 2018, 56, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- FAO, E.; WHO, E. Probióticos En Los Alimentos Propiedades Saludables y Nutricionales y Directrices Para La Evaluación. Estud. FAO Aliment. Y Nutr. 2006, 85, 52. [Google Scholar]
- George, R.; Patra, J.K.; Gouda, S.; Park, Y.; Shin, H.S.; Das, G. Benefaction of Probiotics for Human Health: A Review. J. Food Drug Anal. 2018, 26, 927–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, M.T.; Ruiz, M.A.; Morales, M.E. Microorganismos Probióticos y Salud. Ars Pharm. 2015, 56, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Champagne, C.P.; Ross, R.P.; Saarela, M.; Hansen, K.F.; Charalampopoulos, D. Recommendations for the Viability Assessment of Probiotics as Concentrated Cultures and in Food Matrices. Int. J. Food Microbiol. 2011, 149, 185–193. [Google Scholar] [CrossRef]
- Arihara, K. Strategies for Designing Novel Functional Meat Products. Meat Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef]
- Ferranti, P.; Nitride, C.; Nicolai, M.A.; Mamone, G.; Picariello, G.; Bordoni, A.; Valli, V.; Di Nunzio, M.; Babini, E.; Marcolini, E.; et al. In Vitro Digestion of Bresaola Proteins and Release of Potential Bioactive Peptides. Food Res. Int. 2014, 63, 157–169. [Google Scholar] [CrossRef]
- Stadnik, J.; Kęska, P. Meat and Fermented Meat Products as a Source of Bioactive Peptides. Acta Sci. Pol. Technol. Aliment. 2015, 14, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.N.; Arias, A.G.C. Estudio Químico Bromatológico de Aguamiel de Agave americana L. (Maguey). Cienc. E Investig. 2008, 11, 46–51. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Rodríguez-Jasso, R.M.; Rodríguez-Herrera, R.; Contreras-Esquivel, J.C.; Aguilar-González, C.N. Artisanal Production of Aguamiel: A Traditional Mexican Beverage Artisanal Production of Aguamiel: A Traditional Mexican Beverage. Rev. Científica La Univ. Autónoma Coahuila Prod. 2013, 5, 12–19. [Google Scholar]
- Romero-López, M.R.; Osorio-Díaz, P.; Flores-Morales, A.; Robledo, N.; Mora-Escobedo, R. Composición Química, Capacidad Antioxidante y El Efecto Prebiótico Del Aguamiel (Agave atrovirens) Durante Su Fermentación In Vitro. Rev. Mex. Ing. Quim. 2015, 14, 281–292. [Google Scholar]
- Guzmán-Pedraza, R.; Contreras-Esquivel, J.C. Aguamiel y Su Fermentación: Ciencia Más Allá de La Tradición. Mex. J. Biotechnol. 2018, 3, 1–22. [Google Scholar] [CrossRef]
- Leal-Díaz, A.M.; Noriega, L.G.; Torre-Villalvazo, I.; Torres, N.; Alemán-Escondrillas, G.; López-Romero, P.; Sánchez-Tapia, M.; Aguilar-López, M.; Furuzawa-Carballeda, J.; Velázquez-Villegas, L.A.; et al. Aguamiel Concentrate from Agave Salmiana and Its Extracted Saponins Attenuated Obesity and Hepatic Steatosis and Increased Akkermansia Muciniphila in C57BL6 Mice. Sci. Rep. 2016, 6, 34242. [Google Scholar] [CrossRef] [Green Version]
- Kwak, C.S.; Lee, M.S.; Park, S.C. Higher Antioxidant Properties of Chungkookjang, a Fermented Soybean Paste, May Be Due to Increased Aglycone and Malonylglycoside Isoflavone during Fermentation. Nutr. Res. 2007, 27, 719–727. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, S. Long-Term Consumption of Fermented Soybean-Derived Chungkookjang Attenuates Hepatic Insulin Resistance in 90% Pancreatectomized Diabetic Rats. Horm. Metab. Res. 2007, 39, 752–757. [Google Scholar] [CrossRef]
- Jung, K.O.; Park, S.Y.; Park, K.Y. Longer Aging Time Increases the Anticancer and Antimetastatic Properties of Doenjang. Nutrition 2006, 22, 539–545. [Google Scholar] [CrossRef]
- Jeong, J.K.; Chang, H.K.; Park, K.Y. Doenjang Prepared with Mixed Starter Cultures Attenuates Azoxymethane and Dextran Sulfate Sodium-Induced Colitis-Associated Colon Carcinogenesis in Mice. J. Carcinog. 2014, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P. Ethnic Fermented Foods and Alcoholic Beverages of Asia; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Carlsen, H.; Haugen, F.; Zadelaar, S.; Kleemann, R.; Kooistra, T.; Drevon, C.A.; Blomhoff, R. Diet-Induced Obesity Increases NF-ΚB Signaling in Reporter Mice. Genes Nutr. 2009, 4, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.Y.; Hong, S.M.; Ahn, I.S.; Kim, M.J.; Yang, H.J.; Park, S. Isoflavonoids and Peptides from Meju, Long-Term Fermented Soybeans, Increase Insulin Sensitivity and Exert Insulinotropic Effects in Vitro. Nutrition 2011, 27, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.J.; Kim, Y.J.; Park, J.M.; Park, Y.S. Analysis of Microflora in Gochujang, Korean Traditional Fermented Food. Food Sci. Biotechnol. 2011, 20, 1435–1440. [Google Scholar] [CrossRef]
- Shin, D.; Jeong, D. Korean Traditional Fermented Soybean Products: Jang. J. Ethn. Foods 2015, 2, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Chung, K.R.; Yang, H.J.; Kwon, D.Y. Sunchang Gochujang (Korean Red Chili Paste): The Unfolding of Authenticity. J. Ethn. Foods 2016, 3, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.J.; Lee, Y.S.; Choi, I.S. Comparison of Physicochemical Properties and Antioxidant Activities of Fermented Soybean-Based Red Pepper Paste, Gochujang, Prepared with Five Different Red Pepper (Capsicum annuum L.) Varieties. J. Food Sci. Technol. 2018, 55, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.W.; Jang, E.S.; Moon, B.S.; Lee, J.J.; Lee, D.E.; Lee, C.H.; Shin, C.S. Anti-Obesity Effects of Gochujang Products Prepared Using Rice Koji and Soybean Meju in Rats. J. Food Sci. Technol. 2016, 53, 1004–1013. [Google Scholar] [CrossRef] [Green Version]
- Son, H.; Shin, H.; Jang, E.; Moon, B.; Lee, C.H.; Lee, J. Gochujang Prepared Using Rice and Wheat Koji Partially Alleviates High-fat Diet-induced Obesity in Rats. Food Sci. Nutr. 2020, 8, 1562–1574. [Google Scholar] [CrossRef]
- Alihosseini, N.; Moahboob, S.A.; Farrin, N.; Mobasseri, M.; Taghizadeh, A.; Ostadrahimi, A.R. Effect of Probiotic Fermented Milk (KEFIR) on Serum Level of Insulin and Homocysteine in Type 2 Diabetes Patients. Acta Endocrinol. 2017, 13, 431–436. [Google Scholar] [CrossRef]
- Ostadrahimi, A.; Taghizadeh, A.; Mobasseri, M.; Farrin, N.; Payahoo, L.; Beyramalipoor Gheshlaghi, Z.; Vahedjabbari, M. Effect of Probiotic Fermented Milk (Kefir) on Glycemic Control and Lipid Profile in Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Iran. J. Public Health 2015, 44, 228–237. [Google Scholar] [PubMed]
- Marshall, V.M.; Cole, W.M. Methods for Making Kefir and Fermented Milks Based on Kefir. J. Dairy Res. 1985, 52, 451–456. [Google Scholar] [CrossRef]
- Simova, E.; Beshkova, D.; Angelov, A.; Hristozova, T.; Frengova, G.; Spasov, Z. Lactic Acid Bacteria and Yeasts in Kefir Grains and Kefir Made from Them. J. Ind. Microbiol. Biotechnol. 2002, 28, 1–6. [Google Scholar] [CrossRef]
- Goncu, A.; Alpkent, Z. Sensory and Chemical Properties of White Pickled Cheese Produced Using Kefir, Yoghurt or a Commercial Cheese Culture as a Starter. Int. Dairy J. 2005, 15, 771–776. [Google Scholar] [CrossRef]
- Irigoyen, A.; Arana, I.; Castiella, M.; Torre, P.; Ibáñez, F.C. Microbiological, Physicochemical, and Sensory Characteristics of Kefir during Storage. Food Chem. 2005, 90, 613–620. [Google Scholar] [CrossRef]
- García Fontán, M.C.; Martínez, S.; Franco, I.; Carballo, J. Microbiological and Chemical Changes during the Manufacture of Kefir Made from Cows’ Milk, Using a Commercial Starter Culture. Int. Dairy J. 2006, 16, 762–767. [Google Scholar] [CrossRef]
- Chen, H.C.; Wang, S.Y.; Chen, M.J. Microbiological Study of Lactic Acid Bacteria in Kefir Grains by Culture-Dependent and Culture-Independent Methods. Food Microbiol. 2008, 25, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Monar, M.; Dávalos, I.; Zapata, S.; Caviedes, M.; Ramírez-Cárdenas, L. Chemical and Microbiological Characterization of Ecuadorian Homemade Water Kefir Caracterización Química y Microbiológica Del Kéfir de Agua Artesanal de Origen Ecuatoriano. ACI Av. En Cienc. E Ing. 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Hadisaputro, S.; Djokomoeljanto, R.R.; Soesatyo, M.H. The Effects of Oral Plain Kefir Supplementation on Proinflammatory Cytokine Properties of the Hyperglycemia Wistar Rats Induced by Streptozotocin. Acta Med. Indones. 2012, 44, 100–104. [Google Scholar] [PubMed]
- Cheigh, H.; Park, K.; Lee, C.Y.; Cheigh, H.-S.; Park, K.-Y. Nutrition Biochemical, Microbiological, and Nutritional Aspects of Kimchi (Korean Fermented Vegetable Products). Crit. Rev. Food Sci. Nutr. 1994, 34, 175–203. [Google Scholar] [CrossRef]
- Park, K.Y.; Jeong, J.K.; Lee, Y.E.; Daily, J.W. Health Benefits of Kimchi (Korean Fermented Vegetables) as a Probiotic Food. J. Med. Food 2014, 17, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Park, J.A.; Tirupathi Pichiah, P.B.; Yu, J.J.; Oh, S.H.; Daily, J.W.; Cha, Y.S. Anti-Obesity Effect of Kimchi Fermented with Weissella Koreensis OK1-6 as Starter in High-Fat Diet-Induced Obese C57BL/6J Mice. J. Appl. Microbiol. 2012, 113, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Song, J.L.; Park, E.S.; Ju, J.; Kim, H.Y.; Park, K.Y. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes. Prev. Nutr. Food Sci. 2015, 20, 298–302. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.K.; An, S.Y.; Lee, M.S.; Kim, T.H.; Lee, H.K.; Hwang, W.S.; Choe, S.J.; Kim, T.Y.; Han, S.J.; Kim, H.J.; et al. Fermented Kimchi Reduces Body Weight and Improves Metabolic Parameters in Overweight and Obese Patients. Nutr. Res. 2011, 31, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Haruta, S.; Ueno, S.; Egawa, I.; Hashiguchi, K.; Fujii, A.; Nagano, M.; Ishii, M.; Igarashi, Y. Succession of Bacterial and Fungal Communities during a Traditional Pot Fermentation of Rice Vinegar Assessed by PCR-Mediated Denaturing Gradient Gel Electrophoresis. Int. J. Food Microbiol. 2006, 109, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, H.; Tanaka, H.; Hashiguchi, K.; Nagano, M.; Arakawa, T.; Tokunaga, M. Rapid Detection of Acetic Acid Bacteria in the Traditional Pot-Fermented Rice Vinegar Kurozu. Food Sci. Technol. Res. 2009, 15, 587–590. [Google Scholar] [CrossRef]
- Shibayama, Y.; Kanouchi, H.; Fujii, A.; Nagano, M. A Review of Kurozu, Amber Rice Vinegar Made in Pottery Jars. Funct. Foods Health Dis. 2020, 10, 254. [Google Scholar] [CrossRef]
- Hong, S.B.; Kim, D.H.; Lee, M.; Baek, S.Y.; Kwon, S.W.; Houbraken, J.; Samson, R.A. Zygomycota Associated with Traditional Meju, a Fermented Soybean Starting Material for Soy Sauce and Soybean Paste. J. Microbiol. 2012, 50, 386–393. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.H.; Kwon, S.W.; Lee, J.K.; Hong, S.B. Mycoflora of Soybeans Used for Meju Fermentation. Mycobiology 2013, 41, 170. [Google Scholar] [CrossRef] [Green Version]
- Park, D.H. Effect of Incubation Temperature on Variations in Bacterial Communities Grown in Fermenting Meju and the Nutritional Quality of Soy Sauce. Food Sci. Biotechnol. 2014, 23, 1921–1928. [Google Scholar] [CrossRef]
- Son, Y.J.; Kang, S.H.; Ko, J.M.; Lee, Y.K.; Hwang, I.K.; Kang, H.J. Changes in Physicochemical Characteristics and Nutritional Values of Soybean, Meju, and Doenjang by Varying Sowing Periods. Korean J. Food Sci. Technol. 2017, 49, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Bae, C.R.; Kwon, D.Y.; Cha, Y.S. Anti-Obesity Effects of Traditional and Standardized Meju in High-Fat Diet-Induced Obese C57BL/6J Mice. J. Clin. Biochem. Nutr. 2014, 54, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Park, H.K.; Kim, J.K.; Kim, M. Determination of Biogenic Amines in Japanese Miso Products. Food Sci. Biotechnol. 2011, 20, 851–854. [Google Scholar] [CrossRef]
- Nout, R. Quality, Safety, Biofunctionality and Fermentation Control in Soya. In Advances in Fermented Foods and Beverages: Improving Quality, Technologies and Health Benefits; Elsevier: Amsterdam, The Netherlands, 2015; pp. 409–434. [Google Scholar] [CrossRef]
- Wu, S.; Feng, S.; Ci, Z.; Jiang, C.; Cui, Y.; Sasaki, Y.; Ota, Y. Anti-Obesity Effect and Antioxidant Activity in High-Fat Diet Mice Fed Fermented Buckwheat Products (Miso). J. Food Nutr. Res. 2016, 4, 355–360. [Google Scholar] [CrossRef]
- Okouchi, R.; Sakanoi, Y.; Tsuduki, T. Miso (Fermented Soybean Paste) Suppresses Visceral Fat Accumulation in Mice, Especially in Combination with Exercise. Nutrients 2019, 11, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Song, J.L.; Wang, Q.; Qian, Y.; Li, G.J.; Pang, L. Comparisons of Shuidouchi, Natto, and Cheonggukjang in Their Physicochemical Properties, and Antimutagenic and Anticancer Effects. Food Sci. Biotechnol. 2013, 22, 1077–1084. [Google Scholar] [CrossRef]
- Taniguchi-Fukatsu, A.; Yamanaka-Okumura, H.; Naniwa-Kuroki, Y.; Nishida, Y.; Yamamoto, H.; Taketani, Y.; Takeda, E. Natto and Viscous Vegetables in a Japanese-Style Breakfast Improved Insulin Sensitivity, Lipid Metabolism and Oxidative Stress in Overweight Subjects with Impaired Glucose Tolerance. Br. J. Nutr. 2012, 107, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Cravioto, R.O.; Massieu, G.; Guzman, J. Investigaciones Bromatológicas En Alimentos Mexicanos. Bol. Oficina Sanit. Panam. 1955, 38, 26–33. [Google Scholar] [PubMed]
- Jiménez Vera, R.; González Cortés, N.; Magaña Contreras, A.; Corona Cruz, A. Evaluación Microbiológica y Sensorial de Fermentados de Pozol Blanco, Con Cacao (Theobroma cacao) y Coco (Cocos nucifera). Rev. Venez. Cienc. Y Tecnol. Aliment. 2010, 1, 70–80. [Google Scholar]
- Sotelo, A.; Soleri, D.; Wacher, C.; Sánchez-Chinchillas, A.; Argote, R.M. Chemical and Nutritional Composition of Tejate, a Traditional Maize and Cacao Beverage from the Central Valleys of Oaxaca, Mexico. Plant Foods Hum. Nutr. 2012, 67, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Wachner, C. La Biotecnología Alimentaria Antigua: Los Alimentos Fermentados. Rev. Digit. Univ. 2014, 15, 4–5. [Google Scholar]
- Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Traditional Fermented Beverages in Mexico: Biotechnological, Nutritional, and Functional Approaches. Food Res. Int. 2020, 136, 109307. [Google Scholar] [CrossRef]
- Li, C.; Zhu, Y.; Wang, Y.; Zhu, J.S.; Chang, J.; Kritchevsky, D. Monascus Purpureus-Fermented Rice (Red Yeast Rice): A Natural Food Product That Lowers Blood Cholesterol in Animal Models of Hypercholesterolemia. Nutr. Res. 1998, 18, 71–81. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Ye, Q.; Li, J.; Hua, Y.; Ju, D.; Zhang, D.; Cooper, R.; Chang, M. Constituents of Red Yeast Rice, a Traditional Chinese Food and Medicine. J. Agric. Food Chem. 2000, 48, 5220–5225. [Google Scholar] [CrossRef]
- Journoud, M.; Jones, P.J.H. Red Yeast Rice: A New Hypolipidemic Drug. Life Sci. 2004, 74, 2675–2683. [Google Scholar] [CrossRef]
- Xiong, T.; Li, X.; Guan, Q.; Peng, F.; Xie, M. Starter Culture Fermentation of Chinese Sauerkraut: Growth, Acidification and Metabolic Analyses. Food Control 2014, 41, 122–127. [Google Scholar] [CrossRef]
- Peñas, E.; Martinez-Villaluenga, C.; Frias, J. Chapter 24—Sauerkraut: Production, Composition, and Health Benefits; Academic Press: Boston, MA, USA, 2017; pp. 557–576. [Google Scholar] [CrossRef]
- Nielsen, E.S.; Garnås, E.; Jensen, K.J.; Hansen, L.H.; Olsen, P.S.; Ritz, C.; Krych, L.; Nielsen, D.S. Lacto-Fermented Sauerkraut Improves Symptoms in IBS Patients Independent of Product Pasteurisation-a Pilot Study. Food Funct. 2018, 9, 5323–5335. [Google Scholar] [CrossRef]
- Lopez, H.W.; Duclos, V.; Coudray, C.; Krespine, V.; Feillet-Coudray, C.; Messager, A.; Demigné, C.; Rémésy, C. Making Bread with Sourdough Improves Mineral Bioavailability from Reconstituted Whole Wheat Flour in Rats. Nutrition 2003, 19, 524–530. [Google Scholar] [CrossRef]
- Galle, S.; Schwab, C.; Arendt, E.; Gänzle, M. Exopolysaccharide-Forming Weissella Strains as Starter Cultures for Sorghum and Wheat Sourdoughs. J. Agric. Food Chem. 2010, 58, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Ogunsakin, O.A.; Banwo, K.; Ogunremi, O.R.; Sanni, A.I. Microbiological and Physicochemical Properties of Sourdough Bread from Sorghum Flour. Int. Food Res. J. 2015, 22, 2610–2618. [Google Scholar]
- Hayta, M.; Hendek Ertop, M. Optimisation of Sourdough Bread Incorporation into Wheat Bread by Response Surface Methodology: Bioactive and Nutritional Properties. Int. J. Food Sci. Technol. 2017, 52, 1828–1835. [Google Scholar] [CrossRef]
- Stillings, B.R.; Hackler, L.R. Amino Acid Studies on the Effect of Fermentation Time and Heat-Processing of Tempeh. J. Food Sci. 1965, 30, 1043–1048. [Google Scholar] [CrossRef]
- Hachmeister, K.A.; Fung, D.Y.C. Tempeh: A Mold-Modified Indigenous Fermented Food Made from Soybeans and/or Cereal Grains. Crit. Rev. Microbiol. 1993, 19, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Eriksson, A.R.B.; Schnürer, J. Growth of Lactic Acid Bacteria and Rhizopus Oligosporus during Barley Tempeh Fermentation. Int. J. Food Microbiol. 2005, 104, 249–256. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. History of Tempeh; Soyinfo Center: Lafayette, CA, USA, 2007. [Google Scholar]
- Tahir, A.; Anwar, M.; Mubeen, H.; Raza, S. Evaluation of Physicochemical and Nutritional Contents in Soybean Fermented Food Tempeh by Rhizopus Oligosporus. J. Adv. Biol. Biotechnol. 2018, 17. [Google Scholar] [CrossRef]
- Huang, Y.-C.; Wu, B.-H.; Chu, Y.-L.; Chang, W.-C.; Wu, M.-C. Effects of Tempeh Fermentation with Lactobacillus Plantarum and Rhizopus Oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats. Nutrients 2018, 10, 1143. [Google Scholar] [CrossRef] [Green Version]
- McKinley, M.C. The Nutrition and Health Benefits of Yoghurt. Int. J. Dairy Technol. 2005, 90, 613–620. [Google Scholar] [CrossRef]
- Surono, I.S.; Hosono, A. Fermented Milks: Types and Standards of Identity. In Encyclopedia of Dairy Sciences, 2nd ed.; Academic Press: Boston, MA, USA, 2011; pp. 470–476. [Google Scholar] [CrossRef]
- Serafeimidou, A.; Zlatanos, S.; Laskaridis, K.; Sagredos, A. Chemical Characteristics, Fatty Acid Composition and Conjugated Linoleic Acid (CLA) Content of Traditional Greek Yogurts. Food Chem. 2012, 134, 1839–1846. [Google Scholar] [CrossRef]
- Babio, N.; Mena-Sánchez, G.; Salas-Salvadó, J. Más Allá Del Valor Nutricional Del Yogur: ¿un Indicador de La Calidad de La Dieta? Nutr. Hosp. 2017, 34, 1567. [Google Scholar] [CrossRef]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef]
- Da Porto, A.; Cavarape, A.; Colussi, G.; Casarsa, V.; Catena, C.; Sechi, L.A. Polyphenols Rich Diets and Risk of Type 2 Diabetes. Nutrients 2021, 13, 1445. [Google Scholar] [CrossRef]
- Lev-Tzion, R.; Griffiths, A.M.; Leder, O.; Turner, D. Omega 3 Fatty Acids (Fish Oil) for Maintenance of Remission in Crohn’s Disease. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrián, S.; Costa, A.G.V.; Navas-Carretero, S.; Zabala, M.; Laiglesia, L.M.; Martínez, J.A.; Moreno-Aliaga, M.J. An Update on the Role of Omega-3 Fatty Acids on Inflammatory and Degenerative Diseases. J. Physiol. Biochem. 2015, 71, 341–349. [Google Scholar] [CrossRef]
- Preston Mason, R. New Insights into Mechanisms of Action for Omega-3 Fatty Acids in Atherothrombotic Cardiovascular Disease. Curr. Atheroscler. Rep. 2019, 21, 2. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, E.; Sedehi, M.; Shahraki, Z.; Najafi, R. Effect of Folic Acid on Homocysteine and Insulin Resistance of Overweight and Obese Children and Adolescents. Adv. Biomed. Res. 2016, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Fruchart, J.C.; Nierman, M.C.; Stroes, E.S.G.; Kastelein, J.J.P.; Duriez, P. New Risk Factors for Atherosclerosis and Patient Risk Assessment. Circulation 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Esse, R.; Barroso, M.; Tavares de Almeida, I.; Castro, R. The Contribution of Homocysteine Metabolism Disruption to Endothelial Dysfunction: State-of-the-Art. Int. J. Mol. Sci. 2019, 20, 867. [Google Scholar] [CrossRef] [Green Version]
- Gargari, B.P.; Aghamohammadi, V.; Aliasgharzadeh, A. Effect of Folic Acid Supplementation on Biochemical Indices in Overweight and Obese Men with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2011, 94, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Steinkraus, K. Handbook of Indigenous Fermented Foods, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Thapa, N.; Tamang, J.P. Functionality and Therapeutic Values of Fermented Foods. In Health Benefits of Fermented Foods and Beverages; CRC Press: Boca Raton, FL, USA, 2015; pp. 111–168. [Google Scholar]
- Jung, S.J.; Park, S.H.; Choi, E.K.; Cha, Y.S.; Cho, B.H.; Kim, Y.G.; Kim, M.G.; Song, W.O.; Park, T.S.; Ko, J.K.; et al. Beneficial Effects of Korean Traditional Diets in Hypertensive and Type 2 Diabetic Patients. J. Med. Food 2014, 17, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Astuti, M. Health Benefits of Tempe. In Health Benefits of Fermented Foods and Beverages; CRC Press: Boca Raton, FL, USA, 2015; pp. 371–394. [Google Scholar]
- Bourdichon, F.; Arias, E.; Babuchowski, A.; Bückle, A.; Bello, F.D.; Dubois, A.; Fontana, A.; Fritz, D.; Kemperman, R.; Laulund, S.; et al. The Forgotten Role of Food Cultures. FEMS Microbiol. Lett. 2021, 368. [Google Scholar] [CrossRef]
- Shah, N.P. Functional Properties of Fermented Milks. In Health Benefits of Fermented Foods; CRC Press: Boca Raton, FL, USA, 2015; pp. 261–274. [Google Scholar]
- Lee, M.; Song, J.H.; Park, J.M.; Chang, J.Y. Bacterial Diversity in Korean Temple Kimchi Fermentation. Food Res. Int. 2019, 126, 108592. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.-H.; Jung, S.-J.; Chae, S.-W. Functional Properties of Microorganisms in Fermented Foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Sánchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited Review: Advances in Nisin Use for Preservation of Dairy Products. J. Dairy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef]
- Cai, J.-S.; Feng, J.-Y.; Ni, Z.-J.; Ma, R.-H.; Thakur, K.; Wang, S.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. An Update on the Nutritional, Functional, Sensory Characteristics of Soy Products, and Applications of New Processing Strategies. Trends Food Sci. Technol. 2021, 112, 676–689. [Google Scholar] [CrossRef]
- Rahnama Vosough, P.; Habibi Najafi, M.B.; Edalatian Dovom, M.R.; Javadmanesh, A.; Mayo, B. Evaluation of Antioxidant, Antibacterial and Cytotoxicity Activities of Exopolysaccharide from Enterococcus Strains Isolated from Traditional Iranian Kishk. J. Food Meas. Charact. 2021, 15, 5221–5230. [Google Scholar] [CrossRef]
- WHO. Obesidad y Sobrepeso Datos y Cifras; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Jung, U.; Choi, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2014, 15, 6184. [Google Scholar] [CrossRef] [Green Version]
- Perez Lizaur, A.; Garcia Campos, M. Dietas Normales y Terapeúticas, 6th ed.; Mc Graw Hill: Ciudad de México, Mexico, 2014. [Google Scholar]
- Escott Stump, S. Nutrición, Diagnóstico y Tratamiento, 8th ed.; Ippincott Williams and Wilkins: Philadelphia, PA, USA; Wolters Kluwer Health: Philadelphia, PA, USA, 2016. [Google Scholar]
- Kim, K.Y.; Kim, J.K.; Jeon, J.H.; Yoon, S.R.; Choi, I.; Yang, Y. C-Jun N-Terminal Kinase Is Involved in the Suppression of Adiponectin Expression by TNF-α in 3T3-L1 Adipocytes. Biochem. Biophys. Res. Commun. 2005, 327, 460–467. [Google Scholar] [CrossRef]
- Maury, E.; Brichard, S.M. Adipokine Dysregulation, Adipose Tissue Inflammation and Metabolic Syndrome. Mol. Cell. Endocrinol. 2010, 314, 1–16. [Google Scholar] [CrossRef]
- Cope, M.B.; Allison, D.B. Critical Review of the World Health Organization’s (WHO) 2007 Report on “evidence of the Long-Term Effects of Breastfeeding: Systematic Reviews and Meta-Analysis” with Respect to Obesity. Obes. Rev. 2008, 9, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B. The Effect of Obesity on Health Outcomes. Mol. Cell. Endocrinol. 2010, 316, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Cawley, J.; Meyerhoefer, C. The Medical Care Costs of Obesity: An Instrumental Variables Approach. J. Health Econ. 2012, 31, 219–230. [Google Scholar] [CrossRef]
- Byun, M.S.; Yu, O.K.; Cha, Y.S.; Park, T.S. Korean Traditional Chungkookjang Improves Body Composition, Lipid Profiles and Atherogenic Indices in Overweight/Obese Subjects: A Double-Blind, Randomized, Crossover, Placebo-Controlled Clinical Trial. Eur. J. Clin. Nutr. 2016, 70, 1116–1122. [Google Scholar] [CrossRef]
- Kwak, C.S.; Park, S.C.; Song, K.Y. Doenjang, a Fermented Soybean Paste, Decreased Visceral Fat Accumulation and Adipocyte Size in Rats Fed with High Fat Diet More Effectively than Nonfermented Soybeans. J. Med. Food 2012, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.S.; Yang, J.A.; Back, H.I.; Kim, S.R.; Kim, M.G.; Jung, S.J.; Song, W.O.; Chae, S.W. Visceral Fat and Body Weight Are Reduced in Overweight Adults by the Supplementation of Doenjang, a Fermented Soybean Paste. Nutr. Res. Pract. 2012, 6, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, Y.S.; Park, Y.; Lee, M.; Chae, S.W.; Park, K.; Kim, Y.; Lee, H.S. Doenjang, a Korean Fermented Soy Food, Exerts Antiobesity and Antioxidative Activities in Overweight Subjects with the PPAR-Γ2 C1431T Polymorphism: 12-Week, Double-Blind Randomized Clinical Trial. J. Med. Food 2014, 17, 119–127. [Google Scholar] [CrossRef]
- Cha, Y.S.; Kim, S.R.; Yang, J.A.; Back, H.I.; Kim, M.G.; Jung, S.J.; Song, W.O.; Chae, S.W. Kochujang, Fermented Soybean-Based Red Pepper Paste, Decreases Visceral Fat and Improves Blood Lipid Profiles in Overweight Adults. Nutr. Metab. 2013, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Back, H.I.; Kim, S.R.; Yang, J.A.; Kim, M.G.; Chae, S.W.; Cha, Y.S. Effects of Chungkookjang Supplementation on Obesity and Atherosclerotic Indices in Overweight/Obese Subjects: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Med. Food 2011, 14, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Bourrie, B.C.T.; Cotter, P.D.; Willing, B.P. Traditional Kefir Reduces Weight Gain and Improves Plasma and Liver Lipid Profiles More Successfully than a Commercial Equivalent in a Mouse Model of Obesity. J. Funct. Foods 2018, 46, 29–37. [Google Scholar] [CrossRef]
- Park, J.E.; Oh, S.H.; Cha, Y.S. Lactobacillus Brevis OPK-3 from Kimchi Prevents Obesity and Modulates the Expression of Adipogenic and pro-Inflammatory Genes in Adipose Tissue of Diet-Induced Obese Mice. Nutrients 2020, 12, 604. [Google Scholar] [CrossRef] [Green Version]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—the Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Lee, Y.J.; Kim, M.; Kim, M.; Kwak, J.H.; Lee, J.W.; Ahn, Y.T.; Sim, J.H.; Lee, J.H. Supplementation with Two Probiotic Strains, Lactobacillus Curvatus HY7601 and Lactobacillus Plantarum KY1032, Reduced Body Adiposity and Lp-PLA2 Activity in Overweight Subjects. J. Funct. Foods 2015, 19, 744–752. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Y.; Xu, T.; Li, Q.; Wang, D.; Zhang, L.; Fan, B.; Wang, F.; Liu, X. Genistein Ameliorates Scopolamine-Induced Amnesia in Mice through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling. Front. Pharmacol. 2018, 9, 1153. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Xin, X.; Chen, C.; Hu, Y.Y.; Feng, Q. Protective Effect of Genistein on Nonalcoholic Fatty Liver Disease (NAFLD). Biomed. Pharmacother. 2019, 117, 109047. [Google Scholar] [CrossRef] [PubMed]
- OMS. Informe Mundial de La Diabetes; WHO: Geneva, Switzerland, 2016; p. 4. [Google Scholar]
- DeFronzo, R.A.; Ferrannini, E. Regulation of Intermediary Metabolism During Fasting and Feeding. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2015; Volume 1–2, pp. 598–626.e3. [Google Scholar] [CrossRef]
- OMS. ¿Qué Es La Diabetes? Available online: https://www.niddk.nih.gov/health-information/informacion-de-la-salud/diabetes/informacion-general/que-es (accessed on 25 October 2021).
- Association, A.D. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; et al. Glycemic Index, Glycemic Load and Glycemic Response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutr. Metab. Cardiovasc. Dis. 2015, 25, 795–815. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Carey, V.J.; Anderson, C.A.M.; Miller, E.R.; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; et al. Effects of High vs Low Glycemic Index of Dietary Carbohydrate on Cardiovascular Disease Risk Factors and Insulin Sensitivity. JAMA 2014, 312, 2531. [Google Scholar] [CrossRef]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough Bread: Starch Digestibility and Postprandial Glycemic Response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef]
- Lukšič, L.; Bonafaccia, G.; Timoracka, M.; Vollmannova, A.; Trček, J.; Nyambe, T.K.; Melini, V.; Acquistucci, R.; Germ, M.; Kreft, I. Rutin and Quercetin Transformation during Preparation of Buckwheat Sourdough Bread. J. Cereal Sci. 2016, 69, 71–76. [Google Scholar] [CrossRef]
- Choi, J.H.; Pichiah, P.B.T.; Kim, M.J.; Cha, Y.S. Cheonggukjang, a Soybean Paste Fermented with B. Licheniformis-67 Prevents Weight Gain and Improves Glycemic Control in High Fat Diet Induced Obese Mice. J. Clin. Biochem. Nutr. 2016, 59, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Razmpoosh, E.; Javadi, M.; Ejtahed, H.S.; Mirmiran, P. Probiotics as Beneficial Agents in the Management of Diabetes Mellitus: A Systematic Review. Diabetes Metab. Res. Rev. 2016, 32, 143–168. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, S.; Sahu, S.; Nayak, L.; Ngangkham, U.; Parameswaran, C.; Bose, L.K.; Samantaray, S.; Kumar, G.; Sharma, S.G. Rice with Pulses or Cooking Oils Can Be Used to Elicit Lower Glycemic Response. J. Food Compos. Anal. 2018, 71, 1–7. [Google Scholar] [CrossRef]
- Rosa, D.D.; Dias, M.M.S.; Grześkowiak, Ł.M.; Reis, S.A.; Conceição, L.L.; Peluzio, M.D.C.G. Milk Kefir: Nutritional, Microbiological and Health Benefits. Nutr. Res. Rev. 2017, 30, 82–96. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Jang, J.S.; Hong, S.M.; Lee, J.E.; Sung, S.R.; Park, H.R.; Park, S. Long-Term Consumption of Fermented Soybean-Derived Chungkookjang Enhances Insulinotropic Action Unlike Soybeans in 90% Pancreatectomized Diabetic Rats. Eur. J. Nutr. 2007, 46, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Sanjukta, S.; Rai, A.K. Production of Bioactive Peptides during Soybean Fermentation and Their Potential Health Benefits. Trends Food Sci. Technol. 2016, 50, 1–10. [Google Scholar] [CrossRef]
- Mirmiranpour, H.; Huseini, H.F.; Derakhshanian, H.; Khodaii, Z.; Tavakoli-Far, B. Effects of Probiotic, Cinnamon, and Synbiotic Supplementation on Glycemic Control and Antioxidant Status in People with Type 2 Diabetes; a Randomized, Double-Blind, Placebo-Controlled Study. J. Diabetes Metab. Disord. 2020, 19, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zulfania, A.K.; Rehman, S.; Ghaffar, T. Association of Homocysteine with Body Mass Index, Blood Pressure, HbA1c and Duration of Diabetes in Type 2 Diabetics. Pak. J. Med. Sci. 2018, 34, 1483–1487. [Google Scholar] [CrossRef]
- Punaro, G.R.; Maciel, F.R.; Rodrigues, A.M.; Rogero, M.M.; Bogsan, C.S.B.; Oliveira, M.N.; Ihara, S.S.M.; Araujo, S.R.R.; Sanches, T.R.C.; Andrade, L.C.; et al. Kefir Administration Reduced Progression of Renal Injury in STZ-Diabetic Rats by Lowering Oxidative Stress. Nitric Oxide-Biol. Chem. 2014, 37, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Miraghajani, M.; Dehsoukhteh, S.S.; Rafie, N.; Hamedani, S.G.; Sabihi, S.; Ghiasvand, R. Potential Mechanisms Linking Probiotics to Diabetes: A Narrative Review of the Literature. Sao Paulo Med. J. 2017, 135, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Choi, H. Antidiabetic Effect of Korean Traditional Baechu (Chinese Cabbage) Kimchi in a Type 2 Diabetes Model of Rats. J. Med. Food 2009, 12, 292–297. [Google Scholar] [CrossRef]
- Maioli, M.; Pes, G.M.; Sanna, M.; Cherchi, S.; Dettori, M.; Manca, E.; Farris, G.A. Sourdough-Leavened Bread Improves Postprandial Glucose and Insulin Plasma Levels in Subjects with Impaired Glucose Tolerance. Acta Diabetol. 2008, 45, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.T.; Huang, C.C.; Liu, I.M.; Tzeng, T.F.; Chih, J.C. Novel Mechanism for Plasma Glucose-Lowering Action of Metformin in Streptozotocin-Induced Diabetic Rats. Diabetes 2006, 55, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadour, E.; Hassan, Z.; Gadour, R. A Comprehensive Review of Transaminitis and Irritable Bowel Syndrome. Cureus 2021, 13, e16583. [Google Scholar] [CrossRef]
- Arishi, A.M.; Elmakki, E.E.; Hakami, O.M.; Alganmy, O.M.; Maashi, S.M.; Al-Khairat, H.K.; Sahal, Y.A.; Sharif, A.A.; Alfaifi, M.H. Irritable Bowel Syndrome: Prevalence and Risk Factors in Jazan Region, Saudi Arabia. Cureus 2021, 13, e15979. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Oświęcimska, J.; Szymlak, A.; Roczniak, W.; Girczys-Połedniok, K.; Kwiecień, J. New Insights into the Pathogenesis and Treatment of Irritable Bowel Syndrome. Adv. Med Sci. 2017, 62, 17–30. [Google Scholar] [CrossRef]
- Marsh, A.; Eslick, E.M.; Eslick, G.D. Does a Diet Low in FODMAPs Reduce Symptoms Associated with Functional Gastrointestinal Disorders? A Comprehensive Systematic Review and Meta-Analysis. Eur. J. Nutr. 2016, 55, 897–906. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Choi, S.-W. Dietary Modulation of Gut Microbiota for the Relief of Irritable Bowel Syndrome. Nutr. Res. Pract. 2021, 15, 411. [Google Scholar] [CrossRef]
- Stróżyk, A.; Horvath, A.; Muir, J.; Szajewska, H. Effect of a Low-FODMAP Diet for the Management of Functional Abdominal Pain Disorders in Children: A Study Protocol for a Randomized Controlled Trial. Nutr. J. 2021, 20, 1. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; D’Alcamo, A.; Carroccio, A. Role of FODMAPs in Patients With Irritable Bowel Syndrome. Nutr. Clin. Pract. 2015, 30, 665–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, Y.; Muniz Pedrogo, D.A.; Kashyap, P.C. Irritable Bowel Syndrome: A Gut Microbiota-Related Disorder? Am. J. Physiol.—Gastrointest. Liver Physiol. 2016, 312, G52–G62. [Google Scholar] [CrossRef] [PubMed]
- Tap, J.; Derrien, M.; Törnblom, H.; Brazeilles, R.; Cools-Portier, S.; Doré, J.; Störsrud, S.; Le Nevé, B.; Öhman, L.; Simrén, M. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology 2017, 152, 111–123.e8. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.N.; Wu, H.; Chen, Y.Z.; Chen, Y.J.; Shen, X.Z.; Liu, T.T. Altered Molecular Signature of Intestinal Microbiota in Irritable Bowel Syndrome Patients Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Dig. Liver Dis. 2017, 49, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Fukudo, S.; Okumura, T.; Inamori, M.; Okuyama, Y.; Kanazawa, M.; Kamiya, T.; Sato, K.; Shiotani, A.; Naito, Y.; Fujikawa, Y.; et al. Evidence-Based Clinical Practice Guidelines for Irritable Bowel Syndrome 2020. J. Gastroenterol. 2021, 56, 193–217. [Google Scholar] [CrossRef]
- Costabile, A.; Santarelli, S.; Claus, S.P.; Sanderson, J.; Hudspith, B.N.; Brostoff, J.; Ward, J.L.; Lovegrove, A.; Shewry, P.R.; Jones, H.E.; et al. Effect of Breadmaking Process on in Vitrogut Microbiota Parameters in Irritable Bowel Syndrome. PLoS ONE 2014, 9, e111225. [Google Scholar] [CrossRef]
- Muir, J.G.; Varney, J.E.; Ajamian, M.; Gibson, P.R. Gluten-Free and Low-FODMAP Sourdoughs for Patients with Coeliac Disease and Irritable Bowel Syndrome: A Clinical Perspective. Int. J. Food Microbiol. 2019, 290, 237–246. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Pugajeva, I.; Krungleviciute, V.; Mayrhofer, S.; Domig, K. The Contribution of P. acidilactici, L. plantarum, and L. curvatus Starters and L-(+)-Lactic Acid to the Acrylamide Content and Quality Parameters of Mixed Rye—Wheat Bread. LWT Food Sci. Technol. 2017, 80, 43–50. [Google Scholar] [CrossRef]
- Struyf, N.; Laurent, J.; Verspreet, J.; Verstrepen, K.J.; Courtin, C.M. Saccharomyces Cerevisiae and Kluyveromyces Marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread. J. Agric. Food Chem. 2017, 65, 8704–8713. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the Irritable Bowel Syndrome—FODMAP Levels of Modern and Ancient Species and Their Retention during Bread Making. J. Funct. Foods 2016, 25, 257–266. [Google Scholar] [CrossRef]
- Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A Diet Low in FODMAPs Reduces Symptoms of Irritable Bowel Syndrome. Gastroenterology 2014, 146, 67–75.e5. [Google Scholar] [CrossRef] [PubMed]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noorbakhsh, H.; Yavarmanesh, M.; Mortazavi, S.A.; Adibi, P.; Moazzami, A.A. Metabolomics Analysis Revealed Metabolic Changes in Patients with Diarrhea-Predominant Irritable Bowel Syndrome and Metabolic Responses to a Synbiotic Yogurt Intervention. Eur. J. Nutr. 2019, 58, 3109–3119. [Google Scholar] [CrossRef] [PubMed]
- Distrutti, E.; Monaldi, L.; Ricci, P.; Fiorucci, S. Gut Microbiota Role in Irritable Bowel Syndrome: New Therapeutic Strategies. World J. Gastroenterol. 2016, 22, 2219–2241. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W.J. Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Food | Identified Microorganisms | Description | Health Benefits | Physicochemical Properties | References |
---|---|---|---|---|---|
Aguamiel | Z. mobilis L. acidophilus L. acetotolerans L. kimchii L. dextranicum L. mesenteroides P. lindneri S. carbajal | Aguamiel is a sap produced by the agave plant. It is a translucent liquid that becomes amber with time. The production of sap reaches 4 to 6 L per day. It is obtained by cutting the central leaves of the mature plant; then, it is scrapped to create a 20–30 cm deep cavity that functions as sap storage. | Aguamiel produced a lower increase in blood glucose and serum insulin in C57BL6 mice despite the elevated glucose content. Moreover, aguamiel improved the diabetic condition, especially in glycemic control. | pH: 6–7 °Brix: 11–12 Acidity: 1–2% | [33,34,35,36,37] |
Chungkookjang | B. subtilis | Chungkookjang is prepared by fermenting steamed soybeans in a closed and humid container at about 40 °C for 2 to 3 days; the fermentation is performed by airborne microbes or endogenous soybean microflora. B. subtilis is the dominant microorganism and provides its characteristic texture and flavor. | Chungkokjang enhanced antidiabetic function because it improved the suppression of hepatic glucose by enhancing the IRS2-Akt signaling pathway in diabetic rats. | pH: 8.4 | [38,39] |
Doenjang | B. aryabhattai B. licheniformis B. methylotrophicus B. siamensis E. faecalis E. faecium T. halophilus S. equorum S. nepalensis S. saprophyticus | Doenjang is a fermented soybean paste that is essential in Korean cuisine for its flavor and nutritional properties. For its preparation, soybean is mixed with brine (18%), and reposed in a porcelain vessel. The liquid portion is separated and boiled; the remaining solid portion is crushed and fermented for 30 to 180 days in the porcelain vessel. | Doenjang induced adiponectin production which suppresses the expression of nuclear factor -κB, a transcription factor associated with obesity. Moreover, doenjang extracts improved insulin secretory capacity. | pH: 5.0–6.0 | [40,41,42,43,44] |
Gochujang | B. amyloliquefaciens B. licheniformis B. subtilis B. velezensis Oceanobacillus sp. Yeasts C. lactis Z. rouxii | Traditional Korean food prepared from glutinous rice that is soaked in water for 24 h, strained, and milled. In a separated container, malt is steeped in water for 6 h, filtered, and heated. Rice and malt are mixed and cooked for 30 min to 50 °C and let cooled; finally, red pepper powder and salt are added, and the product is fermented for 1 to 2 years. | Gochujang is reported to have great antiobesity effects, weight loss, and improvements in serum lipid metabolism. Moreover, it has antiobesity properties that inhibit body weight gain, without affecting food intake, and that improve lipid profiles in the serum, liver, and adipose tissue. | pH: 4.52–4.68 | [45,46,47,48,49,50] |
Kefir | L. delbrueckii subsp. Bulgaricus L. helveticus L. brevis L. plantarum L. kefiranofaciens L. lactis subsp. lactis S. thermophilus. Yeasts: K. marxianus C. inconspicua C. maris S. cerevisiae | Beverage obtained from the fermentation of cow, goat, sheep, camel, or buffalo milk. The fermentation is performed by a microorganism consortium grouped into a matrix named kefir grains. The yellowish grains have a gelatinous consistency measuring 0.3–3.5 cm. For its production, the milk is homogenized and pasteurized; later on, it is cooled to 20–25 °C and inoculated with 3–5% of kefir grains. The product is then fermented for 18 to 24 h at 20–25 °C, and the kefir grains are strained and placed aside to be washed for later use. Finally, kefir is stored at 4 °C until consumption. | Kefir has shown antidiabetic effects; it lowers plasma glucose, and decreases the fasting blood glucose and HbA1C levels, and can be useful as adjuvant therapy for diabetes. | Acidity: 5–9%. Sugar: 3.51–3.41% pH: 4.4–4.6 | [1,20,51,52,53,54,55,56,57,58,59,60] |
Kimchi | L. mesenteroides L. sakei L. plantarum L. citreum L. gasicomitatum L. gelidum L. brevis W. koreensis W. confusa L. curvatus | Kimchi refers to a group of fermented and salted vegetables, mainly cabbage, whose flavor depends on the fermentation conditions. For its production, cabbage is cut, washed, and brined (10%) overnight; then, it is drained and mixed with garlic, radish, ginger, anchovy juice, sugar, and green onion. This blend is fermented in a closed vessel for 1 to 3 weeks at room temperature. | Kimchi reduced body weight, leptin, total cholesterol levels, hepatic triglycerides concentration, serum insulin levels, and increased HDL in mice. Morover, it reduced triglyceride levels and decreased expression of anabolic lipid genes in fat tissue cells. In obese patients, kimchi decreased the waist-hip index, body fat, blood pressure, insulin levels, total cholesterol, leptin, and fasting glucose. | Acidity: >0.9% pH: 4.27–5.64 | [61,62,63,64,65] |
Kurozu | A. pasterianus A. aceti K. xylinus A. oryzae Saccharomyces | This food is also known as black rice vinegar. Its production involves the utilization of large pottery jars in which the following ingredients are layered: steamed rice containing koji (A. oryzae), steamed rice, spring water, and a final lid-type layer of koji. The fermentation process is performed outdoors and ranges between 6 months to 3 years. | Kurozu improved human liver lipid profile, decrease body weight and visceral fat in women with obesity. Moreover, it decreased serum cholesterol levels in mice fed with high-fat diet. | pH: 4.0 | [15,21,66,67,68] |
Meju | Bacillus sp. B. subtilis B. licheniformis B. cereus C. filamentosum B. megaterium Monascus sp. P. expansum P. roqueforti Fusarium cf. incarnatum F. fujikuroi A. cibarius A. fumigatus A. oryzae | Traditional Korean meju is a dried fermented soybean brick, which serves as the basis for many Korean condiments. The natural fermentation of meju takes 60 to 90 days. During the first 40 to 80 days, the meju is dried at low temperatures (below 15 °C), usually during winter (November to February), promoting the active growth of some moulds. During the last stage (10 to 30 days), the meju is stacked in layers and covered with thick cloths to be stored at temperatures above 45 °C, allowing other species of moulds to grow. | Meju decreased glucose levels in diabetic rats and reduced body weight gain, decreased serum triglyceride and leptin levels in obese mice. | pH: 6.7 Acidity: 1.31% | [16,69,70,71,72,73] |
Miso | A. oryzae S. cerevisiae | Miso is the product of the fermentation of soybeans, rice, or barley with the fungus koji. The most common recipe is made from soybeans. The fermentation time ranges from 1 week to 20 months; similarly, the salt content varies between 5–13%. | Miso decreased bodyweight, serum aspartate transaminase level, and lipid peroxidation in the liver in mice fed with a high-fat diet. Moreover, it suppressed visceral fat accumulation in mice fed with a high-fat diet by increasing the expression of Hsl (lipase, hormone-sensitive) involved in lipolysis and the expression of PPAR-γ. | pH: 4.8–5.5 | [21,74,75,76,77] |
Natto | B. subtilis | Natto is the product obtained from the fermentation of soybeans with spores of B. subtilis. For its preparation, soybeans are soaked, boiled until soft, drained, and cooled at 40 °C. Then, the spores of B. subtilis are added to the soybeans and placed in a wooden container, or a polyethylene bag to ferment for 12–20 h. | Natto improved insulin and postprandial glucose profiles, enhanced insulin sensitivity and cholesterol levels, and oxidative stress were reduced, decreasing malondialdehyde-modified low-density lipoprotein and N-carboxyl methyl kinase in overweight patients. | Acidity: 1.7% pH: 6.9 | [21,78,79] |
Pozol | Lactobacillus A. pozolis A. azotophilum | Pozol is a beverage made from nixtamalized corn that is ground and kneaded with water to form a dough. The dough is shaped into small balls which are wrapped into banana leaves before the fermentation step. Afterwards, the fermented dough balls are dissolved in water and let cool. Pozol can be consumed alone or combined. Different flavoring ingredients can be added, such as cacao, corozo, rice, sweet potato, coconut, milk, and aromatic essences. | Pozol modifies the intestinal microbiota and the metabolism, due to the presence of lactic acid bacteria. In addition, during fermentation, the concentration of some components such as amino acids increases. | Humidity: 30% pH: 4.5 | [80,81,82,83,84] |
Red yeast rice (Hon-chi) | M. purpureus | Fermented red rice is produced traditionally by fermenting washed and cooked rice with red wine mash, knotgrass juice, and alum water. The commercially prepared red yeast rice extract is fermented for nine days with a specific red yeast called M. purpureus Went, at 25 °C | Red yeast rice reduced the concentration of total cholesterol in serum and the relationship between total cholesterol and high-density cholesterol, and also reduced triglyceride levels thanks to the presence of polyketides, fatty acids, and trace elements. | pH: 5–6 | [72,85,86,87] |
Sauerkraut | L. mesenteroides L. fallax Leuconostoc sp. L. plantarum L. brevis | Also called choucroute, it is mainly made by fermentation of cabbage (cut into strips 0.7–2 mm thick) that is submerged in salt at 0.7–2.5%, in covered glass containers at room temperature. Fermentation time ranges between one week to several months. To improve its flavor, spices, carrot, or wine can be added before the fermentation process. | Sauerkraut reduced the symptom severity of patients who suffer from IBS. Furthermore, it produced significant alterations in the bacterial diversity of IBS patients. | Acidity: 1–2%. pH: 3.4–3.7 | [88,89,90] |
Sourdough | F. sanfranciscensis L. reuteri L. panis L. pontis L. frumenti Leuconostoc Weissella S. cerevisiae | The use of sourdough in bread production improves its quality and flavor, increasing its volume and shelf life. Its ingredients are wheat or rye flour and yeast. In its production, the initial lactic fermentation is achieved by mixing and fermenting the ingredients for three days at 30 °C. Then, more flour is added to the fermented dough, and the blend is reposed at the same temperature to reactivate the fermentation. Finally, the dough can be baked for bread obtention, or stored to be used as inoculum for further production of bread. | Sourdough has been used successfully to improve the quality of gluten-free bread, thus being useful for the production of better foods for people with gluten intolerance. | pH: 4.31 | [91,92,93,94] |
Tempeh | L. plantarum R. oligosporus L. fermentum L. reuteri L.s lactis | Tempeh is a traditional Indonesian food made mainly from soybean. For its production, soybeans are lightly cooked, inoculated with R. oligosporus spores, and packaged in perforated banana leaves before being incubated at 30 °C for 24 h or until soybeans are bound by the fungus mycelium. | Tempeh prevents cancer, cardiovascular diseases, type 2 diabetes mellitus and the regulation of glucose in the blood, due to its components such as genistein, daidzein, and β-sitosterol. | pH: 4.0–5.0 Acidity: 4.0–6.0 | [95,96,97,98,99,100] |
Yogurt | S.thermophilus L. delbrueckii subsp. bulgaricus | Yogurt is a widely known commercial beverage obtained through the lactic fermentation of S. thermophilus and L. delbrueckii subsp. bulgaricus, which are added as inoculum to cow milk. The incubation is performed at 42–45 °C for 3 to 6 h or until the milk has reached a pH of 4.4. | Yogurt is a source of probiotic bacteria; therefore, it improves the intestinal microbiota, and this plays an important role in appetite control. | Acidity: 1.31%. pH: 4.1–4.4. °Brix: 7.30–20.4. | [1,101,102,103,104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrete-Romero, B.; Valencia-Olivares, C.; Baños-Dossetti, G.A.; Pérez-Armendáriz, B.; Cardoso-Ugarte, G.A. Nutritional Contributions and Health Associations of Traditional Fermented Foods. Fermentation 2021, 7, 289. https://doi.org/10.3390/fermentation7040289
Negrete-Romero B, Valencia-Olivares C, Baños-Dossetti GA, Pérez-Armendáriz B, Cardoso-Ugarte GA. Nutritional Contributions and Health Associations of Traditional Fermented Foods. Fermentation. 2021; 7(4):289. https://doi.org/10.3390/fermentation7040289
Chicago/Turabian StyleNegrete-Romero, Berenice, Claudia Valencia-Olivares, Gloria Andrea Baños-Dossetti, Beatriz Pérez-Armendáriz, and Gabriel Abraham Cardoso-Ugarte. 2021. "Nutritional Contributions and Health Associations of Traditional Fermented Foods" Fermentation 7, no. 4: 289. https://doi.org/10.3390/fermentation7040289
APA StyleNegrete-Romero, B., Valencia-Olivares, C., Baños-Dossetti, G. A., Pérez-Armendáriz, B., & Cardoso-Ugarte, G. A. (2021). Nutritional Contributions and Health Associations of Traditional Fermented Foods. Fermentation, 7(4), 289. https://doi.org/10.3390/fermentation7040289