Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spontaneous Alcoholic Fermentations
2.2. Saccharomyces Cerevisiae Strains Isolation
2.3. Preliminary Screening of S. cerevisiae Strains for Oenological Traits
2.4. Lab-Scale Fermentations by Selected S. cerevisiae Strains
2.5. Characteristics of the Yeast Multiplication Pilot-Plant
2.6. Industrial Fermentations
2.7. Volatile Organic Compounds (VOC) Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results
3.1. Indigenous Saccharomyces Cerevisiae Selection
3.2. Fermentation Performances of Selected Yeast Strains
3.3. Production of Fresh Yeast Starter Culture by Pilot-Plant in the Winery
3.4. Use of the Produced Yeast Culture at Industrial Scale
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729. [Google Scholar] [CrossRef]
- Suárez-Lepe, J.; Morata, A. New trends in yeast selection for winemaking. Trends Food Sci. Technol. 2012, 23, 39–50. [Google Scholar] [CrossRef]
- Francesca, N.; Chiurazzi, M.; Romano, R.; Aponte, M.; Settanni, L.; Moschetti, G. Indigenous yeast communities in the environment of “Rovello bianco” grape variety and their use in commercial white wine fermentation. World J. Microbiol. Biotechnol. 2010, 26, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, S.; Polizzotto, G.; Di Gangi, E.; Foresta, G.; Genna, G.; Verzera, A.; Scacco, A.; Amore, G.; Oliva, D. Biodiversity of Indigenous Saccharomyces Populations from Old Wineries of South-Eastern Sicily (Italy): Preservation and Economic Potential. PLoS ONE 2012, 7, e30428. [Google Scholar] [CrossRef]
- Csoma, H.; Zakany, N.; Capece, A.; Romano, P.; Sipiczki, M. Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: Comparative genotypic and phenotypic analysis. Int. J. Food Microbiol. 2010, 140, 239–248. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Gostíncar, A.; Bobet, R.; Uruburu, F.; Querol, A. Selection and molecular characterization of wine yeasts isolated from the ‘El Penedès’ area (Spain). Food Microbiol. 2000, 17, 553–562. [Google Scholar] [CrossRef]
- Orlic, S.; Redžepović, S.; Jeromel, A.; Herjavec, S.; Iacumin, L. Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. Int. J. Food Sci. Technol. 2007, 42, 95–101. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, D.A.; Kamilari, E.; Tsaltas, D. Contribution of the Microbiome as a Tool for Estimating Wine’s Fermentation Output and Authentication. In Advances in Grape and Wine Biotechnology; IntechOpen: London, UK, 2019; pp. 1–21. [Google Scholar]
- Maqueda, M.; Nevado, F.P.; Regodón, J.A.; Zamora, E.; Álvarez, M.L.; Rebollo, J.E.; Ramírez, M. A low-cost procedure for production of fresh autochthonous wine yeast. J. Ind. Microbiol. Biotechnol. 2011, 38, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Ganucci, D.; Guerrini, S.; Mangani, S.; Vincenzini, M.; Granchi, L. Quantifying the Effects of Ethanol and Temperature on the Fitness Advantage of Predominant Saccharomyces cerevisiae Strains Occurring in Spontaneous Wine Fermentations. Front. Microbiol. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Spano, G.; Capozzi, V.; Logrieco, A.; Mita, G.; Grieco, F. Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol. 2013, 36, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Tristezza, M.; Fantastico, L.; Vetrano, C.; Bleve, G.; Corallo, D.; Grieco, F.; Mita, G. Molecular and Technological Characterization ofSaccharomyces cerevisiaeStrains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy. Int. J. Microbiol. 2014, 2014, 897428. [Google Scholar] [CrossRef]
- Tristezza, M.; Vetrano, C.; Bleve, G.; Grieco, F.; Tufariello, M.; Quarta, A.; Mita, G.; Spano, G. Autochthonous fermentation starters for the industrial production of Negroamaro wines. J. Ind. Microbiol. Biotechnol. 2012, 39, 81–92. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Beneduce, L.; Weidmann, S.; Grieco, F.; Guzzo, J.; Spano, G. Technological properties ofOenococcus oenistrains isolated from typical southern Italian wines. Lett. Appl. Microbiol. 2010, 50, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Cappello, M.S.; Stefani, D.; Grieco, F.; Logrieco, A.F.; Zapparoli, G. Genotyping by Amplified Fragment Length Polymorphism and malate metabolism performances of indigenous Oenococcus oeni strains isolated from Primitivo wine. Int. J. Food Microbiol. 2008, 127, 241–245. [Google Scholar] [CrossRef]
- Garofalo, C.; El Khoury, M.; Lucas, P.; Bely, M.; Russo, P.; Spano, G.; Capozzi, V. Autochthonous starter cultures and indigenous grape variety for regional wine production. J. Appl. Microbiol. 2015, 118, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Grieco, F.; Tristezza, M.; Vetrano, C.; Bleve, G.; Panico, E.; Mita, G.; Logrieco, A. Exploitation of autochthonous microorganism potential to enhance the quality of Apulian wines. Ann. Microbiol. 2011, 61, 67–73. [Google Scholar] [CrossRef]
- Anonymous. Definition of Vitinicultural Terroir; RESOLUTION OIV/VITI 333/2010; International Organization of Vine and Wine General Assembly (OIV): Tbilisi, Georgia, 2010. [Google Scholar]
- Granchi, L.; Ganucci, D.; Buscioni, G.; Mangani, S.; Guerrini, S. The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. Fermentation 2019, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Vezinhet, F.; Hallet, J.N.; Valade, M.; Poulard, A. Ecological survey of wine yeast strains by molecular methods of identi-fication. Am. J. Enol. Vitic. 1992, 43, 83–86. [Google Scholar]
- Augruso, S.; Ganucci, D.; Buscioni, G.; Granchi, L.; Vincenzini, M. A ogni cantina il suo lievito? VQ 2008, 5, 58–65. [Google Scholar]
- Aponte, M.; Blaiotta, G. Potential Role of Yeast Strains Isolated from Grapes in the Production of Taurasi DOCG. Front. Microbiol. 2016, 7, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anonymous. Monograph of Saccharomyces Yeasts; RESOLUTION OIV/576A-2017; International Organization of Vine and Wine General Assembly (OIV): Sofia, Bulgaria, 2017. [Google Scholar]
- Granchi, L.; Bosco, M.; Messini, A.; Vincenzini, M. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 1999, 87, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Legras, J.-L.; Karst, F. Optimisation of interdelta analysis forSaccharomyces cerevisiaestrain characterisation. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy. In The Principles and Practice of Numerical Classification; W.H. Freeman and Company: San Francisco, CA, USA, 1973; p. 573. [Google Scholar]
- Schneider, A.; Gerbi, V.; Redoglia, M. A rapid HPLC method for separation and determination of major organic acids in grape musts and wines. Am. J. Enol. Vitic. 1987, 38, 151–155. [Google Scholar]
- Granchi, L.; Ganucci, D.; Messini, A.; Rossellini, D.; Vincenzini, M. Dynamics of Yeast Populations during the Early Stages of Natural Fermentations for the Production of Brunello di Montalcino Wines. Food Technol. Biotech. 1998, 36, 313–318. [Google Scholar]
- Guerrini, L.; Parenti, A.; Angeloni, G.; Masella, P.; Barbato, D.; Mari, E.; Romboli, Y.; Buscioni, G.; Mangani, S.; Guerrini, S.; et al. Development of a Machine for the Production of Liquid Wine Yeast to Induce Grape Juice Fermentations. EurAgEng Conference, Wageningen, The Netherlands, 8–12 July 2018; pp. 1–6. [Google Scholar]
- Verzera, A.; Ziino, M.; Scacco, A.; Lanza, C.M.; Mazzaglia, A.; Romeo, V.; Condurso, C. Volatile Compound and Sensory Analysis for the Characterization of an Italian White Wine from “Inzolia” Grapes. Food Anal. Methods 2008, 1, 144–151. [Google Scholar] [CrossRef]
- Scacco, A.; Verzera, A.; Lanza, C.M.; Sparacio, A.; Genna, G.; Raimondi, S.; Tripodi, G.; Dima, G. Influence of Soil Salinity on Sensory Characteristics and Volatile Aroma Compounds of Nero d’Avola Wine. Am. J. Enol. Vitic. 2010, 61, 498–505. [Google Scholar] [CrossRef]
- Anonymous. OIV Standard for International Wine and Spirituous Beverages of Vitivinicultural Origin Competitions Resolution; OIV/CONCOURS 332A/2009; International Organization of Vine and Wine General Assembly (OIV): Zagreb, Croatia, 2009. [Google Scholar]
- Perrin, L.; Symoneaux, R.; Maître, I.; Asselin, C.; Jourjon, F.; Pagès, J. Comparison of three sensory methods for use with the Napping® procedure: Case of ten wines from Loire valley. Food Qual. Prefer. 2008, 19, 1–11. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A. Yeasts and Wine Flavour. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer Science Business Media, LLC: New York, NY, USA, 2009; pp. 313–392. [Google Scholar]
- Romano, P. Function of yeast species and strains in wine flavour. Int. J. Food Microbiol. 2003, 86, 169–180. [Google Scholar] [CrossRef]
- Guerrini, L.; Masella, P.; Spugnoli, P.; Spinelli, S.; Calamai, L.; Parenti, A. A Condenser to Recover Organic Volatile Compounds during Vinification. Am. J. Enol. Vitic. 2016, 67, 163–168. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Pretorius, I.S. Microbial Formation and Modification of Flavor and Off-Flavor Compounds in Wine. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2009; pp. 209–231. [Google Scholar]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Pollon, M.; Fracassetti, D.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Volatile profile of white wines fermented with sequential inoculation of Starmerella bacillaris and Saccharomyces cerevisiae. Food Chem. 2018, 257, 350–360. [Google Scholar] [CrossRef] [PubMed]
- McKay, M.; Buica, A. Factors Influencing Olfactory Perception of Selected Off-flavourcausing Compounds in Red Wine—A Review. South Afr. J. Enol. Vitic. 2020, 41, 56–71. [Google Scholar] [CrossRef]
- Risvik, E.; McEwan, J.A.; Colwill, J.S.; Rogers, R.; Lyon, D.H. Projective mapping: A tool for sensory analysis and consumer research. Food Qual. Prefer. 1994, 5, 263–269. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Ciani, M.; Comitini, F. Fitness of Selected Indigenous Saccharomyces cerevisiae Strains for White Piceno DOC Wines Production. Fermentation 2018, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Aponte, M.; Romano, R.; Villano, C.; Blaiotta, G. Dominance of S. cerevisiae Commercial Starter Strains during Greco di Tufo and Aglianico Wine Fermentations and Evaluation of Oenological Performances of Some Indigenous/Residential Strains. Foods 2020, 9, 1549. [Google Scholar] [CrossRef]
- Feghali, N.; Bianco, A.; Zara, G.; Tabet, E.; Ghanem, C.; Budroni, M. Selection of Saccharomyces cerevisiae Starter Strain for Merwah Wine. Fermentation 2020, 6, 43. [Google Scholar] [CrossRef]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romaniello, R.; Condelli, N.; Romano, P. Selected Indigenous Saccharomyces cerevisiae Strains as Profitable Strategy to Preserve Typical Traits of Primitivo Wine. Fermentation 2019, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Tello, J.; Cordero-Bueso, G.; Aporta, I.; Cabellos, J.; Arroyo, T. Genetic diversity in commercial wineries: Effects of the farming system and vinification management on wine yeasts. J. Appl. Microbiol. 2012, 112, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Barrajón, N.; Arévalo-Villena, M.; Úbeda, J.; Briones, A. Competition between Spontaneous and Commercial Yeasts in Winemaking: Sudy of Possible Factors Involved. In Communicating Current Research and Ed-Ucational Topics and Trends in Applied Microbiology; Méndez-Vilas, I.A., Ed.; Microbiology Book Series; Elsevier: Amsterdam, The Netherlands, 2011; Volume 2, ISBN 978-84-614-6195-0. [Google Scholar]
- Lange, J.N.; Faasse, E.; Tantikachornkiat, M.; Gustafsson, F.S.; Halvorsen, L.C.; Kluftinger, A.; Ledderhof, D.; Durall, D.M. Implantation and persistence of yeast inoculum in Pinot noir fermentations at three Canadian wineries. Int. J. Food Microbiol. 2014, 180, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Martiniuk, J.T.; Pacheco, B.; Russell, G.; Tong, S.; Backstrom, I.; Measday, V. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery. PLoS ONE 2016, 11, e0160259. [Google Scholar] [CrossRef] [Green Version]
- Capece, A.; Granchi, L.; Guerrini, S.; Mangani, S.; Romaniello, R.; Vincenzini, M.; Romano, P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front. Microbiol. 2016, 7, 1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Fermentation Vigour (CO2 > 6 g/100 mL after 48 h) | Residual Sugar (<2 g/L after 7 Days) | Acetic Acid (<0.5 g/L) | SO2 (<50 mg/L) * | H2S (Low-Producer) * |
---|---|---|---|---|---|
VI 23 | + | + | + | + | + |
VI 24 | - | + | + | + | - |
VI 26 | + | + | + | + | + |
VI 30 | + | + | - | - | + |
VI 31 | - | + | - | + | + |
VI 32 | + | - | - | - | + |
VI 60 | - | - | + | + | + |
VI 62 | + | - | + | + | + |
VI 123 | + | + | + | + | + |
VI 124 | - | - | + | + | + |
VI 125 | - | + | + | - | + |
VI 127 | + | + | + | + | + |
VI 155 | - | - | + | - | + |
VI 161 | + | + | + | + | + |
VI 163 | - | + | - | - | - |
VI 186 | + | + | + | + | + |
VI 187 | - | + | + | + | + |
VI 202 | + | + | + | + | + |
Parameter | VI 23 | VI 123 | VI 127 | VI 161 | VI 186 | VI 202 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Glucose (g/L) | <0.1 | <0.1 | <0.1 | <0.1 | 0.55 | 0.07 | <0.1 | |||||
Fructose (g/L) | 0.50 a | 0.14 | 0.60 a | 0.14 | 0.40 a | 0.01 | 0.91 a | 0.01 | 10.40 b | 0.28 | 0.51 a | 0.01 |
Ethanol (% v/v) | 13.85 a | 0.02 | 13.62 b | 0.01 | 13.86 a | 0.01 | 13.80 a | 0.01 | 13.13 c | 0.01 | 13.84 a | 0.01 |
Acetic acid (g/L) | 0.32 a | 0.01 | 0.33 a | 0.01 | 0.46 b | 0.01 | 0.30 a | 0.01 | 0.38 ab | 0.06 | 0.40 ab | 0.01 |
Total acidity (g/L) | 6.78 | 0.08 | 6.75 | 0.08 | 6.56 | 0.12 | 6.8 | 0.07 | 6.57 | 0.04 | 6.59 | 0.01 |
Total SO2 (mg/L) | 32.00 ab | 1.41 | 29.50 a | 0.71 | 30.50 ab | 0.71 | 31.50 ab | 2.12 | 34.50 b | 0.71 | 33.50 ab | 0.71 |
Free SO2 (mg/L) | 5.50 | 0.71 | 4.50 | 0.71 | 4.50 | 0.71 | 5.50 | 0.71 | 3.50 | 0.71 | 5.25 | 0.35 |
S. cerevisiae (Log CFU/mL) | 7.85 a | 0.01 | 7.73 c | 0.01 | 7.79 b | 0.01 | 7.84 a | 0.02 | 7.77 b | 0.02 | 7.83 a | 0.01 |
LAB (Log CFU/mL) | <1 | <1 | <1 | <1 | <1 | <1 | ||||||
AAB (Log CFU/mL) | <1 | <1 | <1 | <1 | <1 | <1 |
Compounds | VI 123 | VI 127 | VI 161 | VI 186 | VI 202 | VI 23 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | Mean | +/− SD | Mean | +/− SD | Mean | +/− SD | Mean | +/− SD | Mean | +/− SD | Mean | +/− SD |
Ethyl and methyl esters | ||||||||||||
Ethyl acetate | 40.40 | 7.20 | 40.60 | 3.60 | 43.20 | 0.50 | 36.70 | 0.30 | 41.90 | 2.20 | 42.70 | 6.00 |
Ethyl butanoate | 0.21 | 0.10 | 0.21 | 0.04 | 0.27 | 0.03 | 0.20 | 0.02 | 0.18 | 0.00 | 0.32 | 0.07 |
Ethyl 2-methylbutyrate + ethyl 3-methylbutyrate | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | ||||||
Ethyl hexanoate (ethyl caproate) | 5.30 | 1.49 | 4.25 | 0.36 | 5.04 | 0.20 | 4.92 | 0.61 | 4.27 | 0.21 | 5.82 | 0.99 |
Ethyl lactate | 27.15 | 1.33 | 21.10 | 0.33 | 24.80 | 0.15 | 25.17 | 0.25 | 21.10 | 0.10 | 24.18 | 0.55 |
Methyl octanoate | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | ||||||
Ethyl octanoate | 47.20 | 14.78 | 41.77 | 2.55 | 48.98 | 4.47 | 51.75 | 3.47 | 44.49 | 0.31 | 50.39 | 9.48 |
Ethyl nonanoate | 0.18 | 0.12 | 0.29 | 0.03 | 0.27 | 0.09 | 0.26 | 0.07 | 0.32 | 0.15 | 0.52 | 0.02 |
Methyl decanoate | 0.09 | 0.03 | 0.12 | 0.01 | 0.10 | 0.01 | 0.11 | 0.01 | 0.13 | 0.00 | 0.09 | 0.01 |
Ethyl decanoate | 99.96 | 33.37 | 101.68 | 14.83 | 108.76 | 11.07 | 116.77 | 11.42 | 112.36 | 6.32 | 96.88 | 4.63 |
3-methylbutyl octanoate | 1.04 | 0.33 | 0.65 | 0.07 | 1.23 | 0.16 | 0.70 | 0.07 | 0.73 | 0.01 | 1.10 | 0.04 |
Diethyl succinate | 0.19 ab | 0.01 | 0.32 a | 0.04 | 0.21 ab | 0.02 | 0.13 b | 0.02 | 0.34 a | 0.06 | 0.23 ab | 0.06 |
Ethyl 9-decenoate | 21.96 ab | 10.60 | 8.70 a | 0.41 | 30.20 b | 5.21 | 12.40 ab | 1.12 | 9.19 a | 0.75 | 27.68 ab | 2.01 |
Ethyl hexadecanoate (ethyl palmitate) | 6.35 a | 0.91 | 11.87 b | 1.04 | 10.44 ab | 0.87 | 9.56 ab | 0.56 | 10.89 ab | 2.68 | 5.87 a | 0.40 |
Ethyl 9-hexadecenoate | 2.69 a | 0.26 | 5.80 b | 0.50 | 4.68 | 0.90 | 2.65 a | 0.44 | 5.79 b | 1.15 | 3.42 ab | 0.13 |
Ethyl octadecanoate (ethyl stearate) | 0.70 ab | 0.14 | 1.05 a | 0.04 | 1.08 a | 0.07 | 0.92 ab | 0.06 | 0.92 ab | 0.20 | 0.58 b | 0.01 |
Ethyl 9-octadecenoate (ethyl oleate) | 0.35 a | 0.10 | 0.78 b | 0.07 | 0.55 ab | 0.06 | 0.51 ab | 0.06 | 0.68 ab | 0.19 | 0.29 a | 0.01 |
Ethyl hydrogen succinate | 0.19 a | 0.06 | 0.33 b | 0.03 | 0.20 a | 0.06 | 0.16 a | 0.02 | 0.45 b | 0.06 | 0.15 a | 0.01 |
Ethyl-dodecanoate (ethyl laurate) | 35.35 a | 11.23 | 33.67 a | 4.41 | 51.35 ab | 1.97 | 62.78 b | 9.01 | 39.73 ab | 2.28 | 34.12 a | 0.07 |
Ethyl tetradecanoate (ethyl myristate) | 1.64 ac | 0.32 | 1.94 ac | 0.02 | 2.22 ac | 0.16 | 3.16 b | 0.10 | 2.00 c | 0.09 | 1.75 a | 0.04 |
methylethyl dodecanoate (isopropyl laurate) | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | |||||||
Acetates | ||||||||||||
3-methylbutyl acetate | 4.52 ac | 1.22 | 2.68 ab | 0.23 | 4.32 ac | 0.21 | 2.29 b | 0.01 | 2.61 ab | 0.05 | 5.09 c | 0.45 |
Hexyl acetate | 1.11 | 0.39 | 0.90 | 0.11 | 1.17 | 0.06 | 1.00 | 0.09 | 0.95 | 0.03 | 1.22 | 0.13 |
Ethylphenyl acetate | 0.02 | 0.01 | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.00 |
2-Phenylethyl acetate | 4.95 | 1.56 | 2.81 | 0.13 | 4.64 | 0.50 | 2.89 | 0.13 | 2.98 | 0.08 | 5.21 | 0.50 |
Alcohols | ||||||||||||
1-propanol | 0.09 | 0.02 | 0.09 | 0.02 | 0.11 | 0.03 | 0.06 | 0.02 | 0.10 | 0.03 | 0.09 | 0.01 |
2-phenylethanol | 15.90 | 2.82 | 12.86 | 0.30 | 13.53 | 1.42 | 10.61 | 0.41 | 13.44 | 0.26 | 15.89 | 1.86 |
2-methyl-1-propanol | 0.58 ab | 0.14 | 0.53 ab | 0.07 | 1.07 b | 0.02 | 0.61 | 0.04 | 0.53 ab | 0.04 | 0.78 b | 0.16 |
3-methyl-1-butanol | 20.19 | 3.89 | 19.43 | 1.64 | 24.97 | 0.38 | 17.20 | 1.11 | 19.91 | 0.83 | 23.86 | 3.41 |
Hexanol | 0.32 ab | 0.03 | 0.35 ab | 0.01 | 0.29 a | 0.00 | 0.37 b | 0.02 | 0.35 ab | 0.02 | 0.30 ab | 0.01 |
2-ethyl-1-hexanol | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||||||
Linalool | 0.15 | 0.05 | 0.21 | 0.01 | 0.19 | 0.02 | 0.17 | 0.04 | 0.22 | 0.00 | 0.16 | 0.01 |
1-octanol | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 | 0.09 | |||||
2,3-butanediol | 0.65 | 0.34 | 0.35 | 0.07 | 0.39 | 0.13 | 0.21 | 0.08 | 0.40 | 0.02 | 0.20 | 0.05 |
Acids | ||||||||||||
Hexanoic acid | 0.45 | 0.02 | 0.55 | 0.06 | 0.35 | 0.15 | 0.27 | 0.04 | 0.43 | 0.05 | 0.63 | 0.20 |
Octanoic acid | 10.06 | 2.43 | 9.35 | 0.66 | 10.62 | 0.79 | 11.29 | 0.93 | 9.80 | 0.34 | 11.03 | 1.39 |
Nonanoic Acid | 0.19 | 0.02 | 0.32 | 0.07 | 0.16 | 0.04 | 0.33 | 0.21 | 0.96 | 1.13 | 0.49 | 0.13 |
Benzoic acid | 0.04 | 0.01 | 0.04 | 0.01 | 0.04 | 0.01 | 0.05 | 0.01 | 0.05 | 0.00 | 0.06 | 0.01 |
Dodecanoic acid | 1.19 a | 0.39 | 1.32 a | 0.01 | 1.39 a | 0.16 | 2.81 b | 0.62 | 1.80 ab | 0.20 | 1.25 a | 0.09 |
Tetradecanoic acid (myristic acid) | 0.07 | 0.08 | 0.11 | 0.01 | 0.12 | 0.12 | 0.23 | 0.02 | 0.29 | 0.08 | 0.19 | 0.06 |
Hexadecanoic acid (palmitic acid) | 0.29 | 0.08 | 0.40 | 0.03 | 0.37 | 0.02 | 0.39 | 0.03 | 0.44 | 0.07 | 0.41 | 0.12 |
Phenols | ||||||||||||
4-ethylguaiacol | 0.02 | 0.01 | 0.02 | 0.00 | 0.03 | 0.01 | 0.03 | 0.00 | 0.02 | 0.00 | 0.03 | 0.00 |
4-methylphenol | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 | 0.09 | |||||
3-methylphenol | 0.15 | 0.05 | 0.19 | 0.00 | 0.17 | 0.02 | 0.16 | 0.01 | 0.17 | 0.01 | 0.16 | 0.01 |
4-propylguaiacol | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.07 | 0.09 | |||||
4-ethylphenol | <0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.08 | 0.11 | 0.01 | 0.00 | <0.01 | ||
2,4-bis(1,1-dimethylethyl)-phenol | 1.39 | 0.66 | 0.54 | 0.03 | 1.82 | 0.28 | 0.99 | 0.31 | 0.59 | 0.03 | 1.80 | 0.21 |
Other compounds | ||||||||||||
alpha-terpineol | 0.06 | 0.01 | 0.15 | 0.16 | 0.04 | 0.00 | 0.05 | 0.01 | 0.04 | 0.00 | 0.04 | 0.02 |
Beta-damascenone | 0.78 | 0.27 | 1.08 | 0.05 | 0.80 | 0.07 | 1.00 | 0.06 | 1.10 | 0.05 | 0.88 | 0.10 |
trans-nerolidol | 0.64 | 0.27 | 0.41 | 0.06 | 0.48 | 0.04 | 0.74 | 0.13 | 0.49 | 0.02 | 0.57 | 0.01 |
Limonene | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||||||
Furfural (2-furaldehyde) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | ||||||
Benzaldehyde | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Compounds(mg/L) | M 4 × 4 (25 hL) | M 4 × 4 (100 hL) | VI 123 (25 hL) | VI 123 (100 hL) | ||||
---|---|---|---|---|---|---|---|---|
Mean | DS | Mean | DS | Mean | DS | Mean | DS | |
Ethyl and methyl esters | ||||||||
Ethyl acetate | 26.90 a | 0.10 | 17.4 b | 1.20 | 26.20 a | 0.60 | 17.20 b | 0.60 |
Ethyl butanoate | 0.22 | 0.01 | 0.18 | 0.03 | 0.24 | 0.01 | 0.20 | 0.01 |
Ethyl 2-methylbutyrate | 0.03 | 0.00 | 0.02 | 0.00 | 0.04 | 0.00 | 0.02 | 0.00 |
Ethyl 3-methylbutyrate | 0.07 | 0.00 | 0.03 | 0.00 | 0.08 | 0.00 | 0.04 | 0.00 |
Ethyl hexanoate (ethyl caproate) | 1.17 a | 0.04 | 0.80 b | 0.05 | 1.29 a | 0.02 | 0.92 b | 0.01 |
Ethyl lactate | 5.10 b | 0.00 | 14.15 c | 0.10 | 1.107 a | 0.00 | 17.20 a | 0.00 |
Methyl octanoate | 0.02 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 0.03 | 0.01 |
Ethyl octanoate | 1.42 a | 0.01 | 0.51 b | 0.01 | 1.15 c | 0.06 | 0.69 d | 0.06 |
Ethyl nonanoate | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.02 | 0.01 |
Methyl decanoate | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 |
Ethyl decanoate | 0.41 a | 0.10 | 0.14 b | 0.01 | 0.26 ab | 0.00 | 0.15 b | 0.00 |
3-methylbutyl octanoate | 0.05 | 0.00 | 0.05 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 |
Diethyl succinate | 0.40 a | 0.01 | 0.97 b | 0.04 | 0.67 c | 0.01 | 1.31 d | 0.01 |
Ethyl 9-decenoate | 0.03 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 |
Ethyl hexadecanoate (ethyl palmitate) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Ethyl 9-hexadecenoate | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Ethyl octadecanoate (ethyl stearate) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Ethyl 9-octadecenoate (ethyl oleate) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Ethyl hydrogen succinate | 0.02 | 0.00 | 0.07 | 0.02 | 0.03 | 0.00 | 0.07 | 0.01 |
Ethyl dodecanoate (ethyl laurate) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Ethyl tetradecanoate (ethyl myristate) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
methylethyl dodecanoate (isopropyl laurate) | 0.21 a | 0.00 | 0.17 b | 0.01 | 0.22 a | 0.01 | 0.18 a | 0.00 |
Acetates | ||||||||
3-methylbutyl acetate | 0.83 a | 0.02 | 0.44 b | 0.03 | 0.88 a | 0.01 | 0.63 c | 0.01 |
Hexyl acetate | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
Ethylphenyl acetate | 0.01 | 0.00 | <0.01 | <0.01 | 0.01 | 0.01 | ||
2-Phenylethyl acetate | 0.11 | 0.01 | 0.12 | 0.01 | 0.13 | 0.01 | 0.13 | 0.00 |
Alcohols | ||||||||
1-propanol | 0.07 | 0.01 | 0.06 | 0.01 | 0.06 | 0.00 | 0.07 | 0.01 |
2-methyl-1-propanol | 0.76 | 0.01 | 0.71 | 0.06 | 1.01 | 0.01 | 0.76 | 0.03 |
3-methyl-1-butanol | 11.21 a | 0.19 | 13.71 b | 0.95 | 16.86 c | 0.02 | 14.23 b | 0.11 |
2-phenylethanol | 5.07 a | 0.06 | 5.40 ab | 0.26 | 5.88 ab | 0.14 | 5.95 b | 0.27 |
Hexanol | 0.61 | 0.02 | 0.68 | 0.03 | 0.64 | 0.01 | 0.66 | 0.01 |
2-ethyl-1-hexanol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Linalool | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
1-octanol | 0.06 abc | 0.01 | 0.06 abc | 0.01 | 0.07 b | 0.00 | 0.05 c | 0.01 |
2,3-butanediol | 0.11 | 0.08 | 0.05 | 0.01 | 0.04 | 0.01 | 0.06 | 0.02 |
Acids | ||||||||
Hexanoic acid | 0.21 | 0.00 | 0.17 | 0.00 | 0.24 | 0.01 | 0.19 | 0.01 |
Octanoic acid | 0.48 a | 0.03 | 0.36 b | 0.01 | 0.58 c | 0.01 | 0.43 a | 0.00 |
Nonanoic Acid | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
Decanoic acid | 0.03 a | 0.01 | 0.04 b | 0.00 | 0.03 | 0.00 c | 0.04 b | 0.00 |
Benzoic acid | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Dodecanoic acid | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Tetradecanoic acid (myristic acid) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Hexadecanoic acid (palmitic acid) | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Phenols | ||||||||
4-ethylguaiacol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
4-methylphenol | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | - | ||
3-methylphenol | 0.01 | 0.01 | 0.01 | 0.01 | <0.01 | <0.01 | - | |
4-propylguaiacol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
4-ethylphenol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
2.4-bis(1.1-dimethylethyl)-phenol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Other compounds | ||||||||
alpha-terpineol | <0.01 | <0.01 | <0.01 | <0.01 | - | |||
Beta-damascenone | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
trans-nerolidol | 0.04 | 0.01 | 0.03 | 0.00 | 0.04 | 0.00 | 0.03 | 0.00 |
Limonene | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
Furfural (2-furaldehyde) | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | |||
Benzaldehyde | 0.04 a | 0.00 | 0.04 a | 0.00 | 0.07 b | 0.01 | 0.05 a | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrini, S.; Barbato, D.; Guerrini, L.; Mari, E.; Buscioni, G.; Mangani, S.; Romboli, Y.; Galli, V.; Parenti, A.; Granchi, L. Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery. Fermentation 2021, 7, 99. https://doi.org/10.3390/fermentation7030099
Guerrini S, Barbato D, Guerrini L, Mari E, Buscioni G, Mangani S, Romboli Y, Galli V, Parenti A, Granchi L. Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery. Fermentation. 2021; 7(3):99. https://doi.org/10.3390/fermentation7030099
Chicago/Turabian StyleGuerrini, Simona, Damiano Barbato, Lorenzo Guerrini, Eleonora Mari, Giacomo Buscioni, Silvia Mangani, Yuri Romboli, Viola Galli, Alessandro Parenti, and Lisa Granchi. 2021. "Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery" Fermentation 7, no. 3: 99. https://doi.org/10.3390/fermentation7030099
APA StyleGuerrini, S., Barbato, D., Guerrini, L., Mari, E., Buscioni, G., Mangani, S., Romboli, Y., Galli, V., Parenti, A., & Granchi, L. (2021). Selection of Indigenous Saccharomyces cerevisiae Strains and Exploitation of a Pilot-Plant to Produce Fresh Yeast Starter Cultures in a Winery. Fermentation, 7(3), 99. https://doi.org/10.3390/fermentation7030099