Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Prebiotic Effect
2.3. Stimulation and Immunomodulation
2.4. Experimental Animals and Diet
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Prebiotic Assay
3.2. Immunomodulatory Effect
3.3. Serum Lipid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caporgno, M.P.; Mathys, A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef]
- Mišurcová, L.; Skrovankova, S.; Samek, D.; Ambrožová, J.; Machů, L. Health benefits of algal polysaccharides in human nutrition. Adv. Food Nutr. Res. 2012, 66, 75–145. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Cherng, J.-Y.; Shih, M.-F. Improving glycogenesis in Streptozocin (STZ) diabetic mice after administration of green algae Chlorella. Life Sci. 2006, 78, 1181–1186. [Google Scholar] [CrossRef]
- Qi, J.; Kim, S.M. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int. J. Biol. Macromol. 2017, 95, 106–114. [Google Scholar] [CrossRef]
- Barboríková, J.; Šutovská, M.; Kazimierová, I.; Jošková, M.; Fraňová, S.; Kopecký, J.; Capek, P. Extracellular polysaccharide produced by Chlorella vulgaris—Chemical characterization and anti-asthmatic profile. Int. J. Biol. Macromol. 2019, 135. [Google Scholar] [CrossRef]
- Camacho, F.; Macedo, A.; Malcata, F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar. Drugs 2019, 17, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Khosravi-Darani, K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Pyclik, M.; Srutkova, D.; Schwarzer, M.; Górska, S. Bifidobacteria cell wall-derived exopolysaccharides, lipoteichoic acids, peptidoglycans, polar lipids and proteins—Their chemical structure and biological attributes. Int. J. Biol. Macromol. 2020, 147, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.J.; Ahuja, K.D.K.; Robertson, I.K.; Ball, M.J.; Eri, R.D. Can probiotic yogurt prevent diarrhoea in children on antibiotics? A double-blind, randomised, placebo-controlled study. BMJ Open 2015, 5. [Google Scholar] [CrossRef]
- Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Cristea, V.C.; Bleotu, C.; Chifiriuc, M.C.; Bezirtzoglou, E.; Lazar, V. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens. Anaerobe 2016, 39, 39–44. [Google Scholar] [CrossRef]
- Heo, J.-Y.; Shin, H.-J.; Oh, D.-H.; Cho, S.-K.; Yang, C.-J.; Kong, I.-K.; Lee, S.-S.; Choi, K.-S.; Choi, S.-H.; Kim, S.-C.; et al. Quality properties of appenzeller cheese added with Chlorella. Food Sci. Anim. Resour. 2006, 26, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Niccolai, A.; Zittelli, G.C.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42. [Google Scholar] [CrossRef]
- Cantú-Bernal, S.; Domínguez-Gámez, M.; Medina-Peraza, I.; Aros-Uzarraga, E.; Ontiveros, N.; Flores-Mendoza, L.; Gomez-Flores, R.; Tamez-Guerra, P.; González-Ochoa, G. Enhanced viability and anti-rotavirus effect of Bifidobacterium longum and Lactobacillus plantarum in combination with Chlorella sorokiniana in a dairy product. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Hyrslova, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Curda, L.; Doskocil, I. Functional properties of Chlorella vulgaris, Colostrum, and Bifidobacteria, and their potential for application in functional foods. Appl. Sci. 2021, 11, 5264. [Google Scholar] [CrossRef]
- Vlachová, M.; Heczková, M.; Jirsa, M.; Poledne, R.; Kovar, J. The response of hepatic transcriptome to dietary cholesterol in prague hereditary hypercholesterolemic (PHHC) rat. Physiol. Res. 2014, 63, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Hyrslova, I.; Krausova, G.; Michlova, T.; Kana, A.; Curda, L. Fermentation ability of bovine colostrum by different probiotic strains. Fermentation 2020, 6, 93. [Google Scholar] [CrossRef]
- Gazi, I.; Tsimihodimos, V.; Filippatos, T.; Bairaktari, E.; Tselepis, A.D.; Elisaf, M. Concentration and relative distribution of low-density lipoprotein subfractions in patients with metabolic syndrome defined according to the National Cholesterol Education Program criteria. Metabolism 2006, 55, 885–891. [Google Scholar] [CrossRef]
- Ewart, H.S.; Bloch, O.; Girouard, G.S.; Kralovec, J.; Barrow, C.J.; Ben-Yehudah, G.; Suarez, E.R.; Rapoport, M.J. Stimulation of cytokine production in human peripheral blood mononuclear cells by an aqueous Chlorella extract. Planta Med. 2007, 73, 762–768. [Google Scholar] [CrossRef] [Green Version]
- Sibi, G.; Rabina, S. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella Vulgaris extracts. Pharmacogn. Res. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae Chlorella vulgaris as a factor conditioning the survival of Lactobacillus spp. in adverse environmental conditions. LWT 2020, 133. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods 2020, 9, 959. [Google Scholar] [CrossRef] [PubMed]
- Tabarsa, M.; Shin, I.-S.; Lee, J.H.; Surayot, U.; Park, W.; You, S. An immune-enhancing water-soluble α-glucan from Chlorella vulgaris and structural characteristics. Food Sci. Biotechnol. 2015, 24, 1933–1941. [Google Scholar] [CrossRef]
- Qi, J.; Kim, S.M. Effects of the molecular weight and protein and sulfate content of Chlorella ellipsoidea polysaccharides on their immunomodulatory activity. Int. J. Biol. Macromol. 2018, 107, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Suárez, E.R.; Kralovec, J.A.; Noseda, M.D.; Ewart, H.S.; Barrow, C.J.; Lumsden, M.D.; Grindley, T.B. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydr. Res. 2005, 340, 1489–1498. [Google Scholar] [CrossRef]
- An, H.J.; Rim, H.K.; Lee, J.H.; Seo, M.J.; Hong, J.W.; Kim, N.H.; Kim, H.M. Effect of Chlorella Vulgaris on Immune-Enhancement and Cytokine Production In Vivo and In Vitro. Food Sci. Biotechnol. 2008, 17, 953–958. [Google Scholar]
- Jain, S.; Yadav, H.; Sinha, P.R. Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures. J. Dairy Res. 2009, 76. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, H.J.; Kim, M.K. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutr. Res. Pr. 2008, 2, 204–210. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, S.; Lu, J.; Zhang, C.; Pang, X.; Lv, J. Screening for cholesterol-lowering probiotics from lactic acid bacteria isolated from corn silage based on three hypothesized pathways. Int. J. Mol. Sci. 2019, 20, 2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chovančíková, M.; Šimek, V. Effects of high–fat and Chlorella vulgaris feeding on changes in lipid metabolism in mice. Biol. Bratisl. 2001, 56, 661–666. [Google Scholar]
- Shibata, S.; Oda, K.; Onodera-Masuoka, N.; Matsubara, S.; Kikuchi-Hayakawa, H.; Ishikawa, F.; Iwabuchi, A.; Sansawa, H. Hypocholesterolemic effect of indigestible fraction of Chlorella regularis in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 2001, 47, 373–377. [Google Scholar] [CrossRef]
- Shibata, S.; Hayakawa, K.; Egashira, Y.; Sanada, H. Hypocholesterolemic mechanism of Chlorella: Chlorella and its indigestible fraction enhance hepatic cholesterol catabolism through up-regulation of cholesterol 7α-hydroxylase in rats. Biosci. Biotechnol. Biochem. 2007, 71, 916–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitsaz, M.; Mozaffari-Khosravi, H.; Salman-Roghani, H.; Zavar-Reza, J.; Lotfi, M. Effect of chlorella vulgaris vs. spirulina supplementation on lipid profile and liver function in patients with nonalcoholic fatty liver disease: A randomized controlled trial. Int. J. Probiotics Prebiotics 2016, 11, 127–136. [Google Scholar]
- Kang, H.K.; Park, S.B.; Kim, C.H. Effects of dietary supplementation with a chlorella by-product on the growth performance, immune response, intestinal microflora and intestinal mucosal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2017, 101, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-B.; Miyamoto, C.M.; Meighen, E.A.; Lee, B.H. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl. Environ. Microbiol. 2004, 70, 5603–5612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottacini, F.; van Sinderen, D.; Ventura, M. Omics of Bifidobacteria: Research and insights into their health-promoting activities. Biochem. J. 2017, 474, 4137–4152. [Google Scholar] [CrossRef]
- Ishimwe, N.; Daliri, E.B.; Lee, B.H.; Fang, F.; Du, G. The perspective on cholesterol-lowering mechanisms of probiotics. Mol. Nutr. Food Res. 2015, 59, 94–105. [Google Scholar] [CrossRef]
- Zanotti, I.; Turroni, F.; Piemontese, A.; Mancabelli, L.; Milani, C.; Viappiani, A.; Prevedini, G.; Sanchez, B.; Margolles, A.; Elviri, L.; et al. Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl. Microbiol. Biotechnol. 2015, 99, 6813–6829. [Google Scholar] [CrossRef] [PubMed]
- Oner, O.; Aslim, B.; Aydas, S.B. Mechanisms of cholesterol-lowering effects of Lactobacilli and Bifidobacteria strains as potential probiotics with their bsh gene analysis. J. Mol. Microbiol. Biotechnol. 2014, 24, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ba, Z.; Roberts, R.F.; Rogers, C.J.; Fleming, J.A.; Meng, H.; Furumoto, E.J.; Kris-Etherton, P.M. Effects of Bifidobacterium animalis subsp. lactis BB-12® on the lipid/lipoprotein profile and short chain fatty acids in healthy young adults: A randomized controlled trial. Nutr. J. 2017, 16. [Google Scholar] [CrossRef] [PubMed]
Strain | Species | Origin |
---|---|---|
CCDM 1 93 | Bifidobacterium animalis subsp. lactis | Original culture |
BB12® | Bifidobacterium animalis subsp. lactis | Original culture |
CCDM 562 | Bifidobacterium breve | GIT of child |
CCDM 486 | Bifidobacterium breve | Human feces |
Strain | Acid Production (mg/L) | Milk | Milk + 1.0% Chlorella | Whey | Whey + 1.0% Chlorella |
---|---|---|---|---|---|
CCDM 93 | lactic acid | 388 ± 20 A | 1754 ± 85 B | 1661 ± 80 B | 2437 ± 120 C |
acetic acid | 1105 ± 50 A | 2354 ± 110 D | 1309 ± 65 B | 2058 ± 58 C | |
BB-12® | lactic acid | 208 ± 15 A | 1876 ± 90 C | 1193 ± 60 B | 1937 ± 55 C |
acetic acid | 512 ± 25 A | 2246 ± 110 C | 1812 ± 90 B | 2588 ± 130 D | |
CCDM 486 | lactic acid | 259 ± 15 A | 1891 ± 90 C | 1524 ± 75 B | 2013 ± 100 C |
acetic acid | 477 ± 25 A | 2384 ± 110 D | 1747 ± 85 B | 2124 ± 105 C | |
CCDM 562 | lactic acid | 719 ± 35 B | 2200 ± 110 D | 431 ± 20 A | 1768 ± 90 C |
acetic acid | 836 ± 39 B | 2272 ± 110 D | 368 ± 40 A | 1734 ± 85 C |
Tested Parameter | Strain | Milk | Milk + 1.0% Chlorella | Whey | Whey + 1.0% Chlorella |
---|---|---|---|---|---|
pH | CCDM 93 | 5.50 ± 0.03 C | 4.85 ± 0.01 B | 4.79 ± 0.01 B | 4.15 ± 0.02 A |
BB12 | 5.90 ± 0.03 D | 4.89 ± 0.00 C | 4.57 ± 0.00 B | 4.38 ± 0.12 A | |
CCDM 486 | 5.90 ± 0.06 D | 4.87 ± 0.07 C | 4.50 ± 0.16 B | 4.24 ± 0.04 A | |
CCDM 562 | 5.13 ± 0.35 B | 4.78 ± 0.06 AB | 4.86 ± 0.64 AB | 4.21 ± 0.12 A | |
cell counts (CFU/mL) | CCDM 93 | 6.24 ± 0.76 A | 8.34 ± 1.26 B | 7.39 ± 0.12 AB | 7.54 ± 0.55 AB |
BB12 | 7.90 ± 1.01 A | 8.37 ± 0.19 A | 8.37 ± 0.34 A | 8.35 ± 0.35 A | |
CCDM 486 | 8.59 ± 1.01 A | 8.31 ± 0.08 A | 8.26 ± 0.06 A | 8.38 ± 0.27 A | |
CCDM 562 | 8.16 ± 0.61 A | 7.76 ± 0.33 A | 7.02 ± 1.02 A | 7.31 ± 0.53 A |
Cytokines (pg/mL) | ||||||
---|---|---|---|---|---|---|
Chlorella Concentration (w/v) | TNF-α | IL-17 | IL-10 | IL-6 | IL-4 | IFN-γ |
0.5% | 187.57 ± 62.02 C | 1.16 ± 0.09 B | 12.73 ± 7.58 D | 4976.43 ± 781.21 D | 2.68 ± 0.10 B | 2.34 ± 0.37 B |
1.0% | 23.85 ± 8.98 B | 0.65 ± 0.10 A,B | 0.74 ± 0.11 B | 202.18 ± 103.13 C | 2.68 ± 0.00 A | 0.82 ± 0.21 A |
3.0% | 1.85 ± 0.67 A | 0.65 ± 0.33 A | 0.11 ± 0.07 A | 55.13 ± 18.91 B | 3.22 ± 0.13 A | 1.01 ± 0.17 A |
control | 0.93 ± 0.91 A | 0.00 ± 0.90 A | 1.66 ± 0.33 C | 7.7 ± 3.1 A | 5.35 ± 2.70 A | 3.66 ± 1.00 A |
Tested Group | VLDL (mg/dL) | IDL-C (mg/dL) | IDL-B (mg/dL) | IDL-A (mg/dL) | HDL (mg/dL) | TC (mg/dL) | LDL (mg/dL) |
---|---|---|---|---|---|---|---|
C | 74.8 ± 6.5 A | 29.8 ± 5.2 A | 16.5 ± 3.8 A | 3.7 ± 0.8 A | 52.2 ± 18.5 A | 184.5 ± 13.5 A | 55.7 ± 10.7 A |
GI | 76.0 ± 18.9 A | 33.8 ± 6.6 A | 23.7 ± 5.7 A | 6.3 ± 2.0 B | 71.7 ± 26.0 A | 219.6 ± 13.4 B | 69.5 ± 11.4 A |
GII | 106.0 ± 13.1 B | 43.2 ± 5.9 B | 26.7 ± 5.7 B | 7.0 ± 2.2 B | 79.8 ± 10.4 A | 272.6 ± 20.3 C | 85.7 ± 5.3 B |
GIII | 86.5 ± 7.7 A | 36.8 ± 4.6 A | 22.2 ± 4.0 A | 5.3 ± 1.4 A | 67.7 ± 23.7 A | 224.7 ± 13.3 B | 69.7 ± 11.8 A |
Tested Group | Tissues | |||
---|---|---|---|---|
Liver (μmol/g) | Aorta (μmol/g) | Heart (μmol/g) | Serum (mmol/L) | |
C | 5.4 ± 0.3 A | 1.5 ± 0.4 A | 3.1 ± 0.3 A | 1.0 ± 0.3 A |
GI | 5.4 ± 0.3 A | 1.4 ± 0.2 A | 3.1 ± 0.3 A | 1.4 ± 0.2 B |
GII | 5.3 ± 0.4 A | 1.1 ± 0.2 A | 2.9 ± 1.0 A | 1.2 ± 0.2 A |
GIII | 4.8 ± 0.3 B | 1.1 ± 0.3 A | 1.9 ± 0.4 B | 0.7 ± 0.1 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyrslova, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Doskocil, I.; Curda, L. Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria. Fermentation 2021, 7, 125. https://doi.org/10.3390/fermentation7030125
Hyrslova I, Krausova G, Smolova J, Stankova B, Branyik T, Malinska H, Huttl M, Kana A, Doskocil I, Curda L. Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria. Fermentation. 2021; 7(3):125. https://doi.org/10.3390/fermentation7030125
Chicago/Turabian StyleHyrslova, Ivana, Gabriela Krausova, Jana Smolova, Barbora Stankova, Tomas Branyik, Hana Malinska, Martina Huttl, Antonin Kana, Ivo Doskocil, and Ladislav Curda. 2021. "Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria" Fermentation 7, no. 3: 125. https://doi.org/10.3390/fermentation7030125
APA StyleHyrslova, I., Krausova, G., Smolova, J., Stankova, B., Branyik, T., Malinska, H., Huttl, M., Kana, A., Doskocil, I., & Curda, L. (2021). Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria. Fermentation, 7(3), 125. https://doi.org/10.3390/fermentation7030125