Screening and Evaluation of Purine-Nucleoside-Degrading Lactic Acid Bacteria Isolated from Winemaking Byproducts In Vitro and Their Uric Acid-Lowering Effects In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Culture Medium and Basic Growth Conditions
2.2. Screening for Lab Strains with Purine Degradation Abilities
2.3. HPLC Analysis of Degraded Purine by Lab Strains
2.4. Acid Resistance and Bile Salt Resistance Tests
2.5. Caco-2 Cell Adhesion Test
2.6. Animal Tests on the Uric Acid-Lowering Effects of Lab Strains
2.7. Statistical Analysis
3. Results
3.1. Screening for LAB Strains with Potential Purine Degradation Abilities
3.2. HPLC Analysis of the Ratio of Inosine and Guanosine Degraded by Lab Strains
3.3. Bacteria Identification
3.4. Acid and Bile Salt Resistance and Intestinal Cell Adhesion Tests
3.5. Animal Tests to Determine the Uric-Acid-Lowering Effects of the Lab Strains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cicero, A.F.G.; Fogacci, F.; Kuwabara, M.; Borghi, C. Therapeutic strategies for the treatment of chronic hyperuricemia: An evidence-based update. Medicina 2021, 57, 58–76. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Martins-Santos, M.E.; Chaves, V.E. Uric acid as a modulator of glucose and lipid metabolism. Biochimie 2015, 116, 17–23. [Google Scholar] [CrossRef]
- Giordano, C.; Karasik, O.; King-Morris, K.; Asmar, A. Uric acid as a marker of kidney disease: Review of the current literature. Dis. Markers 2015, 2015, 382918. [Google Scholar] [CrossRef] [Green Version]
- Akkasilpa, S.; Avihingsanon, Y.; Hanvivadhanakul, P.; Wonchinsri, J. Clinical manifestations of patients with hyperuricemia. J. Med. Assoc. Thai. 2004, 87, 41–44. [Google Scholar]
- Li, M.; Yang, D.; Mei, L.; Yuan, L.; Xie, A.; Yuan, J. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS ONE 2014, 9, e105577. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Cheng, J.; Huangfu, N.; Zhao, R.; Xu, Z.; Zhang, F.; Zheng, W.; Zhang, D. Hyperuricemia and cardiovascular disease. Curr. Pharm. Des. 2019, 25, 700–709. [Google Scholar] [CrossRef]
- Li, C.; Hsieh, M.C.; Chang, S.J. Metabolic syndrome, diabetes, and hyperuricemia. Curr. Opin. Rheumatol. 2013, 25, 210–216. [Google Scholar] [CrossRef]
- Chalès, G. How should we manage asymptomatic hyperuricemia? Jt. Bone Spine 2019, 86, 437–443. [Google Scholar] [CrossRef]
- García-Arroyo, F.E.; Gonzaga, G.; Muñoz-Jiménez, I.; Blas-Marron, M.G.; Silverio, O.; Tapia, E.; Soto, V.; Ranganathan, N.; Ranganathan, P.; Vyas, U.; et al. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS ONE 2018, 13, e0202901. [Google Scholar] [CrossRef] [Green Version]
- Strilchuk, L.; Fogacci, F.; Cicero, A.F. Safety and tolerability of available urate-lowering drugs: A critical review. Expert. Opin. Drug Saf. 2019, 18, 261–271. [Google Scholar] [CrossRef]
- Vinderola, G.; Binetti, A.; Burns, P.; Reinheimer, J. Cell viability and functionality of probiotic bacteria in dairy products. Front. Microbiol. 2011, 2, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Front. Microbiol. 2015, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Sedaghat, A.; Karimi Torshizi, M.A. Immune responses, intestinal microbiota, performance and blood characteristics of Japanese quail fed on diets containing camphor. Animal 2017, 11, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, H.; Taniguchi, A.; Tsuboi, H.; Kano, H.; Asami, Y. Hypouricaemic effects of yoghurt containing Lactobacillus gasseri PA-3 in patients with hyperuricaemia and/or gout: A randomised, double-blind, placebo-controlled study. Mod. Rheumatol. 2019, 29, 146–150. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, C.; Zeng, X.; Yuan, Z. Microecological treatment of hyperuricemia using Lactobacillus from pickles. BMC Microbiol. 2020, 20, 195–204. [Google Scholar] [CrossRef]
- Wang, H.; Mei, L.; Deng, Y.; Liu, Y.; Wei, X.; Liu, M.; Zhou, J.; Ma, H.; Zheng, P.; Yuan, J.; et al. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition 2019, 62, 63–73. [Google Scholar] [CrossRef]
- Gómez Zavaglia, A.; Kociubinski, G.; Pérez, P.; De Antoni, G. Isolation and characterization of Bifidobacterium strains for probiotic formulation. J. Food Prot. 1998, 61, 865–873. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Walker, D.K. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 1990, 73, 905–911. [Google Scholar] [CrossRef]
- Banerjee, P.; Merkel, G.J.; Bhunia, A.K. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog. 2009, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, K.; Tannock, G.W. Colonization of the porcine gastrointestinal tract by lactobacilli. Appl. Environ. Microbiol. 1989, 55, 279–283. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Takayanagi, F.; Fukuuchi, T.; Yamaoka, N.; Yasuda, M.; Mawatari, K.I.; Fujimori, S. Determination of total purine and purine base content of 80 food products to aid nutritional therapy for gout and hyperuricemia. Nucleosides Nucleotides Nucleic Acids 2020, 39, 1449–1457. [Google Scholar] [CrossRef]
- Guimaraes, A.P.; Oliveir, A.A.; Ramalho, T.C. Analysis of bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J. Mol. Model. 2011, 17, 2939–2951. [Google Scholar] [CrossRef] [PubMed]
- Babot, J.D.; Argañaraz-Martínez, E.; Saavedra, L.; Apella, M.C.; Chaia, A.P. Compatibility and safety of five lectin-binding putative probiotic strains for the development of a multi-strain protective culture for poultry. Benef. Microbes 2018, 9, 927–935. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Zhao, J.; Xia, Y.; Lai, P.F.; Ai, L. A surface protein from Lactobacillus plantarum increases the adhesion of Lactobacillus strains to human epithelial cells. Front. Microbiol. 2018, 9, 2858. [Google Scholar] [CrossRef] [Green Version]
- Castro-Bravo, N.; Wells, J.M.; Margolles, A.; Ruas-Madiedo, P. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol. 2018, 9, 2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepika, G.; Charalampopoulos, D. Surface and adhesion properties of lactobacilli. Adv. Appl. Microbiol. 2010, 70, 127–152. [Google Scholar]
- Sun, J.; Le, G.W.; Shi, Y.H.; Su, G.W. Factors involved in binding of Lactobacillus plantarum Lp6 to rat small intestinal mucus. Lett. Appl. Microbiol. 2007, 44, 79–85. [Google Scholar] [CrossRef]
- Gilliland, S.E. Acidophilus milk products: A review of potential benefits to consumers. J. Dairy Sci. 1989, 72, 2483–2494. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lozada, L.G.; Tapia, E.; Soto, V.; Avila-Casado, C.; Franco, M.; Zhao, L.; Johnson, R.J. Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol. Dial. Transplant. 2008, 23, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Lozada, L.G.; Soto, V.; Tapia, E.; Avila-Casado, C.; Sautin, Y.Y.; Nakagawa, T.; Franco, M.; Rodríguez-Iturbe, B.; Johnson, R.J. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am. J. Physiol. Renal. Physiol. 2008, 295, 1134–1141. [Google Scholar] [CrossRef] [Green Version]
- Haryono, A.; Nugrahaningsih, D.A.A.; Sari, D.C.R.; Romi, M.M.; Arfian, N. Reduction of serum uric acid associated with attenuation of renal injury, inflammation and macrophages M1/M2 ratio in hyperuricemic mice model. Kobe J. Med. Sci. 2018, 64, 107–114. [Google Scholar]
- Wu, P.; Li, J.; Zhang, X.; Zeng, F.; Liu, Y.; Sun, W. Study of the treatment effects of compound tufuling granules in hyperuricemic rats using serum metabolomics. Evid. Based Complement Alternat. Med. 2018, 2018, 3458185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of LAB a (Log CFU b/mL) | |||
---|---|---|---|
Strain | 0% Purine Compound | 0.1% Purine Compound | 1% Purine Compound |
(106) 6-1 | 10.24 | 10.19 | 10.21 |
(106) 11-6 | 10.14 | 10.22 | 10.13 |
(106) 3-9 | 10.17 | 10.05 | 10.00 |
(106) 6-4 | 10.16 | 10.20 | 10.17 |
(106) 8-5 | 10.12 | 10.13 | 9.98 |
(106) 3-21-2 | 10.11 | 10.17 | 10.21 |
(106) 3-11 | 9.96 | 10.04 | 9.95 |
(106) 1-17 | 9.94 | 10.09 | 9.86 |
(106) 3-14 | 10.23 | 10.22 | 10.16 |
(106) 7-2 | 9.94 | 10.03 | 9.85 |
(107) tau 6-2 | 9.21 | 10.25 | 10.24 |
(107) jia 6-7 | 9.84 | 9.84 | 9.94 |
(107) 8-16 | 9.42 | 10.32 | 10.39 |
(107) jia 6-5 | 9.82 | 9.83 | 9.98 |
(107) tau 1-3 | 9.27 | 10.26 | 10.30 |
(107) tau 3-5 | 9.27 | 10.21 | 10.01 |
(107) tau 2-1 | 9.62 | 10.48 | 10.49 |
(107) 6-10 | 9.21 | 10.18 | 10.02 |
(107) tau 2-8 | 9.57 | 10.41 | 10.40 |
(107) tau 6-7 | 9.97 | 9.97 | 10.03 |
(106) 6-9 | 9.95 | 9.97 | 10.01 |
(106) 6-18 | 10.16 | 10.21 | 10.29 |
(106) 1-5 | 10.03 | 10.09 | 10.10 |
(106) 1-4 | 10.04 | 10.08 | 10.12 |
(106) 3-21-1 | 9.89 | 10.01 | 9.97 |
(106) 1-1 | 10.03 | 10.11 | 10.22 |
(107) jia 6-6 | 9.94 | 9.85 | 10.03 |
(107) jia 5-7 | 10.04 | 9.97 | 10.01 |
(107) jia 6-1 | 9.99 | 9.87 | 10.03 |
(107) tau 1-1 | 10.40 | 10.32 | 10.47 |
(107) tau 4-2 | 9.99 | 9.95 | 9.94 |
(107) tau 3-7 | 10.24 | 10.21 | 10.30 |
(107) tau 2-4 | 10.33 | 10.21 | 10.15 |
Acid Tolerance | Bile Salt Tolerance | |||||
---|---|---|---|---|---|---|
Strain | 0 h | 1.5 h | 3 h | 0 h | 1.5 h | 3 h |
(107) 8–16 | 9.1 ± 0.03 | 9.12 ± 0.04 | 8.98 ± 0.02 | 8.76 ± 0.12 | 8.49 ± 0.02 | 8.62 ± 0.08 |
(107) 6–10 | 9.11 ± 0.02 | 9.03 ± 0.01 | 9.11 ± 0.02 | 7.84 ± 0.04 | 7.88 ± 0.11 | 7.73 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-W.; Chen, H.-Y.; Tsai, C.-C. Screening and Evaluation of Purine-Nucleoside-Degrading Lactic Acid Bacteria Isolated from Winemaking Byproducts In Vitro and Their Uric Acid-Lowering Effects In Vivo. Fermentation 2021, 7, 74. https://doi.org/10.3390/fermentation7020074
Hsieh M-W, Chen H-Y, Tsai C-C. Screening and Evaluation of Purine-Nucleoside-Degrading Lactic Acid Bacteria Isolated from Winemaking Byproducts In Vitro and Their Uric Acid-Lowering Effects In Vivo. Fermentation. 2021; 7(2):74. https://doi.org/10.3390/fermentation7020074
Chicago/Turabian StyleHsieh, Min-Wei, Huey-Yueh Chen, and Cheng-Chih Tsai. 2021. "Screening and Evaluation of Purine-Nucleoside-Degrading Lactic Acid Bacteria Isolated from Winemaking Byproducts In Vitro and Their Uric Acid-Lowering Effects In Vivo" Fermentation 7, no. 2: 74. https://doi.org/10.3390/fermentation7020074
APA StyleHsieh, M. -W., Chen, H. -Y., & Tsai, C. -C. (2021). Screening and Evaluation of Purine-Nucleoside-Degrading Lactic Acid Bacteria Isolated from Winemaking Byproducts In Vitro and Their Uric Acid-Lowering Effects In Vivo. Fermentation, 7(2), 74. https://doi.org/10.3390/fermentation7020074