The Influence of Selected Autochthonous Saccharomyces cerevisiae Strains on the Physicochemical and Sensory Properties of Narince Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Culture Media and Chemical Standards
2.3. Fermentations
2.4. Chemical Analysis and Microbial Enumeration
2.5. Volatile Compounds Analysis
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yeast Growth and Fermentation Kinetic
3.2. General Composition of Wines
3.3. Volatile Compositions of Wines
3.4. Sensory Evaluations of Wines
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Callejón, R.M.; Clavijo, A.; Ortigueira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Anal. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, M.G.; Pretorius, I.S. Yeasts and its importance to wine aroma. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef]
- Blanco, P.; Miras-Avalos, J.M.; Ignacio, O. Modulation of chemical and sensory chracteristics of red wine from Mencía by using indigenous Saccharomyces cerevisaie yeast strains. J. Int. Sci. Vigne Vin 2014, 48, 63–74. [Google Scholar]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed]
- Abargati, A.; Canonico, L.; Ciani, M.; Comitini, F. Fitness of selected indigenous Saccharomyces cerevisae strains for white Piceno DOC wines production. Fermentation 2018, 4, 37. [Google Scholar]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneously fermenting grapes from an Italian ‘heroic vine-growing area’. Food Microbiol. 2012, 31, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Lorca, G.; Uribe, S.; Martinez, C.; Godoy, L.; Ganga, M.A. Screening of native S. cerevisiae strains in the production of Pajarete wine: A tradition of Atacama Region, Chile. J. Wine Res. 2018, 29, 130–142. [Google Scholar] [CrossRef]
- Tufariello, M.; Maiorano, G.; Rampino, P.; Spano, G.; Grieco, F.; Perrotta, C.; Capozzi, V.; Grieco, F. Selection of an autochthonous yeast starter culture for indurstrial production of Primitivo ‘Gioia del Colle’ PDO/DOC in Apulia (Southern Italy). Food Sci. Technol. 2019, 99, 188–196. [Google Scholar]
- Liu, N.; Qin, Y.; Song, Y.Y.; Tao, Y.S.; Sun, Y.; Liu, Y.L. Aroma composition and sensory quality of Cabernet sauvignon wines fermented by indigenous Saccharomyces cerevisiae strains in the eastern base of the Helan Mountain, China. Int. J. Food Prop. 2016, 19, 2417–2431. [Google Scholar] [CrossRef]
- Arslan, E.; Çelik, Z.D.; Cabaroğlu, T. Effects of pure and mixed autochthonous Torulaspora delbrueckii and Saccharomyces cerevisiae fermentation and volatile compounds of Narince wines. Foods 2018, 7, 147. [Google Scholar] [CrossRef]
- Çelik, Z.D.; Erten, H.; Darici, M.; Cabaroğlu, T. Molercular caharacterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L.cv. Narince grape must grown in ancient winemaking area Tokat, Anatolia. BIO Web Conf. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Compendium of International Methods of Analysis of Wine and Musts; International Organisation of Vine and Wine: Paris, France, 2015; Volume 1.
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Erten, H. Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides. Process Biochem. 1998, 33, 735–739. [Google Scholar] [CrossRef]
- Esteve-Zarzosa, B.; Gostíncar, A.; Bobet, R.; Uruburu, F.; Querol, A. Selection and molecular characterization of wine yeasts isolated from the’ El Penèdes’ area Spain. Food Microbiol. 2000, 17, 553–562. [Google Scholar] [CrossRef]
- Selli, S.; Cabaroğlu, T.; Canbaş, A.; Erten, H.; Nurgel, C.; Lepoutre, J.P.; Günata, Z. Volatile composition of red wine from cv. Kalecik karası grown in central Anatolia. Food Chem. 2004, 85, 207–213. [Google Scholar] [CrossRef]
- Schneider, R.; Baumes, R.; Bayanove, C.; Razungles, A. Volatile compounds involved in the aroma of sweet offortified wines (Vins Doux Naturels) from Grenache Noir. J. Agric. Food Chem. 1998, 46, 3230–3323. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 231–238. ISBN 978-1-4419-6487-8. [Google Scholar]
- Cordente, A.G.; Cordero-Bueso, G.; Pretorius, I.S.; Curtin, C.D. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013, 13, 62–73. [Google Scholar] [CrossRef]
- Álvarez-Pérez, J.M.; Campo, E.; San-Juan, F.; Coque, J.J.R.; Ferreira, V.; Hernández-Orte, P. Sensory and chemical characterisation of the aroma of Prieto Picudo rosé wines: The differential role of autochthonous yeast strains on aroma profiles. Food Chem. 2012, 133, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Ferreia, V.; Fernandez, P.; Pena, C.; Escudero, A.; Cacho, J.F. Investigation on the role played by fermentation esters in the aroma younf Spanish wines by multivariate analysis. J. Sci. Food Agric. 1995, 67, 381–392. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile componenets of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Torrens, J.; Riu-Aumatell, M.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Different commercial yeast stains affecting the volatile and sensory profile of cava base wine. Int. J. Food Microbiol. 2008, 124, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Jiménez, J.M.; Mingorance-Cazorla, L.; Martínez-Rodríguez, S.; Heras-Vázquez, F.J.L.; Rodriguez-Vico, F. Molecular characterization and oenological properties of wine yeasts isolated during spontaneousfermentation of six varieties of grape must. Food Microbiol. 2004, 21, 149–155. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A. Yeasts and wine flavour. In Wine Chemistry and Biochemistry, 1st ed.; Moreno-Aribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 313–392. [Google Scholar]
- Mina, M.; Tsaltas, D. Contribution of yeast in wine aroma and flavour. In Yeast-Industrial Applications, 1st ed.; Morato, A., Loira, I., Eds.; Intechopen: London, UK, 2017; pp. 117–134. [Google Scholar]
- Rocha, S.M.; Countinho, F.; Delgadillo, P.; Coimbra, M.A. Volatile composition of Baga red wine. Assessment of the identification of the impact odourants. Analytica Chimica Acta 2004, 513, 257–262. [Google Scholar] [CrossRef]
- Azzolini, M.; Tosi, E.; Lorenzini, M.; Finato, F.; Zapparoli, G. Contribution to the aroma of white wines by controlled Torulaspora delbrueckii cultures in association with Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2015, 31, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.N.; Lavigne, V. Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric. 1993, 61, 191–202. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; Briones Pérez, A.I.; Ubeda Iranzo, J.F.; Martin Alvarez, P.J. Characteristics of wines fermented with different Saccharomyces cerevisiae strains isolated from La Mancha region. Food Microbiol. 1999, 16, 563–573. [Google Scholar] [CrossRef]
- Alves, Z.; Melo, A.; Raquel Figueiredo, R.; Coimbra, M.A.; Gomes, A.C.; Rocha, S.M. Exploring the Saccharomyces cerevisiae volatile metabolome: Indigenous versus commercial strains. PLoS ONE 2015, 10, e0143641. [Google Scholar] [CrossRef]
Technological Properties | Strain 1044 | Strain 1088 | Strain 1281 |
---|---|---|---|
Resistance to 12% (v/v) ethanol | ** | *** | ** |
Resistance to 200 mg/L SO2 | ** | *** | ** |
Growth at low temperature 15 °C | ** | ** | ** |
H2S Production | 3 | 4 | 2 |
Killer activity | + | + | + |
Growth at Brix 30° | *** | *** | *** |
Foam production (15/20 °C) | F1/F2 | F0/F1 | F1/F2 |
Fermentation rate (g CO2/L.h) | 1.27 ± 0.0 | 0.99 ± 0.0 | 2.47 ± 0.2 |
Fermentation vigor (% h/h) | 9.9 ± 0.0 | 10 ± 0.1 | 10.12 ± 0.1 |
Volatile acidity (g/L) | 0.74 ± 0.0 | 0.85 ± 0.0 | 0.58 ± 0.0 |
Flocculation (%) | 98 | 98 | 95 |
Esterase (C4) | 2 | 1 | 3 |
Esterase Lipase (C8) | 3 | 3 | 3 |
Ethyl acetate (mg/L) | 29.9 ± 0.5 | 27.26 ± 0.1 | 24.26 ± 0.04 ± 0.2 |
Acetaldehyde (mg/L) | 8.39 ± 0.4 | 18.4 ± 0.2 | 12.49 ± 0.05 ± 0.2 |
Higher alcohols (mg/L) | 263.6 ± 0.6 | 252.96 ± 0.5 | 241.05 ± 0.5 |
General Composition | Control | 1044 | 1088 | 1281 | F |
---|---|---|---|---|---|
Alcohol (% v/v) | 11.40 ± 0.30 b | 11.50 ± 0.50 a,b | 11.65 ± 0.25 a | 11.63 ± 0.18 a | * |
Total acidity (g/L) ** | 5.95 ± 0.21 c | 6.40 ± 0.14 a | 6.04 ± 0.06 b | 6.71 ± 0.10 a | * |
pH | 3.35 ± 0.22 b | 3.35 ± 0.15 b | 3.63 ± 0.04 a | 3.37 ± 0.12 b | * |
Volatile acidity (g/L) *** | 0.56 ± 0.02 b | 0.65 ± 0.06 a | 0.41 ± 0.01 c | 0.57 ± 0.02 b | * |
Residual sugar (g/L) | 3.10 ± 0.10 a | 2.85 ± 0.16 b | 2.65 ± 0.07 c | 2.45 ± 0.02 d | * |
Glycerol (g/L) | 5.35 ± 0.34 | 5.40 ± 0.20 | 5.25 ± 0.26 | 5.35 ± 0.16 | ns |
Total SO2 (mg/L) | 43.50 ± 0.60 b | 39.06 ± 0.65 b | 51.00 ± 2.10 a | 32.66 ± 1.50 c | * |
Sugars (g/L) | |||||
Glucose | 1.10 ± 0.10 b | 1.5 ± 0.11 a | 1.65 ± 0.02 a | 1.6 ± 0.12 a | * |
Fructose | 2.00 ± 1.27 a | 1.27 ± 0.11 b | 0.95 ± 0.10 c | 0.8 ± 0.02 c | * |
Organic acids (g/L) | |||||
Tartaric acid | 3.15 ± 0.21 | 3.05 ± 0.04 | 3.18 ± 0.20 | 3.2 ± 0.40 | ns |
Malic acid | 2.75 ± 0.11 a | 2.45 ± 0.10 b | 2.25 ± 0.04 c | 2.45 ± 0.02 b | * |
Aroma Compounds (µg/L) | ||||||||
Higher alcohols | RI | ID | Control | 1044 | 1088 | 1281 | F | |
1 | 1-Propanol | 1037 | RI, MS, Std | 682.44 ± 24 a | 716.23 ± 7 a | 294.86 ± 17 c | 558.46 ± 44 b | * |
2 | Isobutyl alcohol | 1085 | RI, MS, Std | 11,036.17 ± 157 a | 11,628.40 ± 359 a | 5849.93 ± 394 c | 9567.90 ± 843 b | * |
3 | 1-Butanol | 1165 | RI, MS, Std | 339.02 ± 64 b | 443.88 ± 32 a | 28.73 ± 0 c | 366.42 ± 25 b | * |
4 | Isoamyl alcohol | 1210 | RI, MS, Std | 144,604.80 ± 497 b | 165,956.55 ± 2805 a | 111,408.47 ± 1245 c | 144,826.57 ± 2537 b | * |
5 | 2-Hexanol | 1226 | RI, MS, Std | 259.13 ± 16 a | 188.43 ± 91 a,b | 24.66 ± 2 c | 130.09 ± 1 b | * |
6 | 4-Methyl-1-pentanol | 1301 | RI, MS, Std | 318.98 ± 12 a | 185.07 ± 11 c | 153.23 ± 11 d | 253.94 ± 20 b | * |
7 | 1-Hexanol | 1370 | RI, MS, Std | 1375.73 ± 135 b | 1518.18 ± 155 a | 1126.27 ± 73 b | 1326.59 ± 70 a,b | * |
8 | (Z)-3-Hexen-1-ol | 1401 | RI, MS, Std | 157.93 ± 12 a | 113.92 ± 15 b | 15.86 ± 1 c | 32.65 ± 7 c | * |
9 | 2,3-Butanediol | 1495 | RI, MS, Std | 694.55 ± 96 b | 942.93 ± 12a | 712.03 ± 82 b | 811.68 ± 6 b | * |
10 | Methionol | 1737 | RI, MS, Std | 44.92 ± 6 c | 34.35 ± 2 c | 298.61 ± 27 a | 252.94 ± 22 b | * |
11 | Benzylalcohol | 1804 | RI, MS, Std | 57.49 ± 8 a | 47.31 ± 0 a,b | 38.22 ± 5 b | 55.83 ± 3 a | * |
12 | 2-Phenyl ethanol | 1916 | RI, MS, Std | 28,519.52 ± 674 b | 28,202.12 ± 72b | 15,580.23 ± 468 c | 33,597.08 ± 476 a | * |
Sum | 188,090 | 209,977 | 135,526 | 191,780 | ||||
Esters | ||||||||
13 | Ethyl acetate ** | 895 | RI, MS, Std | 27,727.45 ± 753 a | 26,303 ± 455 c | 24,254.05 ± 200 d | 27,127.40 ± 350 b | * |
14 | Ethyl-2-methyl propaonate | 960 | RI, MS, Std | ND | ND | ND | 287.14 ± 4 | * |
15 | Ethyl butyrate | 1037 | RI, MS, Std | 359.31 ± 79 c | 682.37 ± 29 a | 173.51 ± 10 c | 513.92 ± 63 b | * |
16 | Isoamyl acetate | 1119 | RI, MS, Std | 1635.03 ± 85 c | 1815.57 ± 158 a,b | 1951.53 ± 50 b | 2249.17 ± 91 a | * |
17 | Ethyl hexanoate | 1241 | RI, MS, Std | 1534.30 ± 137 b | 1896.27 ± 47 a | 441.37 ± 10 c | 1680.05 ± 131 b | * |
18 | Hexyl acetate | 1250 | RI, MS, Std | 280.00 ± 22 a | 406.39 ± 31 a | 40.36 ± 2 b | 305.22 ± 3 a | * |
19 | Ethyl lactate | 1353 | RI, MS, Std | 465.64 ± 15 a | 604.12 ± 46 a | 251.27 ± 21 b | 465.78 ± 9 a | * |
20 | Ethyl octanoate | 1430 | RI, MS, Std | 669.08 ± 44 b | 739.52 ± 3 a,b | 775.27 ± 56 a | 792.90 ± 56 a | * |
22 | Ethyl decanoate | 1635 | RI, MS, Std | 270.67 ± 20 a | 276.17 ± 7 a | 211.0 ± 53 b | 301.94 ± 16 a | * |
21 | Diethyl succinate | 1690 | RI, MS, Std | 71.99 ± 13 b | 86.77 ± 4 a | 31.29 ± 3 c | 68.76 ± 2 b | * |
23 | Ethyl-9-decenoate | 1709 | RI, MS | 106.17 ± 20 a | 119.66 ± 3 a | 42.83 ± 5 b | 115.46 ± 14 a | * |
24 | 2-Phenylethyl acetate | 1785 | RI, MS, Std | 295.57 ± 20 b | 315.03 ± 2 b | 236.42 ± 18 c | 429.71 ± 36 a | * |
25 | Ethyl-4-hydroxybutyrate | 1819 | RI, MS | 3282.75 ± 145 c | 5632.62 ± 98 b | 2615.24 ± 234 b | 6025.05 ± 107 a | * |
26 | Diethyl -DL-malate | 2041 | RI, MS, Std | 124.31 ± 15 a | 60.68 ± 5 b | 12.35 ± 1 c | 71.28 ± 5 b | * |
27 | Ehyl-2-hydroxy-3-phenyl propionate | 2246 | RI, MS | 94.87 ± 10 a | 62.531 ± 7 b | 72.59 ± 6 b | 69.57 ± 1 b | * |
28 | Ethyl hydrogen succinate | 2331 | RI, MS | 845.07 ± 57 a | 639.56 ± 42 b | 460.80 ± 82 c | 930.71 ± 82 a | * |
Sum | 37,762 | 39,640 | 31,569 | 41,434 | ||||
Aroma Compounds (µg/L) | ||||||||
Volatile acids | RI | ID | Control | 1044 | 1088 | 1281 | F | |
29 | Propanoic acid | 1538 | RI, MS, Std | 70.94 ± 25 a | 68.11 ± 6 a | 32.96 ± 1 b | 48.68 ± 1 a,b | * |
30 | Isobutyric acid | 1584 | RI, MS, Std | 432.14 ± 26 c | 634.92 ± 51 a | 202.86 ± 18 d | 470.32 ± 15 b | * |
31 | Butyric acid | 1628 | RI, MS, Std | 260.79 ± 13 a | 270.36 ± 11 a | 149.68 ± 15 b | 250.86 ± 19 a | * |
32 | Isovaleric acid | 1608 | RI, MS, Std | 488.71 ± 17 c | 832.67 ± 12 a | 439.62 ± 38 d | 668.45 ± 28 b | * |
33 | Hexanoic acid | 1840 | RI, MS, Std | 1822.76 ± 14 c | 2135.87 ± 22 b | 857.19 ± 40 d | 2356.65 ± 193 a | * |
34 | (E)-2-Hexanoic acid | 1962 | RI, MS | 169.01 ± 6 b | 138.97 ± 6 c | 57.49 ± 4 d | 195.55 ± 6 a | * |
35 | Octanoic acid | 2060 | RI, MS, Std | 1638.37 ± 151 b | 129.83 ± 4 c | 4180.85 ± 75 a | 3878.85 ± 282 a | * |
36 | Decanoic acid | 2183 | RI, MS, Std | 993.61 ± 70 b | 1086.43 ± 58 b | 1525.73 ± 145 a | 1104.96 ± 163 b | * |
37 | 9-Decenoic acid | 2237 | RI, MS | 253.46 ± 14 c | 324.50 ± 38 b | 452.11 ± 46 a | 284.82 ± 27 b,c | * |
38 | Hexadecanoic acid | 2910 | RI, MS, Std | 465.79 ± 32 a | 94.52 ± 5 c | 125.19 ± 16 c | 181.54 ± 12 b | * |
Sum | 6595 | 5716 | 8023 | 9440 | ||||
Terpenes | ||||||||
39 | Linalool | 1551 | RI, MS, Std | 1.88 ± 0 b | ND | ND | 37.60 ± 3 a | * |
40 | cis-Farnesol | 1648 | RI, MS, Std | 208.13 ± 4 a | 149.20 ± 10 b | 26.12 ± 1 c | 145.89 ± 2 b | * |
Sum | 210 | 149 | 26 | 183 | ||||
Lactones | ||||||||
41 | ɣ-Butyrolactone | 1635 | RI, MS, Std | 1172.93 ± 64 a | 1244.98 ± 19 a | 503.63 ± 55 c | 1000.72 ± 15 b | * |
42 | ɣ-Caprolactone | 1694 | RI, MS, Std | 87.19 ± 4 a | 23.12 ± 2 c | 32.85 ± 6 b | 87.97 ± 2 a | * |
43 | Pantolactone | 2414 | RI, MS, Std | 161.30 ± 6 a | 79.92 ± 3 b | 9.57 ± 1 c | 80.63 ± 3 b | * |
44 | 4-Ethoxycarbonyl-ɣ-butyrolactone | 2673 | RI, MS | 202.80 ± 4 a | 96.37 ± 2 b | 37.65 ± 2 d | 90.76 ± 1 c | * |
Sum | 1624 | 1444 | 583 | 1260 | ||||
Volatile phenols | ||||||||
45 | 4-Vinyguaiacol | 2091 | RI, MS, Std | 259.02 ± 11 a | 138.65 ± 2 c | 166.66 ± 10 b | 142.61 ± 8 c | * |
46 | 4-Vinylphenol | 2415 | RI, MS, Std | 273.60 ± 9 a | 156.90 ± 3 b | 29.84 ± 4 d | 45.38 ± 5 c | * |
47 | Propiovanillone | 2693 | RI, MS | 91.18 ± 13 a | 37.38 ± 3 b | 29.31 ± 2 b | 33.04 ± 13 b | * |
48 | Acetovanillone | 2995 | RI, MS, Std | 78.52 ± 20 b | 25.58 ± 2 d | 57.36 ± 4 c | 164.12 ± 11 a | * |
Sum | 702 | 358 | 283 | 385 | ||||
Carbonyl compounds | ||||||||
49 | Acetoin | 1291 | RI, MS, Std | 538.94 ± 17 c | 825.60 ± 37 a | 49.36 ± 13 d | 592.73 ± 18 b | * |
50 | Acetaldehyde ** | 500 | RI, MS, Std | 4556.10 ± 150 d | 22,071.3 ± 85 a | 12,321.65 ± 200 b | 10,203.35 ± 130 c | * |
Sum | 5095 | 22,896 | 12,371 | 10,796 | ||||
TOTAL SUM | 240,078 | 280,180 | 188,381 | 255,278 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelik, Z.D.; Erten, H.; Cabaroglu, T. The Influence of Selected Autochthonous Saccharomyces cerevisiae Strains on the Physicochemical and Sensory Properties of Narince Wines. Fermentation 2019, 5, 70. https://doi.org/10.3390/fermentation5030070
Çelik ZD, Erten H, Cabaroglu T. The Influence of Selected Autochthonous Saccharomyces cerevisiae Strains on the Physicochemical and Sensory Properties of Narince Wines. Fermentation. 2019; 5(3):70. https://doi.org/10.3390/fermentation5030070
Chicago/Turabian StyleÇelik, Zeynep Dilan, Hüseyin Erten, and Turgut Cabaroglu. 2019. "The Influence of Selected Autochthonous Saccharomyces cerevisiae Strains on the Physicochemical and Sensory Properties of Narince Wines" Fermentation 5, no. 3: 70. https://doi.org/10.3390/fermentation5030070
APA StyleÇelik, Z. D., Erten, H., & Cabaroglu, T. (2019). The Influence of Selected Autochthonous Saccharomyces cerevisiae Strains on the Physicochemical and Sensory Properties of Narince Wines. Fermentation, 5(3), 70. https://doi.org/10.3390/fermentation5030070