Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Samples Selection
2.2. Lactobacillus Paracasei FS109 Strain Probiotic Selection
2.3. Experimental Fermented Milks Production from Different Genotypes
2.4. Lactobacillus Strains viable Counts and Physicochemical Parameters Determination
2.5. Statistical Analysis
3. Results
3.1. Milk Composition
3.2. Lactobacillus Paracasei FS103 Strain Probiotic Features
3.3. Experimental Fermented Milks from Different Genotypes
3.3.1. pH and Titratable Acidity Values
3.3.2. Viable Count Lactobacillus Paracasei Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carroccio, A.; Cavataio, F.; Montalto, G.; D’Amico, D.; Alabrese, L. Intolerance to hydrolysated cow’s milk proteins in infants: Characteristics and dietary treatment. Clin. Exp. Allergy. 2000, 18, 1597–1603. [Google Scholar]
- Restani, P. Goat milk allergenicity. J. Pediat. Gastroenterol. Nutr. 2004, 39, 323–324. [Google Scholar] [CrossRef]
- Chessa, S.; Caroli, A.M. Polimorfismi genetici latto-proteici caprini e ovine ed effetti sulla qualità del latte. Large Anim. Rev. 2014, 4, 23–27. [Google Scholar]
- Martin, P.; Ollivier-Bousquet, M.; Grosclaude, F. Genetic polymorphism of caseins: A tool to investigate casein micelle organization. Int. Dairy J. 1999, 9, 163–171. [Google Scholar] [CrossRef]
- Caroli, A.M.; Chiatti, F.; Chessa, S.; Rignanese, D.; Ibeagha-Awemu, E.; Erhardt, G. Characterization of the casein gene complex in West Africa goats and description of a new αS1-casein polymorphism. J. Dairy Sci. 2007, 90, 2989–2996. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of αS1-casein genotype on phenolic compounds and antioxidant activity in goat milk yogurt fortified with Rhus coriaria leaf powder. I. Dairy J. 2013, 31, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Skeie, S.B.; Inglingstad, R.A.; Brunborg, L.J.; Eknæs, M. The influence of the deletion in exon 12 of the gene encoding αs1-casein (CSN1S1) in the milk of the Norwegian dairy goat breed on milk coagulation properties and cheese quality. Small Rum. Res. 2014, 122, 50–58. [Google Scholar] [CrossRef]
- Bevilacqua, C.; Martin, P.; Candalh, C.; Fauquant, J.; Piot, M.; Roucayrol, A.M.; Pilla, F.; Heyman, M. Goats’ milk of defective alpha(s1)-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J. Dairy Res. 2001, 68, 217–227. [Google Scholar] [CrossRef]
- Albenzio, M.; Campanozzi, A.; D’Apolito, M.; Santillo, A.; Pettoello Mantovani, M.; Sevi, A. Differences in protein fraction from goat and cow milk and their role on cytokine production in children with cow’s milk protein allergy. Small Rum. Res. 2012, 105, 202–205. [Google Scholar] [CrossRef]
- Sanna, M.G.; Mangia, N.P.; Garau, G.; Murgia, M.A.; Massa, T.; Franco, A.; Deiana, P. Selection of folate-producing lactic acid bacteria for improving fermented goat milk. Italian J. Food Sci. 2005, 17, 143–154. [Google Scholar]
- Minervini, F.M.; Bilancia, T.; Siragusa, S.; Gobbetti, M.; Caponio, F. Fermented goats’ milk produced with selected multiple starters as a potentially functional food. Food Microbiol. 2009, 26, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Tamine, A.Y.; Wszolek, M.; Bozanic, R.; Ozer, B. Popular ovine and caprine fermented milks. Small Rum. Res. 2011, 101, 2–16. [Google Scholar] [CrossRef]
- Mangia, N.P.; Murgia, M.A.; Fancello, F.; Nudda, A.; Deiana, P. Influence of Myrtle Juice and Syrup on Microbiological, Physicochemical and Sensory Features of Goat’s Milk Yogurt Made with Indigenous Starter Culture. J. Microb. Biochem. Technol. 2014, 6, 370–374. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Mocchiutti, P.; Reinheimer, J.A. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products. J. Dairy Sci. 2002, 85, 721–729. [Google Scholar] [CrossRef]
- Mangia, N.P.; Saliba, L.; Deiana, P. Functional and safety characterization of autochthonous Lactobacillus paracasei FS103 isolated from sheep cheese and its survival in sheep and cow fermented milk during cold storage. Ann. Microbiol. 2019, 69, 161–170. [Google Scholar] [CrossRef]
- Candela, M.; Perna, F.; Carnevali, P.; Vitali, B.; Ciati, R.; Gionchetti, P.; Rizzello, F.; Campieri, M.; Brigidi, P. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells, adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int. J. Food Microbiol. 2008, 125, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Bengoa, A.A.; Zavala, L.; Carasi, P.; Trejoc, S.A.; Bronsoms, S.; Serradell, M.L.A.; Garrote, G.L.; Abraham, A.G. Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res. Int. 2018, 103, 462–467. [Google Scholar] [CrossRef]
- de Moreno de Leblanc, A.; Del Carmen, S.; Zurita-Turk, M.; Santos Rocha, C.; van de Guchte, M.; Azevedo, V.; Miyoshi, A.; Leblanc, J.G. Importance of IL-10 modulation by probiotic microorganisms in gastrointestinal inflammatory diseases. ISRN Gastroenterol. 2011, 892971. [Google Scholar] [CrossRef]
- Fioramonti, J.; Theodorou, V.; Bueno, L. Probiotics: What are they? What are their effects on gut physiology? Best Pract. Res. Clin. Gastroenterol. 2003, 17, 711–724. [Google Scholar] [CrossRef]
- Brzozowski, T.; Konturek, P.C.; Mierzwa, M.; Drozdowicz, D.; Bielanski, W.; Kwiecien, S.; Konturek, S.J.; Stachura, J.; Pawlik, W.W.; Hahn, E.G. Effect of probiotics and triple eradication therapy on the cyclooxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils. Helicobacter. 2006, 11, 10–20. [Google Scholar] [CrossRef]
- Peran, L.; Camuesco, D.; Comalada, M.; Bailon, E.; Henriksson, A.; Xaus, J.; Zarzuelo, A.; Galvez, J. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J. Appl. Microbiol. 2007, 103, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Murgia, A.; Porcu, A.; Demuru, M.; Pulina, G.; Nudda, A. Gas chromatography-mass spectrometry metabolomics of goat milk with different polymorphism at the αS1-casein genotype locus. J. Dairy Sci. 2016, 99, 6046–6051. [Google Scholar] [CrossRef] [PubMed]
- Zoumpopoulou, G.; Tzouvanou, A.; Mavrogonatou, E.; Alexandraki, V.; Georgalaki, M.; Anastasiou, R.; Papadelli, M.; Manolopoulou, E.; Kazou, M.; Kletsas, D.; et al. Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions. Probiotics Antimicrob. Proteins. 2017, 10, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Mangia, N.P.; Fancello, F.; Deiana, P. Microbiological characterization using combined culture dependent and independent approaches of Casizolu pasta filata cheese. J. Appl. Microbiol. 2016, 120, 329–345. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Rouel, J.; Leroux, C. Goats alpha-s1-casein genotype influences its milk fatty acid composition and delta-9 desaturationratios. Anim. Feed Sci. Tech. 2006, 131, 474–487. [Google Scholar] [CrossRef]
- Avondo, M.; Pennisi, P.; Lanza, M.; Pagano, R.I.; Valenti, B.; Di Gregorio, P.; De Angelis, A.; Giorgio, D.; Di Trana, A. Effect of the αs1-casein genotype and its interaction with diet degradability on milk production, milk quality, metabolic and endocrinal response of Girgentana goats. Small Rum. Res. 2015, 123, 136–141. [Google Scholar] [CrossRef]
- Schmidely, P.; Meschy, F.; Tessier, J.; Sauvant, D. Lactation response and nitrogen, calcium and phosphorus utilization of dairy goats differing by the genotype for αs1-casein in milk, and fed diets vaying in crude protein concentration. J. Dairy Sci. 2002, 85, 2299–2307. [Google Scholar] [CrossRef]
- de la Torre, G.; Ramos Morales, E.; Serradilla, J.M.; Gil Extremera, F.; Sanz Sampelayo, M.R. Milk production and composition in Malagueña dairy goat. Effect of genotype for synthesis of αs1-casein on milk production and its interaction with dietary protein content. J. Dairy Res. 2009, 76, 137–143. [Google Scholar] [CrossRef]
- Jones, R.M. The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health. In The Microbiota in Gastrointestinal Pathophysiology; Floch, M., Ringel, Y., Walker, W.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 9; pp. 99–108. [Google Scholar]
- Sanders, M. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46, 58–61. [Google Scholar] [CrossRef]
- Ibiza, S.; Serrador, J.M. The role of nitric oxide in the regulation of adaptive immune responses. Immunología. 2008, 27, 103–117. [Google Scholar] [CrossRef]
- Alonso, L.; Cuesta, E.P.; Gilliland, S.E. Production of free conjugated Linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J. Dairy Sci. 2003, 86, 1941–1946. [Google Scholar] [CrossRef]
- Jumah, R.Y.; Abu-Jdayil, B.; Shaker, R.R. Effect of type and level of starter culture on the rheological properties of set yogurt during gelation process. Int. J. Food Prop. 2001, 4, 531–544. [Google Scholar] [CrossRef]
- Shah, N.P.; Ravula, R.R. Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. Aust. J. Dairy Technol. 2000, 55, 127–131. [Google Scholar]
- Damin, M.R.; Minowa, E.; Alcantara, M.R.; Oliveira, M. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J. Texture Studies. 2008, 39, 40–55. [Google Scholar] [CrossRef]
- Culligan, E.P.; Hill, C.; Sleator, R.D. Probiotics and gastrointestinal disease: Successes, problems and future prospects. Gut Pathog. 2009, 1, 19. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.Z.; Xia, X.D.; Zhao, Y.C.; Shao, W.L. Probiotic potential of Lactobacillus paracasei FM-LP-4 isolated from Xinjiang camel milk yogurt. Int. Dairy J. 2016, 62, 28–34. [Google Scholar] [CrossRef]
- Kyselová, J.; Ječmínková, K.; Matějíčková, J.; Hanuš, O.; Kott, T.; Štípková, M.; Krejčová, M. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin. Asian-Australas. J. Anim. Sci. 2019, 32, 14–22. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
IL10 (F) | CACCCACTTCCCAGGCAACC |
IL10 (R) | TCTCAGACAAGGCTTGGCAACC |
iNOS (F) | CCCAGCCTCAAGTCTTATTTCCTC |
iNOS (R) | GCACTCAGCAGCAAGTTCCATC |
COX2 (F) | CCTGTGCCTGATGATTGC |
COX2 (R) | CTGATGCGTGAAGTGCTG |
GAPDH (F) | GAGTCCACTGGCGTCTTC |
GAPDH (R) | GCATTGCTGATGATCTTGAGG |
Min | Max | Average | SD | p Value | |
---|---|---|---|---|---|
IL10 | 0.96 | 17.31 | 6.83 | 6.69 | p > 0.05 |
COX2 | 0.79 | 1.49 | 1.23 | 0.31 | p > 0.05 |
iNOS | 0.56 | 0.96 | 0.67 | 0.15 | p < 0.05 |
Control | 1 | 1 | 1 | 0 |
Strain | Fermentation Time (h) | Cold Storage (Day) | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 24 | 15 | 30 | ||||||||||||||||||||||
HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | |||||||||||||||
FS109 | 6.63 aA | 0.05 | 6.46 aA | 0.1 | 6.88 aA | 0.17 | 6.60 aA | 0.11 | 6.44 aA | 0.2 | 6.60 aA | 0.19 | 6.15 aA | 0.15 | 6.10 aA | 0.27 | 4.41 aA | 0.17 | 3.93 aA | 0.31 | 3.85 aA | 0.12 | 3.73 aA | 0.12 | 3.79 aA | 0.2 | 3.62 aA | 0.13 |
CF4 | 6.67 aA | 0.23 | 6.53 aA | 0.16 | 6.95 aA | 0.07 | 6.78 aA | 0.16 | 6.68 aA | 0.13 | 6.82 aA | 0.17 | 6.50 aB | 0.12 | 6.33 aA | 0.07 | 6.63 aC | 0.06 | 6.23 aC | 0.14 | 4.00 aA | 0.23 | 4.18 aB | 0.21 | 4.07 aB | 0.11 | 4.13 aB | 0.10 |
393 T | 6.61 aA | 0.15 | 6.5 aA | 0.2 | 6.90 aA | 0.16 | 6.75 aA | 0.12 | 6.54 aA | 0.07 | 6.67 aA | 0.16 | 6.45 aB | 0.06 | 6.35 aA | 0.19 | 6.28 bB | 0.06 | 5.94 aB | 0.11 | 5.42 aB | 0.04 | 5.31 aC | 0.16 | 5.07 aC | 0.16 | 5.36 bC | 0.06 |
Strain | Fermentation Time (h) | Cold Storage (Day) | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 24 | 15 | 30 | ||||||||||||||||||||||
HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | |||||||||||||||
FS109 | 0.21 aA | 0.01 | 0.21 aA | 0.03 | 0.25 aA | 0.01 | 0.22 aA | 0.05 | 0.26 aA | 0.03 | 0.25 aA | 0.01 | 0.30 aA | 0.09 | 0.31 aA | 0.07 | 0.97 aB | 0.13 | 0.90 aB | 0.09 | 1.13 aC | 0.11 | 1.20 aC | 0.18 | 1.37 aB | 0.32 | 1.43 aB | 0.13 |
CF4 | 0.19 aA | 0.01 | 0.20 aA | 0.02 | 0.21 aA | 0.03 | 0.20 aA | 0.03 | 0.21 aA | 0.02 | 0.23 aA | 0.10 | 0.24 aA | 0.02 | 0.23 aA | 0.02 | 0.22 aA | 0.01 | 0.21 aA | 0.08 | 0.33 aA | 0.08 | 0.28 aA | 0.01 | 0.70 aA | 0.11 | 0.73 aA | 0.33 |
393T | 0.18 aA | 0.02 | 0.18 aA | 0.02 | 0.21 aA | 0.02 | 0.22 aA | 0.03 | 0.23 aA | 0.01 | 0.21 aA | 0.02 | 0.24 aA | 0.03 | 0.23 aA | 0.02 | 0.25 aA | 0.08 | 0.28 aA | 0.02 | 0.50aB | 0.03 | 0.52 aB | 0.21 | 0.67 aA | 0.17 | 0.58 aA | 0.05 |
Strain | Fermentation Time (h) | Cold Storage (Day) | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 24 | 15 | 30 | ||||||||||||||||||||||
HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | HCsM | LCsM | |||||||||||||||
FS109 | 5.75 aA | 0.14 | 5.89 aA | 0.09 | 6.54aA | 0.02 | 6.39aA | 0.17 | 7.14 aB | 0.02 | 7.08 aB | 0.06 | 7.34 aB | 0.36 | 7.43 aB | 0.17 | 8.57 aC | 0.06 | 8.78 aC | 0.07 | 9.48 aC | 0.31 | 9.33aB | 0.20 | 9.30 bC | 0.08 | 9.06 aB | 0.10 |
CF4 | 5.80 aA | 0.12 | 5.79 aA | 0.13 | 6.19 aB | 0.16 | 6.07aA | 0.10 | 6.46 aA | 0.11 | 6.40 aA | 0.05 | 6.68 aA | 0.07 | 7.35 bB | 0.19 | 7.93 aB | 0.19 | 7.85 aA | 0.06 | 8.55 aB | 0.05 | 8.29 aA | 0.76 | 8.95 bB | 0.12 | 8.44 aA | 0.01 |
393T | 5.93 aA | 0.06 | 5.97 aA | 0.15 | 6.58bA | 0.10 | 6.24 aA | 0.12 | 7.06 aB | 0.20 | 7.18 aB | 0.26 | 6.98 aB | 0.01 | 6.95 aA | 0.02 | 7.65 aA | 0.06 | 7.98 bA | 0.07 | 8.30 aA | 0.04 | 8.24 aA | 0.08 | 8.22 aA | 0.05 | 8.46 bA | 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangia, N.P.; Saliba, L.; Zoumpopoulou, G.; Chessa, S.; Anastasiou, R.; Karayiannis, Ι.; Sgouras, D.; Tsakalidou, E.; Nudda, A. Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food. Fermentation 2019, 5, 55. https://doi.org/10.3390/fermentation5030055
Mangia NP, Saliba L, Zoumpopoulou G, Chessa S, Anastasiou R, Karayiannis Ι, Sgouras D, Tsakalidou E, Nudda A. Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food. Fermentation. 2019; 5(3):55. https://doi.org/10.3390/fermentation5030055
Chicago/Turabian StyleMangia, Nicoletta P., Leacady Saliba, Georgia Zoumpopoulou, Stefania Chessa, Rania Anastasiou, Ιοannis Karayiannis, Dionyssios Sgouras, Effie Tsakalidou, and Anna Nudda. 2019. "Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food" Fermentation 5, no. 3: 55. https://doi.org/10.3390/fermentation5030055
APA StyleMangia, N. P., Saliba, L., Zoumpopoulou, G., Chessa, S., Anastasiou, R., Karayiannis, Ι., Sgouras, D., Tsakalidou, E., & Nudda, A. (2019). Goat Milk with Different Alpha-s1 Casein Genotype (CSN1S1) Fermented by Selected Lactobacillus paracasei as Potential Functional Food. Fermentation, 5(3), 55. https://doi.org/10.3390/fermentation5030055