Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry
Abstract
1. Introduction
2. Materials and Methods
2.1. Inoculum
2.2. Growth Media
2.3. Chlorella vulgaris Raceway Outdoor Cultivations
2.4. Chlorella vulgaris Bubble Column Outdoor Cultivations
2.5. FC Analysis
2.6. Protein and Carbohydrate Content
2.7. Calculation of the Sedimentation Velocity of Chlorella vulgaris Cells
3. Results and Discussion
3.1. Previous Fluorescent Dye Selection
3.2. FC Controls
3.3. Outdoor Raceway Experiments
3.4. Outdoor Bubble Column Experiment
3.5. Comparison Between Control and WWW Cultivations Across Raceway and Bubble Column Systems
3.6. Changes in the Microalgae Cell Size
3.7. Biomass Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WWW | Winery wastewater |
FC | Flow cytometry |
SYTOX | SYTOX Green |
CFDA | Carboxyfluorescein diacetate |
SYBR | SYBR GREEN I |
PI | Propidium iodide |
FSC | Forward scatter |
SSC | Side scatter |
FSC-A | Forward scatter area (detector) |
SSC-A | Side scatter area (detector) |
References
- Zkeri, E.; Mastori, M.; Xenaki, A.; Kritikou, E.; Kostakis, M.; Dasenaki, M.; Maragou, N.; Fountoulakis, M.S.; Thomaidis, N.S.; Stasinakis, A.S. Winery Wastewater Treatment by Microalgae Chlorella Sorokiniana and Characterization of the Produced Biomass for Value-Added Products. Environ. Sci. Pollut. Res. 2024, 31, 49244–49254. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Remediation of a Winery Wastewater Combining Aerobic Biological Oxidation and Electrochemical Advanced Oxidation Processes. Water Res. 2015, 75, 95–108. [Google Scholar] [CrossRef]
- Marchão, L.; Fernandes, J.R.; Sampaio, A.; Peres, J.A.; Tavares, P.B.; Lucas, M.S. Microalgae and Immobilized TiO2/UV-A LEDs as a Sustainable Alternative for Winery Wastewater Treatment. Water Res. 2021, 203. [Google Scholar] [CrossRef]
- Miklas, V.; Touš, M.; Miklasová, M.; Máša, V.; Horňák, D. Winery Wastewater Treatment Technologies: Current Trends and Future Perspective. Chem. Eng. Trans. 2022, 94, 847–852. [Google Scholar] [CrossRef]
- Spennati, E.; Mirizadeh, S.; Casazza, A.A.; Solisio, C.; Converti, A. Chlorella Vulgaris and Arthrospira Platensis Growth in a Continuous Membrane Photobioreactor Using Industrial Winery Wastewater. Algal Res. 2021, 60, 102519. [Google Scholar] [CrossRef]
- Latessa, S.H.; Hanley, L.; Tao, W. Characteristics and Practical Treatment Technologies of Winery Wastewater: A Review for Wastewater Management at Small Wineries. J. Environ. Manag. 2023, 342, 118343. [Google Scholar] [CrossRef]
- Bolzonella, D.; Papa, M.; Da Ros, C.; Anga Muthukumar, L.; Rosso, D. Winery Wastewater Treatment: A Critical Overview of Advanced Biological Processes. Crit. Rev. Biotechnol. 2019, 39, 489–507. [Google Scholar] [CrossRef]
- Spennati, E.; Casazza, A.A.; Converti, A. Winery Wastewater Treatment by Microalgae to Produce Low-Cost Biomass for Energy Production Purposes. Energies 2020, 13, 2490. [Google Scholar] [CrossRef]
- Asadi, P.; Rad, H.A.; Qaderi, F. Comparison of Chlorella Vulgaris and Chlorella Sorokiniana Pa.91 in Post Treatment of Dairy Wastewater Treatment Plant Effluents. Environ. Sci. Pollut. Res. 2019, 26, 29473–29489. [Google Scholar] [CrossRef]
- Miazek, K.; Remacle, C.; Richel, A.; Goffin, D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies 2014, 7, 4446–4481. [Google Scholar] [CrossRef]
- Ali, S.S.; El-Sheekh, M.; Manni, A.; Ruiz, H.A.; Elsamahy, T.; Sun, J.; Schagerl, M. Microalgae-Mediated Wastewater Treatment for Biofuels Production: A Comprehensive Review. Microbiol. Res. 2022, 265. [Google Scholar] [CrossRef]
- Sarma, U.; Hoque, M.E.; Thekkangil, A.; Venkatarayappa, N.; Rajagopal, S. Microalgae in Removing Heavy Metals from Wastewater—An Advanced Green Technology for Urban Wastewater Treatment. J. Hazard. Mater. Adv. 2024, 15, 100444. [Google Scholar] [CrossRef]
- Blanchard, M.; Teil, M.J.; Ollivon, D.; Legenti, L.; Chevreuil, M. Polycyclic Aromatic Hydrocarbons and Polychlorobiphenyls in Wastewaters and Sewage Sludges from the Paris Area (France). Environ. Res. 2004, 95, 184–197. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Kurade, M.B.; Jeon, B.H. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol. 2018, 36, 30–44. [Google Scholar] [CrossRef]
- Morais, E.G.; Cristofoli, N.L.; Maia, I.B.; Magina, T.; Cerqueira, P.R.; Teixeira, M.R.; Varela, J.; Barreira, L.; Gouveia, L. Microalgal Systems for Wastewater Treatment: Technological Trends and Challenges towards Waste Recovery. Energies 2021, 14, 8112. [Google Scholar] [CrossRef]
- Hewitt, C.J.; Nebe-Von-Caron, G. The Application of Multi-Parameter Flow Cytometry to Monitor Individual Microbial Cell Physiological State. Adv. Biochem. Eng. Biotechnol. 2004, 89, 197–223. [Google Scholar] [CrossRef]
- Hyka, P.; Lickova, S.; Přibyl, P.; Melzoch, K.; Kovar, K. Flow Cytometry for the Development of Biotechnological Processes with Microalgae. Biotechnol. Adv. 2013, 31, 2–16. [Google Scholar] [CrossRef]
- Foladori, P.; Petrini, S.; Bruni, L.; Andreottola, G. Bacteria and Photosynthetic Cells in a Photobioreactor Treating Real Municipal Wastewater: Analysis and Quantification Using Flow Cytometry. Algal Res. 2020, 50, 101969. [Google Scholar] [CrossRef]
- Park, K.H.; Jho, E.H.; Hwang, S.J. Quantitative Viability Assessment of Microalgae for Advanced Wastewater Treatment by Flow Cytometry. KSCE J. Civ. Eng. 2023, 27, 3714–3719. [Google Scholar] [CrossRef]
- Freitas, C.; Parreira, T.M.; Roseiro, J.; Reis, A.; Da Silva, T.L. Selecting Low-Cost Carbon Sources for Carotenoid and Lipid Production by the Pink Yeast Rhodosporidium Toruloides NCYC 921 Using Flow Cytometry. Bioresour. Technol. 2014, 158, 355–359. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Čertnerová, D.; Galbraith, D.W. Best Practices in the Flow Cytometry of Microalgae. Cytom. Part A 2021, 99, 359–364. [Google Scholar] [CrossRef]
- Haberkorn, I.; Off, C.L.; Besmer, M.D.; Buchmann, L.; Mathys, A. Automated Online Flow Cytometry Advances Microalgal Ecosystem Management as in Situ, High-Temporal Resolution Monitoring Tool. Front. Bioeng. Biotechnol. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Barteneva, N.S.; Kussanova, A.; Dashkova, V.; Meirkhanova, A.; Vorobjev, I.A. Spectral and Imaging Cytometry; Springer: Berlin/Heidelberg, Germany, 2023; Volume 2635, Chapter 2; pp. 23–40. [Google Scholar] [CrossRef]
- Ihadjadene, Y.; Walther, T.; Krujatz, F. Optimized Protocol for Microalgae DNA Staining with SYTO9/SYBR Green I, Based on Flow Cytometry and RSM Methodology: Experimental Design, Impacts and Validation. Methods Protoc. 2022, 5, 76. [Google Scholar] [CrossRef] [PubMed]
- Taborda, T.; Moniz, P.; Reis, A.; da Silva, T.L. Evaluating Low-Cost Substrates for Crypthecodinium Cohnii Lipids and DHA Production, by Flow Cytometry. J. Appl. Phycol. 2021, 33, 263–274. [Google Scholar] [CrossRef]
- Zhong, W.; Zhang, Z.; Luo, Y.; Qiao, W.; Xiao, M.; Zhang, M. Biogas Productivity by Co-Digesting Taihu Blue Algae with Corn Straw as an External Carbon Source. Bioresour. Technol. 2012, 114, 281–286. [Google Scholar] [CrossRef]
- Hoebler, C.; Barry, J.L.; David, A.; Delort-Laval, J. Rapid Acid Hydrolysis of Plant Cell Wall Polysaccharides and Simplified Quantitative Determination of Their Neutral Monosaccharides by Gas-Liquid Chromatography. J. Agric. Food Chem. 1989, 37, 360–367. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Salim, S.; Gilissen, L.; Rinzema, A.; Vermuë, M.H.; Wijffels, R.H. Modeling Microalgal Flocculation and Sedimentation. Bioresour. Technol. 2013, 144, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, E.-M.; Meysman, F.J.R. Dead or Alive? Viability Assessment of Micro- and Mesoplankton. J. Plankton Res. 2012, 34, 493–509. [Google Scholar] [CrossRef]
- Reavie, E.D.; Cangelosi, A.A.; Allinger, L.E. Assessing Ballast Water Treatments: Evaluation of Viability Methods for Ambient Freshwater Microplankton Assemblages. J. Great Lakes Res. 2010, 36, 540–547. [Google Scholar] [CrossRef]
- Dias, C.; Gouveia, L.; Santos, J.A.L.; Reis, A.; Lopes da Silva, T. Using Flow Cytometry to Monitor the Stress Response of Yeast and Microalgae Populations in Mixed Cultures Developed in Brewery Effluents. J. Appl. Phycol. 2020, 32, 3687–3701. [Google Scholar] [CrossRef]
- Rioboo, C.; O’Connor, J.E.; Prado, R.; Herrero, C.; Cid, Á. Cell Proliferation Alterations in Chlorella Cells under Stress Conditions. Aquat. Toxicol. 2009, 94, 229–237. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.; Santos, C.A.; Reis, A. Multi-Parameter Flow Cytometry as a Tool to Monitor Heterotrophic Microalgal Batch Fermentations for Oil Production towards Biodiesel. Biotechnol. Bioprocess Eng. 2009, 14, 330–337. [Google Scholar] [CrossRef]
- Salgado, E.M.; Esteves, A.F.; Gonçalves, A.L.; Pires, J.C.M. Microalgal Cultures for the Remediation of Wastewaters with Different Nitrogen to Phosphorus Ratios: Process Modelling Using Artificial Neural Networks. Environ. Res. 2023, 231. [Google Scholar] [CrossRef]
- Yan, X.; Shan, S.; Li, X.; Xu, Q.; Yan, X.; Ruan, R.; Cheng, P. Carbon and Energy Metabolism for the Mixotrophic Culture of Chlorella Vulgaris Using Sodium Acetate as a Carbon Source. Front. Microbiol. 2024, 15, 1436264. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Hassan, A.A.; Zuhair, S. Al Microalgae–Bacteria Consortia for the Treatment of Fat, Oil, and Grease Wastewater: Recent Progress, Interaction Mechanisms, and Application Prospects. J. Hazard. Mater. Adv. 2025, 19, 100797. [Google Scholar] [CrossRef]
- Khoo, C.G.; Lam, M.K.; Lee, K.T. Pilot-Scale Semi-Continuous Cultivation Ofmicroalgae Chlorella Vulgaris in Bubble Column Photobioreactor (BC-PBR): Hydrodynamics and Gas-Liquid Mass Transfer Study. Algal Res. 2016, 15, 65–76. [Google Scholar] [CrossRef]
- Wang, C.; Lan, C.Q. Effects of Shear Stress on Microalgae—A Review. Biotechnol. Adv. 2018, 36, 986–1002. [Google Scholar] [CrossRef]
- Zhang, Q.; Guan, Y.; Zhang, Z.; Dong, S.; Yuan, T.; Ruan, Z.; Chen, M. Sustainable Microalgae Cultivation: A Comprehensive Review of Open and Enclosed Systems for Biofuel and High Value Compound Production. E3S Web Conf. 2024, 577. [Google Scholar] [CrossRef]
- Mirón, A.S.; Camacho, F.G.; Gómez, A.C.; Grima, E.M.; Chisti, Y. Bubble-Column and Airlift Photobioreactors for Algal Culture. AIChE J. 2000, 46, 1872–1887. [Google Scholar] [CrossRef]
- Assunção, J.; Malcata, F.X. Enclosed “Non-Conventional” Photobioreactors for Microalga Production: A Review. Algal Res. 2020, 52, 102107. [Google Scholar] [CrossRef]
- Ritu, J.R.; Ambati, R.R.; Ravishankar, G.A.; Shahjahan, M.; Khan, S. Utilization of Astaxanthin from Microalgae and Carotenoid Rich Algal Biomass as a Feed Supplement in Aquaculture and Poultry Industry: An Overview. J. Appl. Phycol. 2023, 35, 145–171. [Google Scholar] [CrossRef]
- Chioccioli, M.; Hankamer, B.; Ross, I.L. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas Reinhardtii and Chlorella Vulgaris. PLoS ONE 2014, 9, e97269. [Google Scholar] [CrossRef] [PubMed]
- Deepa, P.; Sowndhararajan, K.; Kim, S. A Review of the Harvesting Techniques of Microalgae. Water 2023, 15, 3074. [Google Scholar] [CrossRef]
- de Morais, E.G.; Sampaio, I.C.F.; Gonzalez-Flo, E.; Ferrer, I.; Uggetti, E.; García, J. Microalgae Harvesting for Wastewater Treatment and Resources Recovery: A Review. N. Biotechnol. 2023, 78, 84–94. [Google Scholar] [CrossRef]
- Rani, S.; Ojha, C.S.P. Chlorella Sorokiniana for Integrated Wastewater Treatment, Biomass Accumulation and Value-Added Product Estimation under Varying Photoperiod Regimes: A Comparative Study. J. Water Process Eng. 2021, 39, 101889. [Google Scholar] [CrossRef]
- Spennati, E.; Casazza, A.A.; Converti, A.; Padula, M.P.; Dehghani, F.; Perego, P.; Valtchev, P. Winery Waste Valorisation as Microalgae Culture Medium: A Step Forward for Food Circular Economy. Sep. Purif. Technol. 2022, 293, 121088. [Google Scholar] [CrossRef]
- Naseema Rasheed, R.; Pourbakhtiar, A.; Mehdizadeh Allaf, M.; Baharlooeian, M.; Rafiei, N.; Alishah Aratboni, H.; Morones-Ramirez, J.R.; Winck, F.V. Microalgal Co-Cultivation -Recent Methods, Trends in Omic-Studies, Applications, and Future Challenges. Front. Bioeng. Biotechnol. 2023, 11, 1–25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes da Silva, T.; Silva, T.A.; França, B.T.; Ribeiro, B.; Reis, A. Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry. Fermentation 2025, 11, 442. https://doi.org/10.3390/fermentation11080442
Lopes da Silva T, Silva TA, França BT, Ribeiro B, Reis A. Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry. Fermentation. 2025; 11(8):442. https://doi.org/10.3390/fermentation11080442
Chicago/Turabian StyleLopes da Silva, Teresa, Thiago Abrantes Silva, Bruna Thomazinho França, Belina Ribeiro, and Alberto Reis. 2025. "Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry" Fermentation 11, no. 8: 442. https://doi.org/10.3390/fermentation11080442
APA StyleLopes da Silva, T., Silva, T. A., França, B. T., Ribeiro, B., & Reis, A. (2025). Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry. Fermentation, 11(8), 442. https://doi.org/10.3390/fermentation11080442