Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm
Abstract
1. Introduction
2. Methods and Materials
2.1. Microorganism and Culture Media Composition
2.2. Cultivation
2.3. Extraction and Content Determination of CoQ10
2.4. Single-Factor Experimentation
2.5. UD Modeling and Regression Analysis
2.6. ANN Modeling and GA Optimization
3. Results and Analysis
3.1. Single-Factor Experiment of Inorganic Salts
3.2. UD Optimization of Inorganic Salts
3.3. ANN-GA Optimization of Inorganic Salts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.J.; Hu, M.; Yang, L.; Chen, X.Y. How plants synthesize coenzyme Q. Plant Commun. 2022, 3, 100341. [Google Scholar] [CrossRef] [PubMed]
- Nishida, I.; Yokomi, K.; Hosono, K.; Hayashi, K.; Matsuo, Y.; Kaino, T.; Kawamukai, M. CoQ10 production in Schizosaccharomyces pombe is increased by reduction of glucose levels or deletion of pka1. Appl. Microbial. Biotechnol. 2019, 103, 4899–4915. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Lou, W.; Xu, Y.; Yu, S.; Liang, C.; Alloul, A.; Song, K.; Vlaeminck, S.E. Determination of the ubiquinol-10 and ubiquinone-10 (coenzyme Q10) in human serum by liquid chromatography tandem mass spectrometry to evaluate the oxidative stress. Sci. Total Environ. 2022, 822, 153489. [Google Scholar] [CrossRef]
- Mantle, D.; Dewsbury, M.; Hargreaves, I.P. The ubiquinone-ubiquinol redox cycle and its clinical consequences: An overview. Int. J. Mol. Sci. 2024, 25, 6765. [Google Scholar] [CrossRef]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef]
- Podar, A.S.; Semeniuc, C.A.; Ionescu, S.R.; Socaciu, M.I.; Fogarasi, M.; Fărcaș, A.C.; Vodnar, D.C.; Socaci, S.A. An overview of analytical methods for quantitative determination of coenzyme Q10 in foods. Metabolites 2023, 13, 272. [Google Scholar] [CrossRef]
- Hargreaves, I.; Heaton, R.A.; Mantle, D. Disorders of human coenzyme Q10 metabolism: An overview. Int. J. Mol. Sci. 2020, 21, 6695. [Google Scholar] [CrossRef]
- Zhang, X.; Tohari, A.M.; Marcheggiani, F.; Zhou, X.; Reilly, J.; Tiano, L.; Shu, X. Therapeutic potential of co-enzyme Q10 in retinal diseases. Curr. Med. Chem. 2017, 24, 4329–4339. [Google Scholar] [CrossRef]
- Vollmer, D.L.; West, V.A.; Lephart, E.D. Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int. J. Mol. Sci. 2018, 19, 3059. [Google Scholar] [CrossRef]
- Hojerova, J. Skin health benefits of coenzyme Q10. In Bioactive Dietary Factors and Plant Extracts in Dermatology; Watson, R., Zibadi, S., Eds.; Springer Science: New York, NY, USA, 2013; pp. 197–213. [Google Scholar]
- Zhang, M.; Dang, L.; Guo, F.; Wang, X.; Zhao, W.; Zhao, R. Coenzyme Q10 enhances dermal elastin expression, inhibits IL-1α production and melanin synthesis in vitro. Int. J. Cosmet. Sci. 2012, 34, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Mine, Y.; Takahashi, T.; Okamoto, T. Stimulatory effects of collagen production induced by coenzyme Q10 in cultured skin fibroblasts. J. Clin. Biochem. Nutr. 2022, 71, 29–33. [Google Scholar] [CrossRef]
- Lee, S.Q.; Tan, T.S.; Kawamukai, M.; Chen, E.S. Cellular factories for coenzyme Q10 production. Microb. Cell Fact. 2017, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Jal, M.; Suñé-Negre, J.M.; García-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef]
- Fan, J.; Xu, W.; Xu, X.; Wang, Y. Production of coenzyme Q10 by microbes: An update. World J. Microbiol. Biotechnol. 2022, 38, 194. [Google Scholar] [CrossRef]
- Lee, S.; Yu, J.; Kim, Y.H.; Min, J. Optimized Rhodobacter sphaeroides for the production of antioxidants and the pigments with antioxidant activity. Mol. Biotechnol. 2023, 65, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Wada, O.Z.; Vincent, A.S.; Mackey, H.R. Single-cell protein production from purple non-sulphur bacteria-based wastewater treatment. Rev. Environ. Sci. Bio/Technol. 2022, 21, 931–956. [Google Scholar] [CrossRef]
- He, S.; Lu, H.; Zhang, G.; Ren, Z. Production of coenzyme Q10 by purple non-sulfur bacteria: Current development and future prospect. J. Clean. Prod. 2021, 307, 127326. [Google Scholar] [CrossRef]
- Sakarika, M.; Spanoghe, J.; Sui, Y.; Wambacq, E.; Grunert, O.; Haesaert, G.; Spiller, M.; Vlaeminck, S.E. Purple non-sulphur bacteria and plant production: Benefits for fertilization, stress resistance and the environment. Microb. Biotechnol. 2020, 13, 1336–1365. [Google Scholar] [CrossRef]
- Grattieri, M. Purple bacteria photo-bioelectrochemistry: Enthralling challenges and opportunities. Photochem. Photobiol. Sci. 2020, 19, 424–435. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, G.; Li, J. Mg2+ improves biomass production from soybean wastewater using purple non-sulfur bacteria. J. Environ. Sci. 2015, 28, 43–46. [Google Scholar] [CrossRef]
- Bruna, R.E.; Kendra, C.G.; Pontes, M.H. Coordination of phosphate and magnesium metabolism in bacteria. Adv. Exp. Med. Biol. 2022, 1362, 135–150. [Google Scholar]
- Chen, Y.; Yang, A.; Meng, F.; Zhang, G. Additives for photosynthetic bacteria wastewater treatment: Latest developments and future prospects. Bioresour. Technol. Rep. 2019, 7, 100229. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Z.; Tie, J.; Kang, J.; Zhang, G.; Zhang, J. Impacts of Fe2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. J. Environ. Sci. 2018, 70, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, G.; Li, J.; Lu, H.; Zhao, W. Effects of Fe2+ concentration on biomass accumulation and energy metabolism in photosynthetic bacteria wastewater treatment. Bioresour. Technol. 2012, 119, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.; Liu, T.H.; Wang, L.F.; Chien, C.C.; Chen, S.Y.; Wei, Y.H. Enhanced production and characterization of coenzyme Q10 from Rhodobacter sphaeroides using a potential fermentation strategy. J. Taiwan Inst. Chem. Eng. 2022, 137, 104201. [Google Scholar] [CrossRef]
- Leppik, R.A.; Young, I.G.; Gibson, F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-octaprenyl-4-hydroxybenzoate carboxy-lyase. Biochim. Biophys. Acta 1976, 436, 800–810. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, L.; Wang, K.F.; Xu, L.; Zhou, L.; Wang, W.; Li, C.; Xu, Z.; Shi, T.; Chen, H.; et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 2019, 4, 212–219. [Google Scholar] [CrossRef]
- Su, Y.Q.; Min, S.N.; Jian, X.Y.; Guo, Y.C.; He, S.H.; Huang, C.Y.; Zhang, Z.; Yuan, S.; Chen, Y.E. Bioreduction mechanisms of high-concentration hexavalent chromium using sulfur salts by photosynthetic bacteria. Chemosphere 2023, 311, 136861. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for fermentation medium optimization: An in-depth review. Front. Microbiol. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Zhou, T.; Reji, R.; Kairon, R.S.; Chiam, K.H. A review of algorithmic approaches for cell culture media optimization. Front. Bioeng. Biotechnol. 2023, 11, 1195294. [Google Scholar] [CrossRef]
- Tian, Y.; Yue, T.; Yuan, Y.; Soma, P.K.; Lo, Y.M. Improvement of cultivation medium for enhanced production of coenzyme Q10 by photosynthetic Rhodospirillum rubrum. Biochem. Eng. J. 2010, 51, 160–166. [Google Scholar] [CrossRef]
- Fenhui, S.; He, L.; Qian, J.; Zhang, Z.; Zheng, H. Optimization of the nutritional constituents for ergosterol peroxide production by Paecilomyces cicadae based on the uniform design and mathematical model. Sci. Rep. 2022, 12, 5853. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Feng, J.W. Development and application of artificial neural network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Bajpai, S.; Singh, S.; Sinha, R.; Srivastava, P. ANN-GA hybrid methodology based optimization study for microbial production of CoQ10. Int. J. Adv. Sci. Res. 2015, 6, 100–108. [Google Scholar]
- Li, B.; Ge, Y.; Liang, J.; Zhu, Z.; Chen, B.; Li, D.; Zhuang, Y.; Wang, Z. Precise regulating the specific oxygen consumption rate to strengthen the CoQ10 biosynthesis by Rhodobater sphaeroides. Bioresour. Bioprocess. 2024, 11, 106. [Google Scholar] [CrossRef]
- Li, H.; Shi, N. Application of genetic optimization algorithm in financial portfolio problem. Comput. Intell. Neurosci. 2022, 5246309. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.C.; Gonçalves, B.; Azevedo, F.G.; Carneiro, A.P.; Rego, N.; Assembleia, A.J.B.; Lima, J.F.B.; Silva, P.A.; Alves, C.; Martins, F.G. Optimization of artificial neural network models through genetic algorithms for surface ozone concentration forecasting. Environ. Sci. Pollut. Res. Int. 2012, 19, 3228–3234. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, Y.; Song, L.D. The optimization of medium for coenzyme Q10 fermentation by artificial neural network associated with genetic algorithms. China Biotechnol. 2013, 33, 73–78. [Google Scholar]
- Peng, W.; Zhong, J.; Yang, J.; Ren, Y.; Xu, T.; Xiao, S.; Zhou, J.; Tan, H. The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: Application to the production of iturin A. Microb. Cell Fact. 2014, 13, 54. [Google Scholar] [CrossRef]
- Cai, G.; Zheng, W.; Yang, X.; Zhang, B.; Zheng, T. Combination of uniform design with artificial neural network coupling genetic algorithm: An effective way to obtain high yield of biomass and algicidal compound of a novel HABs control actinomycete. Microb. Cell Fact. 2014, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.M.; Survase, S.A.; Saudagar, P.S.; Lele, S.S.; Singhal, R.S. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: Case study of fermentative production of scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. [Google Scholar] [CrossRef]
- Pal, M.P.; Vaidya, B.K.; Desai, K.M.; Joshi, R.M.; Nene, S.N.; Kulkarni, B.D. Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: Artificial intelligence versus a statistical approach. J. Ind. Microbiol. Biotechnol. 2009, 36, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, J.; Zhang, Y.; Xu, H.; Yuan, Z.; Li, D. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol. 2010, 101, 8784–8789. [Google Scholar] [CrossRef]
X1 (g·L−1) | X2 (g·L−1) | X3 (g·L−1) | X4 (g·L−1) | X5 (g·L−1) | X6 (g·L−1) | |
---|---|---|---|---|---|---|
1 | 1 (6) | 2 (2) | 3 (1.2) | 1 (0.8) | 3 (0.06) | 1 (0.02) |
2 | 5 (14) | 5 (5) | 2 (1.0) | 2 (1.0) | 3 (0.06) | 2 (0.04) |
3 | 3 (10) | 5 (5) | 5 (1.6) | 1 (0.8) | 4 (0.08) | 3 (0.06) |
4 | 2 (8) | 4 (4) | 4 (1.4) | 2 (1.0) | 1 (0.02) | 4 (0.08) |
5 | 4 (12) | 3 (3) | 5 (1.6) | 5 (1.6) | 2 (0.04) | 1 (0.02) |
6 | 2 (8) | 2 (2) | 1 (0.8) | 5 (1.6) | 4 (0.08) | 3 (0.06) |
7 | 1 (6) | 3 (3) | 4 (1.4) | 4 (1.4) | 5 (0.10) | 2 (0.04) |
8 | 1 (6) | 5 (5) | 2 (1.0) | 4 (1.4) | 2 (0.04) | 4 (0.08) |
9 | 4 (12) | 3 (3) | 1 (0.8) | 1 (0.8) | 2 (0.04) | 5 (0.10) |
10 | 2 (8) | 1 (1) | 5 (1.6) | 3 (1.2) | 3 (0.06) | 5 (0.10) |
11 | 5 (14) | 2 (2) | 4 (1.4) | 3 (1.2) | 1 (0.02) | 3 (0.06) |
12 | 5 (14) | 4 (4) | 3 (1.2) | 5 (1.6) | 4 (0.08) | 5 (0.10) |
13 | 3 (10) | 4 (4) | 1 (0.8) | 3 (1.2) | 5 (0.10) | 1 (0.02) |
14 | 4 (12) | 1 (1) | 3 (1.2) | 2 (1.0) | 5 (0.10) | 4 (0.08) |
15 | 3 (10) | 1 (1) | 2 (1.0) | 4 (1.4) | 1 (0.02) | 2 (0.04) |
X1 (g·L−1) | X2 (g·L−1) | X3 (g·L−1) | X4 (g·L−1) | X5 (g·L−1) | X6 (g·L−1) | Y (mg·L−1) | |
---|---|---|---|---|---|---|---|
N1 | 6 | 2 | 1.2 | 0.8 | 0.06 | 0.02 | 243.94 |
N2 | 14 | 5 | 1.0 | 1.0 | 0.06 | 0.04 | 235.68 |
N3 | 10 | 5 | 1.6 | 0.8 | 0.08 | 0.06 | 235.27 |
N4 | 8 | 4 | 1.4 | 1.0 | 0.02 | 0.08 | 232.48 |
N5 | 12 | 3 | 1.6 | 1.6 | 0.04 | 0.02 | 226.14 |
N6 | 8 | 2 | 0.8 | 1.6 | 0.08 | 0.06 | 217.90 |
N7 | 6 | 3 | 1.4 | 1.4 | 0.10 | 0.04 | 232.27 |
N8 | 6 | 5 | 1.0 | 1.4 | 0.04 | 0.08 | 221.92 |
N9 | 12 | 3 | 0.8 | 0.8 | 0.04 | 0.10 | 235.41 |
N10 | 8 | 1 | 1.6 | 1.2 | 0.06 | 0.10 | 228.12 |
N11 | 14 | 2 | 1.4 | 1.2 | 0.02 | 0.06 | 245.43 |
N12 | 14 | 4 | 1.2 | 1.6 | 0.08 | 0.10 | 225.77 |
N13 | 10 | 4 | 0.8 | 1.2 | 0.10 | 0.02 | 235.41 |
N14 | 12 | 1 | 1.2 | 1.0 | 0.10 | 0.08 | 238.63 |
N15 | 10 | 1 | 1.0 | 1.4 | 0.02 | 0.04 | 221.05 |
Coefficient | t-Test | Significance p | |
---|---|---|---|
X2 | 0.9968 | 12.5383 | 0.0063 |
X6 | 0.9999 | 81.8196 | 0.0001 |
X2X2 | −0.9999 | 58.3314 | 0.0003 |
X4X4 | −1 | 169.5699 | 0.0001 |
X5X5 | −0.9986 | 18.7702 | 0.0028 |
X6X6 | −1 | 112.1447 | 0.0001 |
X1X3 | 0.9989 | 21.1598 | 0.0022 |
X2X4 | 1 | 156.2541 | 0.0001 |
X2X5 | 0.9999 | 78.5144 | 0.0002 |
X2X6 | −0.9995 | 33.2277 | 0.0009 |
X4X5 | −0.9982 | 16.7928 | 0.0035 |
X4X6 | 0.9995 | 31.6397 | 0.0010 |
X5X6 | 0.9991 | 23.008 | 0.0019 |
X1 (g·L−1) | X2 (g·L−1) | X3 (g·L−1) | X4 (g·L−1) | X5 (g·L−1) | X6 (g·L−1) | Experimental Value (mg·L−1) | Fitted Value (mg·L−1) | Relative Error (%) | |
---|---|---|---|---|---|---|---|---|---|
N1 | 6 | 2 | 1.2 | 0.8 | 0.06 | 0.02 | 243.94 | 242.68 | 0.52 |
N2 | 14 | 5 | 1.0 | 1.0 | 0.06 | 0.04 | 235.68 | 234.83 | 0.36 |
N3 | 10 | 5 | 1.6 | 0.8 | 0.08 | 0.06 | 235.27 | 236.54 | 0.54 |
N4 | 8 | 4 | 1.4 | 1.0 | 0.02 | 0.08 | 232.48 | 232.69 | 0.09 |
N5 | 12 | 3 | 1.6 | 1.6 | 0.04 | 0.02 | 226.14 | 226.96 | 0.36 |
N6 | 8 | 2 | 0.8 | 1.6 | 0.08 | 0.06 | 217.90 | 218.69 | 0.36 |
N7 | 6 | 3 | 1.4 | 1.4 | 0.10 | 0.04 | 232.27 | 231.30 | 0.42 |
N8 | 6 | 5 | 1.0 | 1.4 | 0.04 | 0.08 | 221.92 | 222.01 | 0.06 |
N9 | 12 | 3 | 0.8 | 0.8 | 0.04 | 0.10 | 235.41 | 236.01 | 0.25 |
N10 | 8 | 1 | 1.6 | 1.2 | 0.06 | 0.10 | 228.12 | 228.22 | 0.04 |
N11 | 14 | 2 | 1.4 | 1.2 | 0.02 | 0.06 | 245.43 | 243.25 | 0.89 |
N12 | 14 | 4 | 1.2 | 1.6 | 0.08 | 0.10 | 225.77 | 225.63 | 0.06 |
Detection Samples | Predicted Value (mg·L−1) | Experimental Value (mg·L−1) | Relative Error (%) |
---|---|---|---|
N13 | 235.41 | 231.85 | 1.51 |
N14 | 238.63 | 234.23 | 1.93 |
N15 | 221.05 | 219.18 | 0.85 |
Before Optimization | UD Optimization | ANN-GA Optimization | ||
---|---|---|---|---|
Optimization factors in fermentation medium (g·L−1) | MgSO4 | 10 | 14 | 12 |
NaCl | 3.5 | 2.6 | 2.5 | |
FeSO4 | 1.6 | 1.6 | 1.6 | |
KH2PO4 | 1.2 | 0.8 | 0.8 | |
MnSO4 | 0.1 | 0.09 | 0.1 | |
CaCl2 | 0.1 | 0.06 | 0.1 | |
CoQ10 production | Predicted value (mg·L−1) | / | 257.86 | 252.22 |
Experimental value (mg·L−1) | 245.31 | 250.32 | 255.36 | |
Relative error (%) | / | 3.01 | 1.23 | |
Increased error (%) | / | 2.04 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Xiao, Y.; Tang, S.; Li, J.; Wu, Y.; Zhou, Y. Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm. Fermentation 2025, 11, 383. https://doi.org/10.3390/fermentation11070383
Zheng Y, Xiao Y, Tang S, Li J, Wu Y, Zhou Y. Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm. Fermentation. 2025; 11(7):383. https://doi.org/10.3390/fermentation11070383
Chicago/Turabian StyleZheng, Yi, Yujun Xiao, Shuling Tang, Junpeng Li, Yingzi Wu, and Yong Zhou. 2025. "Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm" Fermentation 11, no. 7: 383. https://doi.org/10.3390/fermentation11070383
APA StyleZheng, Y., Xiao, Y., Tang, S., Li, J., Wu, Y., & Zhou, Y. (2025). Optimization of the Inorganic Salts in Coenzyme Q10 Fermentation Medium of Rhodobacter sphaeroides Based on Uniform Design and Artificial Neural Network and Genetic Algorithm. Fermentation, 11(7), 383. https://doi.org/10.3390/fermentation11070383