The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fermentation-Induced Gels
2.3. Scanning Electron Microscopy Observation
2.4. Color Measurement
2.5. Texture Measurement
2.6. Rheological Measurement of Fermented Gels
2.7. Water-Holding Capacity
2.8. In Vitro Gastric Digestion
2.8.1. Swelling
2.8.2. Release of Protein
2.8.3. Release of Total Phenolic
2.8.4. Release of Anthocyanin Concentration
2.9. Viable Bacterial Count Calculation
2.10. Statistical Analysis
3. Results
3.1. Microstructural Examinations
3.2. Color Analysis
3.3. Texture Analysis
3.4. Rheological Characteristics of Fermented Gels
3.5. Water-Holding Capacity of Gels and Swelling Ratio
3.6. Polyphenolic, Flavonoid, and Protein Release of Fermented Gels
3.6.1. Polyphenolic Release
3.6.2. Flavonoid Release
3.6.3. Protein Release
3.6.4. Viable Counts in Gels During Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yang, J.; Li, J.; Gantumur, M.-A.; Wei, X.; Oh, K.-C.; Jiang, Z. Structure and Rheological Properties of Extruded Whey Protein Isolate: Impact of Inulin. Int. J. Biol. Macromol. 2023, 226, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, N.; Ashaolu, T.J. Whey Proteins and Peptides in Health-Promoting Functions—A Review. Int. Dairy J. 2022, 126, 105269. [Google Scholar] [CrossRef]
- Yang, X.; Su, Y.; Li, L. StuStudy of Soybean Gel Induced by Lactobacillus Plantarum: Protein Structure and Intermolecular Interaction. LWT 2020, 119, 108794. [Google Scholar] [CrossRef]
- Pang, Z.; Xu, R.; Zhu, Y.; Li, H.; Bansal, N.; Liu, X. Comparison of Rheological, Tribological, and Microstructural Properties of Soymilk Gels Acidified with Glucono-Δ-Lactone or Culture. Food Res. Int. 2019, 121, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Sieuwerts, S.; De Bok, F.A.M.; Hugenholtz, J.; van Hylckama Vlieg, J.E.T. Unraveling Microbial Interactions in Food Fermentations: From Classical to Genomics Approaches. Appl. Environ. Microbiol. 2008, 74, 4997–5007. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ke, C.; Li, L. Physicochemical, Rheological and Digestive Characteristics of Soy Protein Isolate Gel Induced by Lactic Acid Bacteria. J. Food Eng. 2021, 292, 110243. [Google Scholar] [CrossRef]
- Klost, M.; Giménez-Ribes, G.; Drusch, S. Enzymatic Hydrolysis of Pea Protein: Interactions and Protein Fractions Involved in Fermentation Induced Gels and Their Influence on Rheological Properties. Food Hydrocoll. 2020, 105, 105793. [Google Scholar] [CrossRef]
- Ren, Y.; Li, L. The Influence of Protease Hydrolysis of Lactic Acid Bacteria on the Fermentation Induced Soybean Protein Gel: Protein Molecule, Peptides and Amino Acids. Food Res. Int. 2022, 156, 111284. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Yu, Q.; Zhou, J.; Lu, M.; Gu, R.; Huang, Y. Structural and Compositional Changes of Whey Protein and Blueberry Juice Fermented Using Lactobacillus Plantarum or Lactobacillus Casei During Fermentation. RSC Adv. 2021, 11, 26291–26302. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, X.; Ilavsky, J.; Whitmer, T.; Hatzakis, E.; Jones, O.G.; Campanella, O.H. Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions. Biomacromolecules 2021, 22, 1001–1014. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Xue, F. Effects of Whey Protein-Polyphenol Conjugates Incorporation on Physicochemical and Intelligent Ph-Sensing Properties of Carboxymethyl Cellulose Based Films. Future Foods 2023, 7, 100211. [Google Scholar] [CrossRef]
- Baba, W.N.; McClements, D.J.; Maqsood, S. Whey Protein–Polyphenol Conjugates and Complexes: Production, Characterization, and Applications. Food Chem. 2021, 365, 130455. [Google Scholar] [CrossRef]
- Kar, A.; Bornhorst, G.M. Ultrasound-Treated Hybrid Protein Gels from Pea and Whey: A Comparison of Gastric Breakdown Mechanisms with Commercial Protein-Based Foods. Food Res. Int. 2025, 203, 115856. [Google Scholar] [CrossRef]
- Li, A.; Shewan, H.M.; Flanagan, B.M.; Williams, B.A.; Mikkelsen, D.; Gidley, M.J. Impact of Pectin and Alginate Gel Particle Size and Concentration on in Vitro Gut Fermentation. Food Hydrocoll. 2025, 160, 110808. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, W.; Liu, X.; Shen, W.; Gu, R.; Tang, C. The Antioxidant Activity and Protection of Probiotic Bacteria in the in Vitro Gastrointestinal Digestion of a Blueberry Juice and Whey Protein Fermentation System. Fermentation 2023, 9, 335. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Shao, Y.; Guo, Y.; Gu, R.; Wang, W. Cheese Whey Protein and Blueberry Juice Mixed Fermentation Enhance the Freeze-Resistance of Lactic Acid Bacteria in the Freeze-Drying Process. Foods 2024, 13, 2260. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, G.; Wang, W.; Tang, C.; Gu, R. The Mechanism of Whey Protein and Blueberry Juice Mixed System Fermented with Lactobacillus Inhibiting Escherichia Coli During Storage. Sci. Rep. 2023, 13, 6614. [Google Scholar] [CrossRef]
- Beghdadi, A.; Picart-Palmade, L.; Cunault, C.; Marchesseau, S.; Chevalier-Lucia, D. Impact of Two Thermal Processing Routes on Protein Interactions and Acid Gelation Properties of Casein Micelle-Pea Protein Mixture Compared to Casein Micelle-Whey Protein One. Food Res. Int. 2022, 155, 111060. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, Y.; Peng, Q. Steviol Glycosides Improve the Textural Properties of Whey Protein Gel. J. Food Eng. 2024, 369, 111912. [Google Scholar] [CrossRef]
- Hazrati, Z.; Madadlou, A. Gelation by Bioactives: Characteristics of the Cold-Set Whey Protein Gels Made Using Gallic Acid. Int. Dairy J. 2021, 117, 104952. [Google Scholar] [CrossRef]
- Deng, R.; Mars, M.; Van Der Sman, R.G.M.; Smeets, P.A.M.; Janssen, A.E.M. The Importance of Swelling for in Vitro Gastric Digestion of Whey Protein Gels. Food Chem. 2020, 330, 127182. [Google Scholar] [CrossRef] [PubMed]
- Zahid, H.F.; Ali, A.; Ranadheera, C.S.; Fang, Z.; Dunshea, F.R.; Ajlouni, S. In Vitro Bioaccessibility of Phenolic Compounds and Alpha-Glucosidase Inhibition Activity in Yoghurts Enriched with Mango Peel Powder. Food Biosci. 2022, 50, 102011. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Liu, Z.; Cui, X.; Zhang, T.; Li, Y.; Zhang, L. Comparative Transcriptome Sequencing and De Novo Analysis of Vaccinium Corymbosum During Fruit and Color Development. BMC Plant Biol. 2016, 16, 223. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Kang, J.; Zhang, Y.; Yi, X.; Pang, X.; Li-Byarlay, H.; Gao, X. Differences in the Bacterial Profiles and Physicochemical between Natural and Inoculated Fermentation of Vegetables from Shanxi Province. Ann. Microbiol. 2020, 70, 66. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Lv, Y.; Su, Y.; Gu, L.; Chang, C.; Zhang, M.; Yang, Y.; Li, J. To Improve the Gel Properties of Liquid Whole Egg by Short-Term Lactic Acid Bacteria Fermentation. Innov. Food Sci. Emerg. Technol. 2022, 75, 102873. [Google Scholar] [CrossRef]
- Qian, Z.; Dong, S.; Zhong, L.; Zhan, Q.; Hu, Q.; Zhao, L. Effects of Carboxymethyl Chitosan on the Gelling Properties, Microstructure, and Molecular Forces of Pleurotus Eryngii Protein Gels. Food Hydrocoll. 2023, 145, 109158. [Google Scholar] [CrossRef]
- Wagner, J.; Andreadis, M.; Nikolaidis, A.; Biliaderis, C.G.; Moschakis, T. Effect of Ethanol on the Microstructure and Rheological Properties of Whey Proteins: Acid-Induced Cold Gelation. LWT 2021, 139, 110518. [Google Scholar] [CrossRef]
- Yakubu, C.M.; Sharma, R.; Sharma, S.; Singh, B. Influence of Alkaline Fermentation Time on in Vitro Nutrient Digestibility, Bio- & Techno-Functionality, Secondary Protein Structure and Macromolecular Morphology of Locust Bean (Parkia biglobosa) Flour. LWT 2022, 161, 113295. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry Anthocyanins: An Updated Review on Approaches to Enhancing Their Bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Vasile, F.E.; Hryczyñski, L.M.; Fernandez, A.B.; Bustos, L.F.; Romero, A.M.; Mazzobre, M.F. Exploring the Sensory Properties of Buffalo (Bubalus bubalis) Milk Custards through a Consumer-Based Study Performed with Children. Int. J. Dairy Technol. 2023, 76, 252–260. [Google Scholar] [CrossRef]
- von Staszewski, M.; Jagus, R.J.; Pilosof, A.M.R. Influence of Green Tea Polyphenols on the Colloidal Stability and Gelation of Wpc. Food Hydrocoll. 2011, 25, 1077–1084. [Google Scholar] [CrossRef]
- Guo, X.; Wei, Y.; Liu, P.; Deng, X.; Zhu, X.; Wang, Z.; Zhang, J. Study of Four Polyphenol-Coregonus Peled (C. Peled) Myofibrillar Protein Interactions on Protein Structure and Gel Properties. Food Chem. X 2024, 21, 101063. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tao, L.; Yan, Z.; Ouyang, K.; Zhang, Q.; Feng, Y.; Zhao, Q. Role of Heat Pretreatment and Transglutaminase Treatment on the Gelling Properties of Pea Protein. Food Biosci. 2025, 66, 106166. [Google Scholar] [CrossRef]
- Mudau, C.P.K.; Moutkane, M.; Balakrishnan, G.; Nicolai, T.; Chassenieux, C. Heat-Induced Aggregation and Gelation of Rapeseed Proteins. Food Hydrocoll. 2025, 166, 111338. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, N.; Guo, S.; Tian, X.; Ai, M. Tea Polyphenol-Mediated Network Proteins Modulate the Naoh-Heat Induced Egg White Protein Gelling Properties. Food Hydrocoll. 2024, 149, 109514. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, J.; Shen, Y.; Lupo, C.; Sun, Q.; Jin, T.; Sturla, S.J.; Liang, H.; Mezzenga, R. Highly Adhesive Amyloid–Polyphenol Hydrogels for Cell Scaffolding. Biomacromolecules 2023, 24, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Li, M.; Huang, Z.; Wei, Y.; Duan, C.; Li, R.; Fang, Y.; Wang, X.; Xu, M.; Yu, R. Study on the Regulation of Tea Polyphenols on the Structure and Gel Properties of Myofibrillar Protein from Neosalanx Taihuensis. Food Chem. X 2025, 25, 102243. [Google Scholar] [CrossRef]
- Peng, C.; Liu, B.; Chen, Z. Protective Effects of Enzymatic Hydrolysis Products of Pomelo Peel Cellulose on Lactobacillus Plantarum During Freeze-Drying Process. Appl. Food Res. 2023, 3, 100301. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, F.; Deng, Y.; Tang, X.; Li, P.; Zhao, Z.; Zhang, M.; Liu, G. Texture Characterization of 3d Printed Fibrous Whey Protein-Starch Composite Emulsion Gels as Dysphagia Food: A Comparative Study on Starch Type. Food Chem. 2024, 458, 140302. [Google Scholar] [CrossRef]
- Wan, Z.; Xiao, N.; Guo, S.; Tian, X.; Ai, M. Synergistic Effects of Tea Polyphenols and Phosphorylation on the Gelation Behavior of Egg White Proteins. Food Hydrocoll. 2024, 149, 109530. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Xing, L.; Zhou, G.; Zhang, W. Mechanism of Toona Sinensis Seed Polyphenols Inhibiting Oxidation and Modifying Physicochemical and Gel Properties of Pork Myofibrillar Protein under Oxidation System. Food Chem. 2025, 464, 141666. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G.; Schneider, R.G. Quinoa Flavonoids and Their Bioaccessibility During in Vitro Gastrointestinal Digestion. J. Cereal Sci. 2020, 95, 103070. [Google Scholar] [CrossRef]
Sample (pH 7.0) | Fermentation Time (h) | ΔL | Δa | Δb |
---|---|---|---|---|
Whey protein Lactobacillus delbrueckii + Streptococcus thermophilus | 4.5 h | 13.086 ± 1.658 b | 0.813 ± 0.116 ab | 4.627 ± 1.403 ab |
5.0 h | 15.097 ± 0.761 ab | 0.707 ± 0.182 ab | 7.040 ± 1.078 a | |
5.5 h | 16.343 ± 0.887 a | 0.462 ± 0.124 b | 7.372 ± 0.652 a | |
6.0 h | 17.600 ± 1.116 a | 0.583 ± 0.175 ab | 6.870 ± 0.426 a | |
6.5 h | 17.717 ± 0.107 a | 0.577 ± 0.171 ab | 5.610 ± 0.712 ab | |
7.0 h | 15.790 ± 0.255 ab | 0.937 ± 0.161 ab | 5.283 ± 0.250 ab | |
7.5 h | 16.807 ± 0.702 a | 1.077 ± 0.134 a | 6.380 ± 0.508 ab | |
8.0 h | 14.663 ± 0.172 ab | 0.957 ± 0.109 ab | 3.963 ± 0.194 b | |
Blueberry + whey protein Lactobacillus delbrueckii + Streptococcus thermophilus | 4.5 h | 14.478 ± 0.418 c | 6.175 ± 0.320 c | −4.030 ± 0.221 abc |
5.0 h | 14.430 ± 0.411 c | 6.372 ± 0.192 c | −3.773 ± 0.205 ab | |
5.5 h | 14.618 ± 0.101 bc | 7.188 ± 0.167 bc | −4.106 ± 0.274 abc | |
6.0 h | 14.673 ± 0.178 bc | 7.913 ± 0.333 ab | −4.757 ± 0.245 c | |
6.5 h | 15.990 ± 0.250 a | 8.103 ± 0.209 ab | −3.840 ± 0.387 ab | |
7.0 h | 16.003 ± 0.146 a | 8.313 ± 0.511 a | −4.500 ± 0.044 bc | |
7.5 h | 15.520 ± 0.287 ab | 7.697 ± 0.193 ab | −4.210 ± 0.125 abc | |
8.0 h | 16.450 ± 0.364 a | 7.447 ± 0.270 ab | −3.487 ± 0.179 a |
Sample | Fermentation Time (h) | Hardness (N) | Maximum Adhesion (N) | Adhesiveness (N) | Cohesiveness | Elasticity (mm) | Gumminess (N) | Chewiness (mJ) |
---|---|---|---|---|---|---|---|---|
Blueberry + whey protein Lactobacillus delbrueckii + Streptococcus thermophilus | 4.5 h | 0.697 ± 0.039 e | −0.125 ± 0.007 a | 0.826 ± 0.012 de | 0.507 ± 0.02 ab | 41.620 ± 0.208 a | 0.368 ± 0.016 d | 15.423 ± 0.592 c |
5.0 h | 1.151 ± 0.060 d | −0.159 ± 0.019 ab | 1.230 ± 0.063 bc | 0.470 ± 0.006 bc | 42.007 ± 0.007 a | 0.559 ± 0.006 c | 23.43 ± 0.272 b | |
5.5 h | 1.258 ± 0.019 cd | −0.143 ± 0.015 ab | 0.890 ± 0.049 de | 0.553 ± 0.023 a | 42.047 ± 0.003 a | 0.663 ± 0.033 bc | 27.87 ± 1.394 a | |
6.0 h | 1.499 ± 0.158 abc | −0.151 ± 0.012 ab | 0.754 ± 0.064 e | 0.533 ± 0.003 a | 41.963 ± 0.009 a | 0.866 ± 0.037 a | 30.55 ± 1.679 a | |
6.5 h | 1.494 ± 0.068 abc | −0.167 ± 0.009 ab | 1.141 ± 0.028 cd | 0.517 ± 0.012 ab | 42.000 ± 0.010 a | 0.748 ± 0.028 ab | 31.393 ± 1.184 a | |
7.0 h | 1.454 ± 0.031 bc | −0.195 ± 0.039 ab | 1.900 ± 0.019 a | 0.444 ± 0.003 c | 41.983 ± 0.003 a | 0.658 ± 0.060 bc | 28.947 ± 1.634 a | |
7.5 h | 1.757 ± 0.142 a | −0.242 ± 0.023 b | 1.543 ± 0.139 b | 0.413 ± 0.009 c | 41.850 ± 0.120 a | 0.676 ± 0.026 bc | 27.700 ± 0.605 a | |
8.0 h | 1.706 ± 0.027 ab | −0.206 ± 0.055 ab | 1.510 ± 0.187 b | 0.443 ± 0.035 c | 39.913 ± 1.227 b | 0.757 ± 0.071 ab | 28.113 ± 0.878 a | |
Whey protein Lactobacillus delbrueckii + Streptococcus thermophilus | 4.5 h | 0.129 ± 0.003 f | −0.077 ± 0.002 abc | 0.339 ± 0.010 c | 0.980 ± 0.006 a | 41.973 ± 0.018 a | 0.142 ± 0.006 f | 5.590 ± 0.306 g |
5.0 h | 0.789 ± 0.029 e | −0.090 ± 0.010 bc | 0.576 ± 0.015 b | 0.623 ± 0.026 bc | 41.687 ± 0.338 a | 0.457 ± 0.015 e | 19.473 ± 0.438 f | |
5.5 h | 1.301 ± 0.117 cd | −0.077 ± 0.009 abc | 0.535 ± 0.034 b | 0.647 ± 0.057 b | 42.027 ± 0.033 a | 0.777 ± 0.058 d | 23.837 ± 0.118 e | |
6.0 h | 1.134 ± 0.034 d | −0.098 ± 0.005 c | 0.722 ± 0.011 a | 0.523 ± 0.034 cd | 41.973 ± 0.007 a | 0.563 ± 0.006 e | 23.760 ± 0.312 e | |
6.5 h | 1.402 ± 0.034 c | −0.057 ± 0.001 a | 0.237 ± 0.002 d | 0.643 ± 0.013 b | 41.827 ± 0.163 a | 0.926 ± 0.053 c | 36.720 ± 0.910 c | |
7.0 h | 1.184 ± 0.001 cd | −0.071 ± 0.009 ab | 0.342 ± 0.068 c | 0.450 ± 0.036 d | 42.007 ± 0.003 a | 0.781 ± 0.031 d | 32.437 ± 1.308 d | |
7.5 h | 1.787 ± 0.123 b | −0.069 ± 0.005 ab | 0.287 ± 0.023 cd | 0.677 ± 0.023 b | 41.817 ± 0.143 a | 1.073 ± 0.067 b | 48.490 ± 0.978 b | |
8.0 h | 2.212 ± 0.059 a | −0.074 ± 0.002 ab | 0.371 ± 0.002 c | 0.628 ± 0.026 bc | 41.850 ± 0.135 a | 1.375 ± 0.023 a | 57.533 ± 0.764 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y.; Shao, Y.; Yu, Q.; Tang, C.; Wang, W.; He, Z. The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel. Fermentation 2025, 11, 205. https://doi.org/10.3390/fermentation11040205
Liu X, Wang Y, Shao Y, Yu Q, Tang C, Wang W, He Z. The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel. Fermentation. 2025; 11(4):205. https://doi.org/10.3390/fermentation11040205
Chicago/Turabian StyleLiu, Xian, Yuxian Wang, Yufeng Shao, Qian Yu, Congcong Tang, Wenqiong Wang, and Zhangwei He. 2025. "The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel" Fermentation 11, no. 4: 205. https://doi.org/10.3390/fermentation11040205
APA StyleLiu, X., Wang, Y., Shao, Y., Yu, Q., Tang, C., Wang, W., & He, Z. (2025). The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel. Fermentation, 11(4), 205. https://doi.org/10.3390/fermentation11040205