Evaluation of Plant Essential Oils as Natural Alternatives to Monensin in In Vitro Ruminal Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Procurement of EOs
2.2. Phytochemical Characterization
2.3. In Vitro Treatments and Incubations
2.4. Determination of the Specific Activity of Deamination, NH3 Concentration, and Microbial Protein Production
2.5. Determination of Organic Acids
2.6. Determination of In Vitro Digestibility of Dry Matter and Neutral Detergent Fiber
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, R.R.; Dean, M.R.U.; Alungo, B. Climate Change Impacts on Livestock Production and Possible Adaptation and Mitigation Strategies in Developing Countries: A Review. J. Agric. Sci. 2022, 14, 240–249. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Wang, W.; Shaukat, A.; Kulyar, M.F.-A.; Lv, H.; Abulaiti, A.; Yao, Z.; Ahmad, M.J.; Liang, A.; Yang, L. Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals 2022, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2024-2033; OECD-FAO Agricultural Outlook; OECD: Paris, France, 2024; ISBN 978-92-64-72259-0. [Google Scholar]
- Benetel, G.; Silva, T.d.S.; Fagundes, G.M.; Welter, K.C.; Melo, F.A.; Lobo, A.A.G.; Muir, J.P.; Bueno, I.C.S. Essential Oils as In Vitro Ruminal Fermentation Manipulators to Mitigate Methane Emission by Beef Cattle Grazing Tropical Grasses. Molecules 2022, 27, 2227. [Google Scholar] [CrossRef]
- Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Organisation des Nations Unies pour l’alimentation et l’agriculture, Ed.; FAO: Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Mayberry, D.; Bartlett, H.; Moss, J.; Davison, T.; Herrero, M. Pathways to Carbon-Neutrality for the Australian Red Meat Sector. Agric. Syst. 2019, 175, 13–21. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Murphy, J.P.; Maghirang, R. Ammonia and Methane Emission Factors from Cattle Operations Expressed as Losses of Dietary Nutrients or Energy. Agriculture 2017, 7, 16. [Google Scholar] [CrossRef]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential Oils in Livestock: From Health to Food Quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef]
- Alabi, J.O.; Okedoyin, D.O.; Anotaenwere, C.C.; Wuaku, M.; Gray, D.; Adelusi, O.O.; Ike, K.A.; Olagunju, L.K.; Dele, P.A.; Anele, U.Y. Essential Oil Blends with or without Fumaric Acid Influenced In Vitro Rumen Fermentation, Greenhouse Gas Emission, and Volatile Fatty Acids Production of a Total Mixed Ration. Ruminants 2023, 3, 373–384. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front. Vet. Sci. 2021, 8, 628445. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Abdalla, A.L.; Álvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of Methane Emitted by Ruminants: A Review of Methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef]
- Ike, K.A.; Adelusi, O.O.; Alabi, J.O.; Olagunju, L.K.; Wuaku, M.; Anotaenwere, C.C.; Okedoyin, D.O.; Gray, D.; Dele, P.A.; Subedi, K.; et al. Effects of Different Essential Oil Blends and Fumaric Acid on In Vitro Fermentation, Greenhouse Gases, Nutrient Degradability, and Total and Molar Proportions of Volatile Fatty Acid Production in a Total Mixed Ration for Dairy Cattle. Agriculture 2024, 14, 876. [Google Scholar] [CrossRef]
- Leeuw, K.-J.; Meissner, H.H.; Henning, P.H.; Siebrits, F.K.; Apajalahti, J.H.A.; Kettunen, A. Effects of Virginiamycin and Monensin Administered Alone or Together with Megasphaera Elsdenii Strain NCIMB 41125 on in Vitro Production of Lactate and VFA and the Effects of Monensin and M. Elsdenii Strain NCIMB 41125 on Health and Performance of Feedlot Steers. Livest. Sci. 2016, 183, 54–62. [Google Scholar] [CrossRef]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic Resistance: Mitigation Opportunities in Livestock Sector Development. Anim. Int. J. Anim. Biosci. 2017, 11, 1–3. [Google Scholar] [CrossRef]
- Michalak, M.; Wojnarowski, K.; Cholewińska, P.; Szeligowska, N.; Bawej, M.; Pacoń, J. Selected Alternative Feed Additives Used to Manipulate the Rumen Microbiome. Animals 2021, 11, 1542. [Google Scholar] [CrossRef]
- Garcia, F.; Colombatto, D.; Brunetti, M.A.; Martínez, M.J.; Moreno, M.V.; Scorcione Turcato, M.C.; Lucini, E.; Frossasco, G.; Martínez Ferrer, J. The Reduction of Methane Production in the In Vitro Ruminal Fermentation of Different Substrates Is Linked with the Chemical Composition of the Essential Oil. Animals 2020, 10, 786. [Google Scholar] [CrossRef]
- Mangalagiri, N.P.; Panditi, S.K.; Jeevigunta, N.L.L. Antimicrobial Activity of Essential Plant Oils and Their Major Components. Heliyon 2021, 7, e06835. [Google Scholar] [CrossRef] [PubMed]
- Ishlak, A.; Günal, M.; AbuGhazaleh, A.A. The Effects of Cinnamaldehyde, Monensin and Quebracho Condensed Tannin on Rumen Fermentation, Biohydrogenation and Bacteria in Continuous Culture System. Anim. Feed Sci. Technol. 2015, 207, 31–40. [Google Scholar] [CrossRef]
- Matloup, O.H.; Abd El Tawab, A.M.; Hassan, A.A.; Hadhoud, F.I.; Khattab, M.S.A.; Khalel, M.S.; Sallam, S.M.A.; Kholif, A.E. Performance of Lactating Friesian Cows Fed a Diet Supplemented with Coriander Oil: Feed Intake, Nutrient Digestibility, Ruminal Fermentation, Blood Chemistry, and Milk Production. Anim. Feed Sci. Technol. 2017, 226, 88–97. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical Evaluation of Essential Oils as Rumen Modifiers in Ruminant Nutrition: A Review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- Simitzis, P.E. Enrichment of Animal Diets with Essential Oils-A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products. Medicines 2017, 4, 35. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential Oils and Phytogenic Feed Additives in Ruminant Diet: Chemistry, Ruminal Microbiota and Fermentation, Feed Utilization and Productive Performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Moura, D.C.; Ghedini, C.P.; Ezequiel, J.M.B.; Almeida, M.T.C. Meta-Analysis of the Effects of Essential Oils on Ruminal Fermentation and Performance of Sheep. Small Rumin. Res. 2020, 189, 106148. [Google Scholar] [CrossRef]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Essential Oil Supplementation in Small Ruminants: A Review on Their Possible Role in Rumen Fermentation, Microbiota, and Animal Production. Dairy 2023, 4, 497–508. [Google Scholar] [CrossRef]
- Sahan, Z. The Influence of Various Concentrations of Essential Oils on the Growth Rate of Fibrolytic and Amylolytic Bacteria Isolated from Rumen Fluid. Pak. J. Bot. 2024, 56, 399–406. [Google Scholar] [CrossRef]
- Pangesti, R.T.; Jayanegara, A.; Laconi, E.B. Effects of Level and Type of Essential Oils on Rumen Methanogenesis and Fermentation: A Meta-Analysis of in Vitro Experiments. J. Anim. Feed Sci. 2024, 33, 263–269. [Google Scholar] [CrossRef]
- van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Arlington, VA, USA, 2012. [Google Scholar]
- Mertens, D.R.; Collaborators. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Siegfried, V.; Ruckermann, H.; Stumpf, G.; Siegfried, B.; Ruckemann, H.; Siegfried, R.; Siegfried, M. Method for the Determination of Organic Acids in Silage by High Performance Liquid Chromatography. Landwirt Forsch 1984, 37, 298–304. [Google Scholar]
- Ferreira, D.F. Sisvar: Um sistema computacional de análise estatística. Ciênc. E Agrotecnologia 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Fandiño, I.; Ferret, A.; Calsamiglia, S. Dose and Combinations of Anise Oil and Capsicum Oleoresin as Rumen Fermentation Modifiers in Vitro and in Vivo with High Concentrate Diets Fed to Holstein Beef Heifers. Anim. Feed Sci. Technol. 2020, 260, 114363. [Google Scholar] [CrossRef]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of Yeast Waste Fermented Citric Waste as a Protein Source to Replace Soybean Meal and Various Roughage to Concentrate Ratios on In Vitro Rumen Fermentation, Gas Kinetic, and Feed Digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Santiago-Figueroa, I. A Meta-Analysis of Essential Oils Use for Beef Cattle Feed: Rumen Fermentation, Blood Metabolites, Meat Quality, Performance and, Environmental and Economic Impact. Fermentation 2022, 8, 254. [Google Scholar] [CrossRef]
- Pacheco, R.D.L.; Souza, J.M.; Marino, C.T.; Bastos, J.P.S.T.; Martins, C.L.; Rodrigues, P.H.M.; Arrigoni, M.D.B.; Millen, D.D. Ruminal Fermentation Pattern of Acidosis-Induced Cows Fed Either Monensin or Polyclonal Antibodies Preparation against Several Ruminal Bacteria. Front. Vet. Sci. 2023, 10, 1090107. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.D.B.; Ferraz Junior, M.V.C.; Polizel, D.M.; Miszura, A.A.; Barroso, J.P.R.; Cunha, A.R.; Souza, T.T.; Ferreira, E.M.; Susin, I.; Pires, A.V. Effect of Thyme Essential Oil on Rumen Parameters, Nutrient Digestibility, and Nitrogen Balance in Wethers Fed High Concentrate Diets. Arq. Bras. Med. Veterinária E Zootec. 2020, 72, 573–580. [Google Scholar] [CrossRef]
- Khorrami, B.; Vakili, A.R.; Mesgaran, M.D.; Klevenhusen, F. Thyme and Cinnamon Essential Oils: Potential Alternatives for Monensin as a Rumen Modifier in Beef Production Systems. Anim. Feed Sci. Technol. 2015, 200, 8–16. [Google Scholar] [CrossRef]
- Repetto, J.L.; Ciancio, E.; Castro, G.; Santana, A.; Cajarville, C. Daily Gain, Feed Conversion, and Rumen Fermentation in Finishing Steers Fed a Total Mixed Ration Supplemented with a Blend of Essential Oils, Tannins, and Bioflavonoids or Monensin. Animals 2025, 15, 594. [Google Scholar] [CrossRef]
- Tawab, A.M.A.E.; Khattab, M.S.A.; Hadhoud, F.I.; Shaaban, M.M. Effect of Mixture of Herbal Plants on Ruminal Fermentation, Degradability and Gas Production. Acta Sci. Anim. Sci. 2021, 43, e48549. [Google Scholar] [CrossRef]
- Cobellis, G.; Petrozzi, A.; Forte, C.; Acuti, G.; Orrù, M.; Marcotullio, M.C.; Aquino, A.; Nicolini, A.; Mazza, V.; Trabalza-Marinucci, M. Evaluation of the Effects of Mitigation on Methane and Ammonia Production by Using Origanum vulgare L. and Rosmarinus officinalis L. Essential Oils on in Vitro Rumen Fermentation Systems. Sustainability 2015, 7, 12856–12869. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef]
- Rezaei Ahvanooei, M.R.; Norouzian, M.A.; Piray, A.H.; Vahmani, P.; Ghaffari, M.H. Effects of Monensin Supplementation on Rumen Fermentation, Methane Emissions, Nitrogen Balance, and Metabolic Responses of Dairy Cows: A Systematic Review and Dose-Response Meta-Analysis. J. Dairy Sci. 2024, 107, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Jiang, J.; Duan, H.; Zhang, H.; Sun, M.; Mao, S.; Shen, J. Comparative Effects of Nisin and Monensin Supplementation on Growth Performance, Rumen Fermentation, Nutrient Digestion, and Plasma Metabolites of Fattening Hu Sheep. Front. Vet. Sci. 2024, 11, 1441431. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B.; Houlihan, A.J. Ionophore Resistance of Ruminal Bacteria and Its Potential Impact on Human Health. FEMS Microbiol. Rev. 2003, 27, 65–74. [Google Scholar] [CrossRef]
- Marques, R.d.S.; Cooke, R.F. Effects of Ionophores on Ruminal Function of Beef Cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef]
- Temmar, R.; Rodríguez-Prado, M.; Forgeard, G.; Rougier, C.; Calsamiglia, S. Interactions among Natural Active Ingredients to Improve the Efficiency of Rumen Fermentation In Vitro. Animals 2021, 11, 1205. [Google Scholar] [CrossRef]
- Kebreab, E.; France, J.; Mills, J.a.N.; Allison, R.; Dijkstra, J. A Dynamic Model of N Metabolism in the Lactating Dairy Cow and an Assessment of Impact of N Excretion on the Environment. J. Anim. Sci. 2002, 80, 248–259. [Google Scholar] [CrossRef]
- Joch, M.; Kudrna, V.; Hučko, B. Effects of Geraniol and Camphene on in Vitro Rumen Fermentation and Methane Production. Sci. Agric. Bohem. 2017, 48, 63–69. [Google Scholar] [CrossRef]
- McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J.; Beever, D.A.; Newbold, C.J. Effects of Essential Oils on Ruminal Microorganisms and Their Protein Metabolism. Appl. Environ. Microbiol. 2003, 69, 5011–5014. [Google Scholar] [CrossRef]
- Foggi, G.; Terranova, M.; Daghio, M.; Amelchanka, S.L.; Conte, G.; Ineichen, S.; Agnolucci, M.; Viti, C.; Mantino, A.; Buccioni, A.; et al. Evaluation of Ruminal Methane and Ammonia Formation and Microbiota Composition as Affected by Supplements Based on Mixtures of Tannins and Essential Oils Using Rusitec. J. Anim. Sci. Biotechnol. 2024, 15, 48. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-Ol as an Antibacterial and Antibiofilm Agent against Staphylococcus Aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Yu, Z. Essential Oils Affect Populations of Some Rumen Bacteria in Vitro as Revealed by Microarray (RumenBactArray) Analysis. Front. Microbiol. 2015, 6, 297. [Google Scholar] [CrossRef]
- Shen, J.; Zheng, W.; Xu, Y.; Yu, Z. The Inhibition of High Ammonia to in Vitro Rumen Fermentation Is pH Dependent. Front. Vet. Sci. 2023, 10, 1163021. [Google Scholar] [CrossRef]
- Zain, M.; Tanuwiria, U.H.; Syamsu, J.A.; Yunilas, Y.; Pazla, R.; Putri, E.M.; Makmur, M.; Amanah, U.; Shafura, P.O.; Bagaskara, B. Nutrient Digestibility, Characteristics of Rumen Fermentation, and Microbial Protein Synthesis from Pesisir Cattle Diet Containing Non-Fiber Carbohydrate to Rumen Degradable Protein Ratio and Sulfur Supplement. Vet. World 2024, 17, 672–681. [Google Scholar] [CrossRef]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of Garlic Oil and Four of Its Compounds on Rumen Microbial Fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet Effects on Urine Composition of Cattle and N2O Emissions. Anim. Int. J. Anim. Biosci. 2013, 7 (Suppl. S2), 292–302. [Google Scholar] [CrossRef] [PubMed]
- Beltran, I.E.; Gregorini, P.; Daza, J.; Balocchi, O.A.; Morales, A.; Pulido, R.G. Diurnal Concentration of Urinary Nitrogen and Rumen Ammonia Are Modified by Timing and Mass of Herbage Allocation. Animals 2019, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Akbarian-Tefaghi, M.; Ghasemi, E.; Khorvash, M. Performance, Rumen Fermentation and Blood Metabolites of Dairy Calves Fed Starter Mixtures Supplemented with Herbal Plants, Essential Oils or Monensin. J. Anim. Physiol. Anim. Nutr. 2018, 102, 630–638. [Google Scholar] [CrossRef]
- Brice, R.M.; Dele, P.A.; Ike, K.A.; Shaw, Y.A.; Olagunju, L.K.; Orimaye, O.E.; Subedi, K.; Anele, U.Y. Effects of Essential Oil Blends on In Vitro Apparent and Truly Degradable Dry Matter, Efficiency of Microbial Production, Total Short-Chain Fatty Acids and Greenhouse Gas Emissions of Two Dairy Cow Diets. Animals 2022, 12, 2185. [Google Scholar] [CrossRef]
- Alabi, J.O.; Dele, P.A.; Okedoyin, D.O.; Wuaku, M.; Anotaenwere, C.C.; Adelusi, O.O.; Gray, D.; Ike, K.A.; Oderinwale, O.A.; Subedi, K.; et al. Synergistic Effects of Essential Oil Blends and Fumaric Acid on Ruminal Fermentation, Volatile Fatty Acid Production and Greenhouse Gas Emissions Using the Rumen Simulation Technique (RUSITEC). Fermentation 2024, 10, 114. [Google Scholar] [CrossRef]
- Yeoman, C.J.; Fields, C.J.; Lepercq, P.; Ruiz, P.; Forano, E.; White, B.A.; Mosoni, P. In Vivo Competitions between Fibrobacter Succinogenes, Ruminococcus Flavefaciens, and Ruminoccus Albus in a Gnotobiotic Sheep Model Revealed by Multi-Omic Analyses. mBio 2021, 12, e03533-20. [Google Scholar] [CrossRef]
- Khiaosa-ard, R.; Zebeli, Q. Meta-Analysis of the Effects of Essential Oils and Their Bioactive Compounds on Rumen Fermentation Characteristics and Feed Efficiency in Ruminants. J. Anim. Sci. 2013, 91, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
| Items | Corn Silage | Concentrate 1 |
|---|---|---|
| DM 2 (% in DM) | 36.2 | 90.6 |
| OM 3 (% in DM) | 96.0 | 93.2 |
| CP 4 (% in DM) | 7.9 | 22.0 |
| NDF 5 (% in DM) | 39.7 | 20.9 |
| Ash (% in DM) | 3.9 | 6.7 |
| Compounds | Tea Tree EO 1 | Citronella EO 1 | Holy Wood EO 1 |
|---|---|---|---|
| Geranyl acetate | - | 1.13 | - |
| γ-Cadinene | - | 1.52 | - |
| β-Caryophyllene | - | 2.43 | - |
| p-Cymene | 9.62 | - | - |
| 1,8-Cineole | 1.62 | - | - |
| Citronellal | - | 24.33 | - |
| Citronellol | - | 16.49 | - |
| α-Phellandrene | - | - | 35.00 |
| Geranial | - | 10.11 | - |
| Geraniol | - | 28.79 | - |
| Germacrene D | - | - | 1.08 |
| Limonene | 1.65 | 2.65 | 61.54 |
| Menthofuran | - | - | 1.31 |
| Neral | - | 8.16 | - |
| α-Pinene | 2.38 | - | - |
| α-Terpinene | 5.93 | - | - |
| γ-Terpinene | 16.93 | - | - |
| α-Terpineol | 4.28 | - | - |
| Terpinen-4-ol | 54.30 | - | - |
| Terpinolene | 2.12 | - | - |
| Minority compounds | 1.17 | 4.39 | 1.06 |
| Parameters | Control | Monensin (5 µM) | Tea Tree EO 1 | Citronella EO 1 | Holy Wood EO 1 | p-Value |
|---|---|---|---|---|---|---|
| pH | 5.41 | 5.43 | 5.43 | 5.41 | 5.42 | 0.957 |
| Microbial protein 2 | 1280.75 | 1198.56 | 1275.00 | 1322.07 | 972.70 | 0.077 |
| SAD 3 | 17.14 b | 22.30 b | 44.08 a | 21.34 b | 36.18 a | <0.01 |
| NH3 4 | 6.78 b | 14.45 a | 13.48 a | 13.12 a | 16.97 a | 0.001 |
| Organic Acids 1 | Control | Monensin (5 µM) | Tea Tree EO 2 | Citronella EO 2 | Holy Wood EO 2 | p-Value |
|---|---|---|---|---|---|---|
| Total VFAs | 141.72 | 138.91 | 138.69 | 137.65 | 139.55 | 0.882 |
| Acetic acid (A) | 67.13 b | 73.45 a | 66.96 b | 69.60 ab | 68.93 b | 0.008 |
| Propionic acid (P) | 18.45 | 18.76 | 18.45 | 16.65 | 17.47 | 0.056 |
| Butyric acid | 11.88 a | 6.02 c | 11.75 ab | 11.11 ab | 10.89 b | <0.01 |
| Isobutyric acid | 0.64 | 0.45 | 0.67 | 0.74 | 0.80 | 0.452 |
| Valeric acid | 0.90 a | 0.52 b | 0.90 a | 0.83 ab | 0.91 a | 0.029 |
| Isovaleric acid | 0.98 | 0.79 | 1.26 | 1.03 | 0.98 | 0.285 |
| A:P | 3.64 | 3.91 | 3.63 | 4.17 | 3.94 | 0.090 |
| Parameters | Control | Monensin (5 µM) | Tea Tree EO 1 | Citronella EO 1 | Holy Wood EO 1 | p-Value |
|---|---|---|---|---|---|---|
| IVDMD | 65.07 | 62.65 | 63.77 | 64.56 | 63.93 | 0.183 |
| IVNDFD | 50.42 a | 41.18 b | 49.00 a | 43.99 ab | 36.83 b | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.B.; de Almeida, K.L.; Lima, B.E.T.d.; Haddi, K.; Passetti, L.C.G.; Rosado, G.L.; Bento, C.B.P. Evaluation of Plant Essential Oils as Natural Alternatives to Monensin in In Vitro Ruminal Fermentation. Fermentation 2025, 11, 693. https://doi.org/10.3390/fermentation11120693
Lima AB, de Almeida KL, Lima BETd, Haddi K, Passetti LCG, Rosado GL, Bento CBP. Evaluation of Plant Essential Oils as Natural Alternatives to Monensin in In Vitro Ruminal Fermentation. Fermentation. 2025; 11(12):693. https://doi.org/10.3390/fermentation11120693
Chicago/Turabian StyleLima, Amelia Barbosa, Kemmily Lima de Almeida, Bruna Eduarda Teixeira de Lima, Khalid Haddi, Ludmila Couto Gomes Passetti, Gustavo Leão Rosado, and Cláudia Braga Pereira Bento. 2025. "Evaluation of Plant Essential Oils as Natural Alternatives to Monensin in In Vitro Ruminal Fermentation" Fermentation 11, no. 12: 693. https://doi.org/10.3390/fermentation11120693
APA StyleLima, A. B., de Almeida, K. L., Lima, B. E. T. d., Haddi, K., Passetti, L. C. G., Rosado, G. L., & Bento, C. B. P. (2025). Evaluation of Plant Essential Oils as Natural Alternatives to Monensin in In Vitro Ruminal Fermentation. Fermentation, 11(12), 693. https://doi.org/10.3390/fermentation11120693

