Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development of Flaxseed Lignan-Enriched Set Dahi
2.3. Analysis of the SDG-Enriched Dahi Samples
2.3.1. Proximate Composition Analysis
2.3.2. Titratable Acidity
2.3.3. Determination of pH
2.3.4. Antioxidant Activity (DPPH)
2.3.5. Textural Attributes
2.3.6. Sensory Analysis
2.3.7. Total Viable Bacterial Count
2.3.8. Probiotic Count
2.4. Establishment of Osteoporotic Rat Model by OVX (Experimental Design and Treatments)
2.5. Measurement of Serum Calcium and Phosphorus Level
2.6. Measurement of Serum Oestradiol
2.7. Measurement of Ash Weight and Bone Ash Calcium Using AAS
2.8. Assessment of BMD and Trabecular Microarchitecture
2.9. Measurement of Bone Turnover Marker
2.10. Measurement of Bone Formation Marker
2.11. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of SDG-Enriched Set Dahi
3.2. Physico-Chemical, Textural, Sensory, and Microbiological Attributes of SDG-Enriched Set Dahi
3.3. Effect of SDG-Enriched Set Dahi Administration on Body Weight in OVX Rats
3.4. Effect of SDG-Enriched Set Dahi Administration on Serum Calcium, Phosphorus, and Oestrogen Levels in OVX Rats
3.5. Effect of SDG-Enriched Dahi on Tibial Anthropometric Parameters and Bone Ash Calcium in OVX Rats
3.6. Effect of SDG-Enriched Set Dahi Administration on Tibial and Femoral BMD and Trabecular Microarchitecture in OVX Rats
3.7. Effect of SDG-Enriched Set Dahi on Serum Level of Bone Turnover Markers in OVX Rats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raole, V.M.; Raole, V.V. Flaxseed and seed oil: Functional food and dietary support for health. EAS J. Nutr. Food Sci. 2022, 4, 68–77. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Nazmara, Z.; Hassanzadeh, N.; Yarahmadi, A.; Ghaffari, N.; Hassani, F.; Liaghat, A.; Noori, L.; Hassanzadeh, G. Biomedical features of flaxseed against different pathologic situations: A narrative review. Iran. J. Basic Med. Sci. 2021, 24, 551. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Sharma, R. Chemical science review and letters bioactive compound in de-fatted flaxseed meal: A review. Chem. Sci. Rev. Lett. 2021, 10, 532–537. [Google Scholar] [CrossRef]
- Taibi, A.; Ku, M.; Lin, Z.; Gargari, G.; Kubant, A.; Lepp, D.; Power, K.A.; Guglielmetti, S.; Thompson, L.U.; Comelli, E.M. Discriminatory and cooperative effects within the mouse gut microbiota in response to flaxseed and its oil and lignan components. J. Nutr. Biochem. 2021, 98, 108818. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Pérez, M.; González-Martín, D.; Sanz, E.J.; Pais-Brito, J.L. Ethical dilemmas with regard to elderly patients with hip fracture: The problem of nonagenarians and centenarians. J. Clin. Med. 2022, 11, 1851. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.S.; de Albuquerque Maia, L.; Guarda, D.S.; Lisboa, P.C.; de Moura, E.G. Flaxseed secoisolariciresinol diglucoside (SDG) during lactation improves bone metabolism in offspring at adulthood. J. Funct. Foods 2017, 29, 161–171. [Google Scholar] [CrossRef]
- Lucas, E.A.; Wild, R.D.; Hammond, L.J.; Khalil, D.A.; Juma, S.; Daggy, B.P.; Stoecker, B.J.; Arjmandi, B.H. Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. J. Clin. Endocrinol. Metab. 2002, 87, 1527–1532. [Google Scholar] [CrossRef]
- Dodin, S.; Lemay, A.; Jacques, H.; Légaré, F.; Forest, J.C.; Mâsse, B. The Effects of Flaxseed Dietary Supplement on Lipid Profile, Bone Mineral Density, and Symptoms in Menopausal Women: A Randomized, Double-Blind, Wheat Germ Placebo-Controlled Clinical Trial. J. Clin. Endocrinol. Metab. 2005, 90, 1390–1397. [Google Scholar] [CrossRef]
- Weiler, H.A.; Kovacs, H.; Nitschmann, E.; Bankovic-Calic, N.; Aukema, H.; Ogborn, M. Feeding flaxseed oil but not secoisolariciresinol diglucoside results in higher bone mass in healthy rats and rats with kidney disease. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 269–275. [Google Scholar] [CrossRef]
- Tsai, W.H.; Lin, W.C.; Chou, C.H.; Yang, L.C. The probiotic Lactiplantibacillus plantarum attenuates ovariectomy-induced osteoporosis through osteoimmunological signaling. Food Funct. 2023, 14, 6929–6940. [Google Scholar] [CrossRef]
- Lawenius, L.; Gustafsson, K.L.; Wu, J.; Nilsson, K.H.; Movérare-Skrtic, S.; Schott, E.M.; Soto-Giron, M.J.; Toledo, G.V.; Sjogren, K.; Ohlsson, C. Development of a synbiotic that protects against ovariectomy-induced trabecular bone loss. Am. J. Physiol. Endocrinol. Metab. 2022, 322, E344–E354. [Google Scholar] [CrossRef] [PubMed]
- Jansson, P.A.; Curiac, D.; Ahrén, I.L.; Hansson, F.; Niskanen, T.M.; Sjögren, K.; Ohlsson, C. Probiotic treatment using a mix of three Lactobacillus strains for lumbar spine bone loss in postmenopausal women: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet Rheumatol. 2019, 1, e154–e162. [Google Scholar] [CrossRef]
- Nilsson, A.G.; Sundh, D.; Bäckhed, F.; Lorentzon, M. Lactobacillus reuteri reduces bone loss in older women with low bone mineral density: A randomized, placebo-controlled, double-blind, clinical trial. J. Intern. Med. 2018, 284, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.S.; Kim, J.Y.; Min, J.; Jeon, S.R.; Choi, K.H.; Khan, S.A.; Moon, G.; Jeong, J.H. Preliminary study on effect of Lactiplantibacillus plantarum on osteoporosis in the ovariectomized rat. Food Sci. Anim. Resour. 2023, 43, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Dar, H.Y.; Shukla, P.; Mishra, P.K.; Anupam, R.; Mondal, R.K.; Tomar, G.B.; Sharma, V.; Srivastava, R.K. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep. 2018, 8, 46–56. [Google Scholar] [CrossRef]
- Britton, R.A.; Irwin, R.; Quach, D.; Schaefer, L.; Zhang, J.; Lee, T.; Parameswaran, N.; McCabe, L.R. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J. Cell. Physiol. 2014, 229, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Harahap, I.A.; Suliburska, J. Can probiotics decrease the risk of postmenopausal osteoporosis in women? PharmaNutrition 2023, 24, 100336. [Google Scholar] [CrossRef]
- Mallappa, R.H.; Singh, D.K.; Rokana, N.; Pradhan, D.; Batish, V.K.; Grover, S. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. LWT 2019, 105, 272–281. [Google Scholar] [CrossRef]
- Thomas, E.; Panjagari, N.R.; Ganguly, S.; Rashmi, H.M.; Damodharan, P.V.S.; Singh, A.K. Effect of flaxseed lignan on the dynamics of Lactiplantibacillus plantarum and starter cultures in fermented milk. Int. J. Food Sci. Technol. 2023, 58, 6698–6707. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Beta, T. Patented techniques for the extraction and isolation of secoisolariciresinol diglucoside from flaxseed. Recent Pat. Food Nutr. Agric. 2009, 1, 25–31. [Google Scholar] [CrossRef]
- Manual of Methods of Analysis of Foods–Milk and Milk Products. Available online: https://fssai.gov.in/upload/uploadfiles/files/Manual_Milk_25_05_2016(1).pdf (accessed on 15 November 2023).
- AOAC. Official Method of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Mada, S.B.; Reddi, S.; Kumar, N.; Kumar, R.; Kapila, S.; Kapila, R.; Trivedi, R.; Karvande, A.; Ahmad, N. Antioxidative peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition 2017, 43–44, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wang, H.; Guo, Y.; Long, S.; Wang, Y.; Abbasi, A.M.; Guo, X.; Jarvis, D.I. Comparison of fatty acid composition, phytochemical profile and antioxidant activity in four flax (Linum usitatissimum L.) varieties. Oil Crop Sci. 2020, 5, 136–141. [Google Scholar] [CrossRef]
- Nowak, W.; Jeziorek, M. The role of flaxseed in improving human health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef]
- Marand, M.A.; Amjadi, S.; Marand, M.A.; Roufegarinejad, L.; Jafari, S.M. Fortification of yogurt with flaxseed powder and evaluation of its fatty acid profile, physicochemical, antioxidant, and sensory properties. Powder Technol. 2020, 359, 76–84. [Google Scholar] [CrossRef]
- Hussain, S.A.; Patil, G.R.; Yadav, V.; Singh, R.R.B.; Singh, A.K. Ingredient formulation effects on physico-chemical, sensory, textural properties and probiotic count of Aloe vera probiotic dahi. LWT 2016, 65, 371–380. [Google Scholar] [CrossRef]
- Tiwari, N.; Rai, D.C.; Singh, D.B.; Rai, D. Development of flaxseed fortified synbiotic flavoured dahi (yoghurt) using response surface methodology. World J. Food Sci. Technol. 2021, 5, 96–105. [Google Scholar] [CrossRef]
- Mousavi, M.; Heshmati, A.; Garmakhany, A.D.; Vahidinia, A.; Taheri, M. Optimization of the viability of Lactobacillus acidophilus and physico-chemical, textural and sensorial characteristics of flaxseed-enriched stirred probiotic yogurt by using response surface methodology. LWT 2019, 102, 80–88. [Google Scholar] [CrossRef]
- Paul, I.; Athmaselvi, K.A.; Geetha, P. Physicochemical, sensorial and microbiological properties of mishti dahi supplemented with flax lignan during storage and its antidiabetic activity. Biosci. Biotechnol. Res. Asia 2016, 13, 1215–1222. [Google Scholar] [CrossRef]
- Wang, Q.L.; Huo, X.C.; Wang, J.H.; Wang, D.P.; Zhu, Q.L.; Liu, B.; Xu, L.L. Rutin prevents the ovariectomy-induced osteoporosis in rats. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1911–1917. [Google Scholar]
- Xu, H.; Liu, T.; Hu, L.; Li, J.; Gan, C.; Xu, J.; Chen, F.; Xiang, Z.; Wang, X.; Sheng, J. Effect of caffeine on ovariectomy-induced osteoporosis in rats. Biomed. Pharmacother. 2019, 112, 108650. [Google Scholar] [CrossRef] [PubMed]
- Ragheb, E.M.; Bahnasy, R.M.; Abd-Elhady, E.E.S.; Saad, R.M. The potential effect of flax seeds against osteoporosis in experimental female rats. World J. Dairy. Food Sci. 2019, 14, 185–195. [Google Scholar]
- Liu, T.; Ding, S.; Yin, D.; Cuan, X.; Xie, C.; Xu, H.; Wang, X.; Sheng, J. Pu-erh tea extract ameliorates ovariectomy-induced osteoporosis in rats and suppresses osteoclastogenesis in vitro. Front. Pharmacol. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, M.M.; Elsaid, F.G. Anti-osteoporotic effect of medical herbs and calcium supplementation on ovariectomized rats. J. Basic Appl. Zool. 2015, 72, 81–88. [Google Scholar] [CrossRef]
- Bahtiar, A.; Arifin, S.; Razalifha; Qomariah, N.; Wuyung, P.E.; Arsianti, A. Polar fraction of Punica granatum L. peel extract increased osteoblast number on ovariectomized rat bone. Int. J. Herb. Med. 2014, 2, 65–70. [Google Scholar]
- Sapra, L.; Shokeen, N.; Porwal, K.; Saini, C.; Bhardwaj, A.; Mathew, M.; Mishra, P.K.; Chattopadhyay, N.; Dar, H.Y.; Verma, B.; et al. Bifidobacterium longum ameliorates ovariectomy-induced bone loss via enhancing anti-osteoclastogenic and immunomodulatory potential of regulatory B cells (Bregs). Front. Immunol. 2022, 13, 875788. [Google Scholar] [CrossRef]
- Min, J.; Yuan, Z.; Zhang, Q.; Lin, S.; Wang, K.; Luo, J. Analysis of anti-osteoporosis function of chlorogenic acid by gene microarray profiling in ovariectomy rat model. Biosci. Rep. 2018, 38, BSR20180775. [Google Scholar] [CrossRef]
- Guan, H.; Zhao, L.; Cao, H.; Chen, A.; Xiao, J. Epoxyeicosanoids suppress osteoclastogenesis and prevent ovariectomy-induced bone loss. FASEB J. 2015, 29, 1092–1101. [Google Scholar] [CrossRef]
- Sapra, L.; Bhardwaj, A.; Mishra, P.K.; Garg, B.; Verma, B.; Mishra, G.C.; Srivastava, R.K. Regulatory B cells (Bregs) inhibit osteoclastogenesis and play a potential role in ameliorating ovariectomy-induced bone loss. Front. Immunol. 2021, 12, 691081. [Google Scholar] [CrossRef]
- Longo, A.B.; Ward, W.E. Providing flaxseed oil but not menhaden oil protects against OVX induced bone loss in the mandible of Sprague-Dawley rats. Nutrients 2016, 8, 597. [Google Scholar] [CrossRef]
- Zanyar-Athari, S.; Reza-Nasirzadeh, M.; Alireza-Nourazar, M. Study on the effect of alcoholic extract of flaxseed and aerobic exercise on osteoporosis parameters on ovariectomized rats. Al-Razi Univ. J. Med. Sci. 2022, 29, 267–277. [Google Scholar]
- Nair, A.B.; Jacob, S.A. Simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | SDG-Enriched Set Dahi |
---|---|---|
Total solids (%) | 12.70 ± 0.14 a | 13.05 ± 0.07 a |
Fat (%) | 1.58 ± 0.01 a | 1.57 ± 0.01 a |
Protein (%) | 4.75 ± 0.08 a | 4.91 ± 0.01 a |
Lactose (%) * | 5.57 ± 0.22 a | 5.55 ± 0.01 a |
Ash (%) | 0.80 ± 0.01 a | 1.01 ± 0.03 b |
pH | 4.80 ± 0.02 b | 4.67 ± 0.07 a |
Titratable acidity (%LA) | 0.86 ± 0.07 a | 0.89 ± 0.08 a |
DPPH (% RSA) | 23.75 ± 1.10 a | 44.13 ± 0.37 b |
Firmness (g) | 369.39 ± 10.03 a | 323.25 ± 59.72 a |
Consistency (g·s) | 881.51 ± 13.45 b | 805.38 ± 27.07 a |
Cohesiveness (g) | −57.54 ± 4.42 a | −262.48 ± 44.68 b |
Work of cohesion (g·s) | −9.03 ± 0.60 a | −165.22 ± 22.37 b |
Colour and appearance | 8.75 ± 0.25 a | 8.58 ± 0.52 a |
Body and texture | 8.67 ± 0.29 a | 8.08 ± 0.38 a |
Flavour | 8.58 ± 0.14 a | 8.00 ± 0.50 a |
Overall acceptability | 8.42 ± 0.14 a | 8.42 ± 0.14 a |
TPC (Log10CFU/mL) | 10.21 ± 0.78 a | 10.04 ± 0.42 a |
Probiotic (Log10CFU/mL) | 9.36 ± 0.41 a | 9.22 ± 0.27 a |
Group | Length (mm) | Ash Weight (mg) | Dry Weight (mg) | Calcium (mg/g of ash) |
---|---|---|---|---|
Sham | 30.96 ± 1.13 a | 264.53 ± 15.25 c | 604.65 ± 15.60 c | 176.62 ± 9.66 c |
OVX | 31.02 ± 1.23 a | 201.02 ± 27.66 a | 431.78 ± 14.67 a | 91.03 ± 16.20 a |
OVX and Control dahi | 30.87 ± 0.85 a | 232.38 ± 19.38 b | 492.12 ± 44.06 b | 131.60 ± 13.12 b |
OVX and SDG-enriched dahi | 30.59 ± 1.09 a | 279.45 ± 14.41 c | 608.63 ± 24.26 c | 165.98 ± 4.68 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, E.; Panjagari, N.R.; Ganguly, S.; Deepika, S.; Kapila, S.; Singh, A.K. Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis. Fermentation 2024, 10, 72. https://doi.org/10.3390/fermentation10020072
Thomas E, Panjagari NR, Ganguly S, Deepika S, Kapila S, Singh AK. Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis. Fermentation. 2024; 10(2):72. https://doi.org/10.3390/fermentation10020072
Chicago/Turabian StyleThomas, Elizabeth, Narender Raju Panjagari, Sangita Ganguly, Sameni Deepika, Suman Kapila, and Ashish Kumar Singh. 2024. "Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis" Fermentation 10, no. 2: 72. https://doi.org/10.3390/fermentation10020072
APA StyleThomas, E., Panjagari, N. R., Ganguly, S., Deepika, S., Kapila, S., & Singh, A. K. (2024). Development and Validation of Flaxseed Lignan-Enriched Set-Type Fermented Milk to Manage Postmenopausal Osteoporosis. Fermentation, 10(2), 72. https://doi.org/10.3390/fermentation10020072