Comparative Evaluation of Health-Promoting Compounds, Physicochemical and Microbiological Properties of Sorghum [Sorghum bicolor (L.) Moench] Based Mahewu Produced by Different Traditional Brewers in Thohoyandou, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Extracts
2.3. Measurement of the Total Phenolic Content
2.4. Measurement of the Total Flavonoid Content
2.5. Measurement of DPPH Radiant-Scavenging Activity
2.6. Measurement of Ferric Reducing Antioxidant Power (FRAP)
2.7. Color Analysis
2.8. pH Measurement
2.9. Viscosity Measurement
2.10. Determination of the Total Sugar Content (°Brix)
2.11. Titratable Acids (% Lactic Acids)
2.12. Microbiological Characterization
2.12.1. Isolation of Yeasts and Molds
2.12.2. Isolation of Coliforms
2.12.3. Isolation Total Plate Count
2.13. Statistical Analysis
3. Results and Discussion
3.1. Polyphenolic Compounds and Antioxidant Activity of Sorghum-Based Mahewu
3.2. Physicochemical Characteristics of Sorghum Mahewu Samples
3.3. Color Properties of Sorghum Mahewu Samples
3.4. Microbiological Properties of Sorghum Mahewu
3.5. Pearson Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chemura, A.; Nangombe, S.S.; Gleixner, S.; Chinyoka, S.; Gornott, C. Changes in climate extremes and their effect on maize (Zea mays L.) suitability over southern Africa. Front. Clim. 2022, 4, 890210. [Google Scholar] [CrossRef]
- Li, K.; Pan, J.; Xiong, W.; Xie, W.; Ali, T. The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade. Sci. Rep. 2022, 12, 17268. [Google Scholar] [CrossRef]
- Kudita, S.; Schoustra, S.; Mubaiwa, J.; Smid, E.J.; Linnemann, A.R. Substitution of maize with sorghum and millets in traditional processing of Mahewu, a non-alcoholic fermented cereal beverage. Int. J. Food Sci. Technol. 2024, 59, 1421–1431. [Google Scholar] [CrossRef]
- Akanni, G.B.; Qaku, X.W.; Adetunji, A.; Dlamini, B.C. Consumer acceptability, metabolite profile analysis, and storage stability of sorghum-Bambara groundnut mahewu. Int. J. Food Sci. Technol. 2023, 59, 1363–1374. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Duodu, K.G. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 2015, 95, 225–237. [Google Scholar] [CrossRef]
- Awika, J.M. Sorghum: Its unique nutritional and health-promoting attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J.M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 21–54. [Google Scholar]
- Rao, B.D.; Bharti, N.; Srinivas, K. Reinventing the commercialization of sorghum as health and convenient foods: Issues and challenges. Indian J. Econ. Dev. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Phenolic compounds in cereal grains and their health benefits. Cereal. Foods World 2007, 52, 105–111. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W.; Waniska, R.D.; Rooney, W.L. Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J. Agric. Food Chem. 2005, 53, 6813–6818. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O.; Espinosa-Ramírez, J. Grain Structure and Grain Chemical Composition. In Sorghum and Millets, 2nd ed.; Chemistry, Technology and Nutritional Attributes; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–129. [Google Scholar]
- Warrand, J. Healthy polysaccharides the next chapter in food products. Food Technol. Biotechnol. 2006, 44, 355–370. [Google Scholar]
- Adebo, A.O. African sorghum-based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef]
- Kaur, K.D.; Jha, A.; Sabikhi, L.; Singh, A.K. Significance of coarse cereals in health and nutrition: A review. J. Food Sci. Technol. 2014, 51, 1429–1441. [Google Scholar] [CrossRef]
- Meena, K.K.; Taneja, N.K.; Jain, D.; Ojha, A.; Saravanan, C.; Mudgil, D. Bioactive components and health benefits of maize-based fermented foods: A review. Biointerface Res. Appl. Chem. 2022, 13, 338. [Google Scholar]
- Terefe, Z.K.; Omwamba, M.N.; Nduko, J.M. Effect of solid-state fermentation on proximate composition, antinutritional factors and in vitro protein digestibility of maize flour. Food Sci. Nutri. 2021, 9, 6343–6352. [Google Scholar] [CrossRef]
- Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current functionality and potential improvements of non-alcoholic fermented cereal beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef]
- Mutshinyani, M.; Mashau, M.E.; Jideani, A.I.O. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: Effects of spontaneous fermentation. Int. J. Food Prop. 2020, 23, 692–1710. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Gadaga, T.H.; Lehohla, M.; Ntuli, V. Traditional fermented foods of Lesotho. J. Micr. Biotechnol. Food Sci. 2021, 2, 2387–2391. [Google Scholar]
- Narvhus, J.A.; Gadaga, T.H. The role of interaction between yeasts and lactic acid bacteria in African fermented milks: A review. Int. J. Fod Microbiol. 2003, 86, 51–60. [Google Scholar] [CrossRef]
- Steinkraus, K.H. Fermentations in world food processing. Compr. Rev. Food Sci. Food Saf. 2002, 1, 23–32. [Google Scholar] [CrossRef]
- Mashau, M.E.; Maliwichi, L.L.; Jideani, A.I.O. Non-Alcoholic Fermentation of Maize (Zea mays) in Sub-Saharan Africa. Fermentation 2021, 7, 158. [Google Scholar] [CrossRef]
- Pswarayi, F.; Gänzle, M.G. Composition and origin of the fermentation microbiota of mahewu, a Zimbabwean fermented cereal beverage. Appl. Environ. Microbiol. 2019, 85, e03130-18. [Google Scholar] [CrossRef]
- Chawafambira, A.; Jombo, T.Z. The effect of herbal Lippia javanica extracts on the bioactive content, functional properties, and sensorial profile of biofortified-orange maize based fermented maheu. Appl. Food Res. 2024, 4, 100367. [Google Scholar] [CrossRef]
- Sonawaneb, S.; Arya, S. Cereal based functional beverages: A review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 914–919. [Google Scholar]
- Misihairabgwi, A.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods. 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Nyanzi, R.; Jooste, P.J.; Abu, J.O.; Beukes, E.M. Consumer acceptability of a synbiotic version of the maize beverage mageu. Dev. South. Afr. 2010, 27, 447–463. [Google Scholar] [CrossRef]
- Awobusuyi, D.; Siwela, M.; Kolanisi, U.; Amonsou, E.O. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J. Sci. Food and Agric. 2016, 96, 1356–1361. [Google Scholar] [CrossRef]
- Qaku, X.W.; Adetunji, A.; Dlamini, B.C. Fermentability and nutritional characteristics of sorghum mahewu supplemented with Bambara groundnut. Int. J. Food Sci. 2020, 85, 1661–1667. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.; Herald, T.; Cox, S.; Noronha, L.; Perumal, R.; Lee, H.S.; Smolensky, D. Anticancer activity of a novel high phenolic sorghum bran in human colon cancer cells. Oxid. Med. Cell Longev. 2020, 2020, 2890536. [Google Scholar] [CrossRef] [PubMed]
- Mashau, M.E.; Jideani, A.I.O.; Maliwichi, L.L. Evaluation of the shelf-life extension and sensory properties of mahewu–A non-alcoholic fermented beverage by adding Aloe vera (Aloe barbadensis) powder. Br. Food J. 2020, 122, 3419–3432. [Google Scholar] [CrossRef]
- Stratford, M. Food and beverage spoilage yeasts. In Yeasts in Food and Beverages; Springer: Berlin/Heidelberg, Germany, 2006; pp. 335–379. [Google Scholar]
- Simatende, P.; Gadaga, T.H.; Nkambule, S.J.; Siwela, M. Methods of preparation of Swazi traditional fermented foods. J. Ethn. Foods 2015, 2, 119–125. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Heo, B.K.; Arancibia-Avila, P.; Toledo, F.; Drzewiecki, J.; Namiesnik, J.; Gorinstein, S. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 2008, 107, 640–648. [Google Scholar] [CrossRef]
- Souza, B.W.S.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Teixeira, J. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll. 2012, 27, 287–292. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemistry: Washington, DC, USA, 2004. [Google Scholar]
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. International Standard Organization (ISO): Geneva, Switzerland, 2008.
- ISO 16649-2:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Betaglucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degree Celsius Using 5-bromo4-Chloro-3-Indolyl beta-d-Glucuro. International Standard Organization (ISO): Geneva, Switzerland, 2004.
- ISO 4833-1:2013; Microbiology of Food and animal Feeding stuffs—Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Standard Organization (ISO): Geneva, Switzerland, 2013.
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef] [PubMed]
- N’Dri, D.; Mazzeo, T.; Zaupa, M.; Ferracane, R.; Fogliano, V.; Pellegrini, N. Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J. Sci. Food Agric. 2013, 93, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sato-Izawa, K.; Ito, M.; Nuoendagula; Kajita, S.; Nakamura, S.I.; Matsumoto, T.; Hiroshi Ezura, H. Distinct deposition of ester-linked ferulic and p-coumaric acids to the cell wall of developing sorghum internodes. Plant Biotechnol. 2020, 37, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Barros-Rios, J.; Santiago, R.; Jung, H.J.; Malvar, R.A. Covalent cross-linking of cell-wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers. J. Agric. Food Chem. 2015, 63, 2206–2214. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, F.; Wang, Z.T. Antioxidative activity of natural products from plants. Life Sci. 2000, 66, 709–723. [Google Scholar] [CrossRef]
- Burdette, A.; Garner, P.L.; Mayer, E.P.; Hargrove, J.L.; Hartle, D.K.; Greenspan, P. Anti-iflammatory activity of select sorghum (Sorghum bicolor) brans. J. Med. Food 2010, 13, 879–887. [Google Scholar] [CrossRef]
- Khoddami, A.; Mohammadrezaei, M.; Roberts, T. Effects of sorghum malting on colour, major classes of phenolics and individual anthocyanins. Molecules 2017, 22, 1713. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.I.N.; Jin, X.N.; Heui, D.P. Comparison of Antioxidant Activities in Black Soybean Preparations Fermented with Various Microorganisms. Agric. Sci. China 2010, 9, 1065–1071. [Google Scholar]
- Embashu, W.; Nantanga, K. Malts: Quality and phenolic content of pearl millet and sorghum varieties for brewing nonalcoholic beverages and opaque beers. Cereal Chem. 2019, 96, 765–767. [Google Scholar] [CrossRef]
- Zaroug, M.; Orhan, I.E.; Senol, F.S.; Yagi, S. Comparative antioxidant activity appraisal of traditional Sudanese kisra prepared from two sorghum cultivars. Food Chem. 2014, 156, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Morales, F.J. Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J. Agric. Food Chem. 2005, 53, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Mensah, P.; Drassar, B.S.; Harrison, T.J.; Tomkins, A.M. Fermented cereals gruels: Towards a solution of the weaning dilemma. Food Nutr. Bull. 1991, 16, 238–240. [Google Scholar] [CrossRef]
- Lyumugabe, F.; Kamaliza, G.; Bajyana, E.; Thonart, P.H. Microbiological and physico-chemical characteristics of Rwandese traditional beer “Ikigage”. Afr. J. Biotechnol. 2010, 9, 4241–4246. [Google Scholar]
- Muyunja, C.M.B.K.; Naruhus, J.A.; Treimo, J.; Langsrudt, T. Isolation, characterization and identification of lactic acid baceteria from Bushura: A Ugandan traditional fermented beverage. Int. J. Food Microbiol. 2003, 80, 201–210. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Schober, T.J.; Bean, S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271. [Google Scholar] [CrossRef]
- Pongjaruvat, W.; Methacanon, P.; Seetapan, N.; Fuongfuchat, A.; Gamonpilas, C. Influence of pregelatinised tapioca starch and transglutaminase on dough rheology and quality of gluten-free jasmine rice breads. Food Hydrocoll. 2014, 36, 143–150. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Norulaini, N.A.N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. RVA analysis of mixtures of wheat flour and potato sweet potato yam and cassava starches. Carbohydr. Polym. 2007, 69, 784–791. [Google Scholar] [CrossRef]
- Zakari, U.M.; Hassan, A.; Abbo, E.S. Physicochemical and sensory properties of “Agidi” from pearl-millet (Pennisetum glaucum) and Bambara groundnut (Vigna subterranean) flour blends. Afr. J. Food Sci. 2010, 4, 662–667. [Google Scholar]
- Malleshi, N.G.; Desikachar, H.S.R. Influence of malting conditions on quality of finger millet malt. J. Inst. Brew. 1986, 92, 81–83. [Google Scholar] [CrossRef]
- GS 7006,2003,144; Non-Alcoholic Beverages. Ghana Standard Board: Accra, Ghana, 2003.
- Serap, V.; Anuradha, V.; Garden, J.R.; Clifford, A.H. The effect of fermentation on the physiochemical characteristics of dry-salt vegetables. J. Food Res. 2017, 6, 32. [Google Scholar]
- Gassem, M.A.A. Physico-chemical properties of sobia: A traditional fermented beverage in western province of Saudi Arabia. Ecol. Food Nutr. 2003, 42, 25–35. [Google Scholar] [CrossRef]
- GS 168:1995; Specification for Fruit Squashes and Fruit Cordials. Ghana Standard Board: Accra, Ghana, 1995.
- Wonang, D.L.; Opoefe, W.O. Effect of malting period on the fungal load, myotoxin content of malted grains and alcoholic content of bukuruta produced from grains in Jos. Wort J. Biol. Sci. 1999, 9, 97–107. [Google Scholar]
- Sadler, G.D.; Murphy, P.A. pH and titratable acidity. In Food Analysis, 4th ed.; Nielsen, S.S., Ed.; Springer: New York, NY, USA, 2010; pp. 219–238. [Google Scholar]
- Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef]
- Simango, C. Lactic fermentation of sour porridge and mahewu, a non-alcoholic fermented cereal beverage. J. Appl. Sci. S. Afri. 2002, 8, 89–98. [Google Scholar] [CrossRef]
- Horrobin, D.J.; Landman, K.A.; Ryder, L. Interior and surface colour development during wheat grain steaming. J. Food. Eng. 2003, 57, 33–43. [Google Scholar] [CrossRef]
- Duarte, S.M.S.; De Abreu, C.M.P.; De Menezes, H.C.; dos Santos, M.H.; Gouvea, C.M.C.P. Effect of processing and roasting on the anti-oxidant activity of coffee brews. Food Sci. Technol. 2005, 25, 387–393. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; van Boekel, M.A.J.S. A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 2001, 11, 364–373. [Google Scholar] [CrossRef]
- McDonough, C.M.; Floyd, C.D.; Waniska, R.D.; Rooney, L.W. Effect of accelerated aging on maize, sorghum, and sorghum meal. J. Cereal Sci. 2004, 39, 351–361. [Google Scholar] [CrossRef]
- Duodu, K.G.; Nunes, A.; Delgadillo, I.; Parker, M.L.; Mills, E.N.C.; Belton, P.S.; Taylor, J.R.N. Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci. 2002, 35, 161–174. [Google Scholar] [CrossRef]
- Onyango, C.; Henle, T.; Ziems, A.; Hofmann, T.; Bley, T. Effect of extrusion variables on fermented maize– finger millet blend in the production of uji. LWT-Food Sci. Technol. 2004, 37, 409–415. [Google Scholar] [CrossRef]
- Mugochi, T.; Parawira, W.; Mpofu, A.; Simango, C.; Zvauya, R. 1999. Survival of some species of Salmonella and Shigella in mukumbi, a traditional Zimbabwean wine. Int. J. Food Sci. Nutri. 1999, 50, 451–455. [Google Scholar] [CrossRef]
- Caplice, E.; Fitzgerald, G.F. Food fermentations: Role of microorganisms in food production and preservation. Int. J. Food Microbiol. 1999, 50, 131–149. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Steenson, L.R.; Kirleis, A.W. Isolation and characterization of microorganisms associated with the traditional sorghum fermentation for production of Sudanese kisra. Appl. Environ. Microbiol. 1991, 57, 2529–2533. [Google Scholar] [CrossRef]
- El Nour, M.E.; El-Tigani, S.; Dirar, H.A. A microbiological study of Hussuwa: A traditional Sudanese fermented food from germinated sorghum bicolor cv feterita. World J. Microbiol Biotechnol. 1999, 15, 305–308. [Google Scholar] [CrossRef]
- Banwo, K.; Elujoba, R.; Ogunremi, O.R.; Sanni, A.I. Influence of nixtamlisation, cowpea fortification and fermentation on the microflora and quality attributes of sorghum-ogi (A cereal based weaning food. Niger. J. Sci. 2013, 47, 73–83. [Google Scholar]
- Giraffa, G. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiol. Rev. 2004, 28, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Moodley, S.S.; Dlamini, N.R.; Steenkamp, L.; Buys, E.M. Bacteria and yeast isolation and characterisation from a South African fermented beverage. South Afr. J. Sci. 2019, 115, 6. [Google Scholar] [CrossRef] [PubMed]
- Werner, E. Physicochemical, Nutrient and Microbiological Analysis of oshikundu; a Cereal Based Fermented Beverage from Namibia. Master’s Thesis, University of Namibia, Windhoek, Namibia, 2014. [Google Scholar]
Mahewu Samples | TPC (GAE/g) | TFC (mg/g) | DPPH (%) | FRAP (GAE/g) |
---|---|---|---|---|
CM | 27.37 ± 1.05 a | 0.30 ± 0.013 b | 49.00 ± 0.39 c | 1.46 ± 0.01 a |
TB 1 | 65.89 ± 2.42 d | 0.19 ± 0.01 a | 44.75 ± 0.23 a | 2.36 ± 0.19 c |
TB 2 | 53.02 ± 0.31 c | 0.19 ± 0.06 a | 45.02 ± 0.39 a | 1.59 ± 0.01 a |
TB 3 | 29.96 ± 1.12 a | 0.20 ± 0.07 a | 45.15 ± 0.23 a | 1.57 ± 0.01 a |
TB 4 | 41.17 ±1.74 b | 0.19 ± 0.07 a | 44.62 ± 0.01 a | 1.52 ± 0.03 a |
TB 5 | 64.13 ± 0.42 d | 0.18 ± 0.01 a | 45.15 ± 0.46 a | 1.49 ± 0.17 a |
TB 6 | 64.22 ± 0.29 d | 0.23 ± 0.05 a | 47.01 ± 0.69 b | 2.18± 0.75 b |
Mahewu Samples | pH | Viscosity (cP) 60 RPM | TSS (°Brix) | TTA (% Lactic Acid) |
---|---|---|---|---|
CM | 3.56 ± 0.03 c | 1297.0 ± 3.40 e | 9.68 ± 0.12 a | 0.86 ± 0.03 bc |
TB 1 | 3.38 ± 0.01 a | 730.0 ± 3.20 c | 13.42 ± 0.03 c | 1.17 ± 0.05 e |
TB 2 | 3.46 ± 0.04 a | 806.7 ± 3.51 d | 15.47 ± 0.12 d | 0.93 ± 0.05 d |
TB 3 | 3.50 ± 0.03 ab | 806.7 ± 3.52 d | 12.97 ± 0.18 b | 0.86 ± 0.01 cd |
TB 4 | 3.66 ± 0.04 d | 443.3 ± 3.49 a | 9.92 ± 0.07 a | 0.63 ± 0.05 a |
TB 5 | 3.55 ± 0.02 bc | 516.7 ± 3.50 b | 17.49 ± 0.21 e | 0.79 ± 0.04 b |
TB 6 | 3.46 ± 0.01 a | 806.7 ± 3.52 d | 13.24 ± 0.29 bc | 0.82 ± 0.01 bc |
Mahewu Samples | L* | a* | b* | Chroma | Hue | ΔΕ |
---|---|---|---|---|---|---|
CM | 59.35 ± 0.04 e | 9.06 ± 0.02 d | 15.29 ± 0.05 d | 17.78 ± 0.05 e | 59.36 ± 0.06 d | - |
TB 1 | 55.46 ± 0.03 c | 10.84 ± 0.07 e | 16.35 ± 0.10 e | 19.61 ± 0.05 f | 56.46 ± 0.32 a | 31.93 ± 0.06 f |
TB 2 | 58.60 ± 0.01 d | 7.90 ± 0.01 c | 13.90 ± 0.04 c | 15.99 ± 0.04 d | 60.38 ± 0.02 e | 30.55 ± 0.06 e |
TB 3 | 63.92 ± 0.04 g | 7.25 ± 0.01 a | 13.04 ± 0.03 b | 14.92 ± 0.02 a | 60.92 ± 0.09 f | 27.47 ± 0.05 c |
TB 4 | 63.27 ± 0.07 f | 7.52 ± 0.04 b | 13.92 ± 0.02 c | 15.82 ± 0.03 c | 61.62 ± 0.14 g | 26.97 ± 0.04 b |
TB 5 | 53.19 ± 0.04 a | 7.96 ± 0.03 c | 12.70 ± 0.01 a | 14.99 ± 0.02 a | 57.97 ± 0.12 b | 28.46 ± 0.01 d |
TB 6 | 54.45 ± 0.20 b | 7.91 ± 0.07 c | 13.07 ± 0.06 b | 15.28 ± 0.07 b | 58.83 ± 0.12 c | 25.812 ± 0.07 a |
Mahewu Samples | Total Coliform log10 (cfu/mL) | Yeast and Mould log10 (cfu/mL) | Total Plate Count log10 (cfu/mL) |
---|---|---|---|
CM | ND | ND | 8.95 ± 0.25 bcd |
TB 1 | 5.96 ± 0.60 c | 8.97 ± 0.65 b | 8.96 ± 0.55 cd |
TB 2 | 3.68 ± 0.20 a | 7.99 ± 0.25 a | 8.97 ± 0.45 d |
TB 3 | ND | 7.94 ± 0.50 a | 8.97 ± 0.40 cd |
TB 4 | ND | 8.98 ± 0.40 b | 7.91 ± 0.30 a |
TB 5 | ND | 8.95 ± 0.25 b | 8.92 ± 0.35 ab |
TB 6 | 3.93 ± 0.60 b | 8.95 ± 0.40 b | 8.94 ± 0.30 abc |
pH | TTA | Brix | Viscosity | TFC | TPC | Coliform | Yeast | Plate Count | |
---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.641 | 0.483 | −0.276 | 0.129 | −0.387 | −0.659 | −0.178 | −0.630 |
TTA | −0.641 | 1 | 0.253 | 0.280 | 0.009 | 0.339 | 0.637 | 0.049 | 0.582 |
Brix | −0.483 | 0.253 | 1 | −0.391 | −0.492 | −0.485 | 0.196 | 0.528 | 0.126 |
Viscosity | −0.276 | 0.280 | −0.391 | 1 | 0.789 | 0.659 | 0.010 | −0.841 | 0.406 |
TFC | 0.129 | 0.009 | −0.492 | 0.789 | 1 | −0.450 | −0.126 | −0.805 | 0.072 |
TPC | −0.387 | 0.339 | 0.659 | −0.485 | −0.450 | 1 | 0.695 | 0.573 | −0.125 |
Coliform | −0.659 | 0.637 | 0.196 | 0.010 | −0.126 | 0.695 | 1 | 0.336 | 0.262 |
Yeast | −0.178 | 0.049 | 0.528 | −0.841 | −0.805 | 0.573 | 0.336 | 1 | 0.031 |
Plate count | −0.630 | 0.582 | 0.126 | 0.406 | 0.072 | −0.125 | 0.262 | 0.031 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashau, M.E.; Muluvhu, D.; Ramashia, S.E. Comparative Evaluation of Health-Promoting Compounds, Physicochemical and Microbiological Properties of Sorghum [Sorghum bicolor (L.) Moench] Based Mahewu Produced by Different Traditional Brewers in Thohoyandou, South Africa. Fermentation 2024, 10, 236. https://doi.org/10.3390/fermentation10050236
Mashau ME, Muluvhu D, Ramashia SE. Comparative Evaluation of Health-Promoting Compounds, Physicochemical and Microbiological Properties of Sorghum [Sorghum bicolor (L.) Moench] Based Mahewu Produced by Different Traditional Brewers in Thohoyandou, South Africa. Fermentation. 2024; 10(5):236. https://doi.org/10.3390/fermentation10050236
Chicago/Turabian StyleMashau, Mpho Edward, Dakalo Muluvhu, and Shonisani Eugenia Ramashia. 2024. "Comparative Evaluation of Health-Promoting Compounds, Physicochemical and Microbiological Properties of Sorghum [Sorghum bicolor (L.) Moench] Based Mahewu Produced by Different Traditional Brewers in Thohoyandou, South Africa" Fermentation 10, no. 5: 236. https://doi.org/10.3390/fermentation10050236
APA StyleMashau, M. E., Muluvhu, D., & Ramashia, S. E. (2024). Comparative Evaluation of Health-Promoting Compounds, Physicochemical and Microbiological Properties of Sorghum [Sorghum bicolor (L.) Moench] Based Mahewu Produced by Different Traditional Brewers in Thohoyandou, South Africa. Fermentation, 10(5), 236. https://doi.org/10.3390/fermentation10050236