Comparison of Homemade and Commercial Plant-Based Drinks (Almond, Oat, Soy) Fermented with Yogurt Starter Culture for Fresh Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Plant Milks Preparation
2.3. Fermentation and Enumeration of Lactic Acid Bacteria Viability
2.4. Determination of Total Solids Contents, pH and Viscosity
2.5. Preparation of Supernatants
2.6. Determination of Total Carbohydrates Content (TCC), Reducing Sugars Content (RSC), Protein Content (PC), Total Free Amino Acids (TFAA), Total Polyphenolics Content (TPC) and Total Flavonoids Content (TFC)
- C—concentration of standard, Ab—absorbance of measured sample, Aa—absorbance of standard.
2.7. Determination of Antioxidant Activity
2.8. Statistical Analyses
3. Results and Discussion
3.1. Lactic Acid Bacteria Viability during Fermentation
3.2. The Changes of pH
3.3. Viscosity and Appearance Changes
3.4. The Changes of Protein Content, Total Free Amino Acids Level, Total Carbohydrates Content and Reducing Sugars Content
3.5. The Changes in Total Polyphenolics Content and Total Flavonoids Content
3.6. The Changes of Reducing Power and Free Radicals Scavenging Activities
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Nazhand, A.; Souto, E.B.; Lucarini, M.; Souto, S.B.; Durazzo, A.; Santini, A. Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages 2020, 6, 26. [Google Scholar] [CrossRef]
- Kandylis, P.; Pissaridi, K.; Bekatorou, A.; Kanellaki, M.; Koutinas, A.A. Dairy and Non-dairy Probiotic Beverages. Curr. Opin. Food Sci. 2016, 7, 58–63. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V. Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation 2021, 7, 20. [Google Scholar] [CrossRef]
- Martínez-Padilla, E.; Li, K.; Frandsen, H.B.; Joehnke, M.S.; Vargas-Bello-Pérez, E.; Petersen, I.L. In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-based Milk Alternatives. Foods 2020, 9, 1784. [Google Scholar] [CrossRef] [PubMed]
- Bonke, A.; Sieuwerts, S.; Petersen, I.L. Amino Acid Composition of Novel Plant Drinks from Oat, Lentil and Pea. Foods 2020, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Mishra, H.N. Effect of Synbiotic Interaction of Fructooligosaccharide and Probiotics on the Acidification Profile, Textural and Rheological Characteristics of Fermented Soy Milk. Food Bioprocess Technol. 2013, 6, 3166–3176. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A. Preparation and Characterization of Novel Flaxseed Oil Cake Yogurt-like Plant Milk Fortified with Inulin. J. Food Nutr. Res. 2020, 59, 61–70. [Google Scholar]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of Flaxseed Oil Cake into Bioactive Camembert-analogue using Lactic Acid Bacteria, Penicillium camemberti and Geotrichum candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.J.; Frutos, M.J. Non-dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef]
- Topcuoglu, E.; Yilmaz-Ersan, L. Effect of Fortification with Almond Milk on Quality Characteristics of Probiotic Yoghurt. J. Food Process. Preserv. 2020, 44, e14943. [Google Scholar] [CrossRef]
- Pimentel, T.C.; da Costa, W.K.A.; Barão, C.E.; Rosset, M.; Magnani, M. Vegan Probiotic Products: A Modern Tendency or the Newest Challenge in Functional Foods. Food Res. Int. 2021, 140, 110033. [Google Scholar] [CrossRef] [PubMed]
- Rasika, D.M.D.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-based Milk Substitutes as Emerging Probiotic Carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-based Milk Alternatives for Improved Flavour and Nutritional value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [PubMed]
- Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a New Oat-based Probiotic drink. Int. J. Food Microbiol. 2006, 112, 75–80. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health Issues and Technological Aspects of Plant-based Alternative Milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Karaçalı, R.; Özdemİr, N.; Çon, A.H. Aromatic and Functional Aspects of Kefir Produced Using Soya Milk and Bifidobacterium species. Int. J. Dairy Technol. 2018, 71, 921–933. [Google Scholar] [CrossRef]
- Gokavi, S.; Zhang, L.; Huang, M.K.; Zhao, X.; Guo, M. Oat-based Symbiotic Beverage Fermented by Lactobacillus plantarum, Lactobacillus paracasei ssp. casei and Lactobacillus acidophilus. J. Food Sci. 2005, 70, 216–223. [Google Scholar] [CrossRef]
- Luana, N.; Rossana, C.; Curiel, J.A.; Kaisa, P.; Marco, G.; Rizzello, C.G. Manufacture and Characterization of a Yogurt-like Beverage Made with Oat Flakes Fermented by Selected Lactic Acid Bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Duysburgh, C.; Van Den Abbeele, P.; Kamil, A.; Fleige, L.; De Chavez, P.J.; Chu, Y.; Barton, W.; Sullivan, O.O.; Cotter, P.D.; Quilter, K.; et al. In Vitro–In Vivo Validation of Stimulatory Effect of Oat Ingredients on Lactobacilli. Pathogens 2021, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Angelov, A.; Yaneva-Marinova, T.; Gotcheva, V. Oats as a Matrix of Choice for Developing Fermented Functional Beverages. J. Food Sci. Technol. 2018, 55, 2351–2360. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D.C.; Carbonell-Barrachina, Á.A. Spray Drying and Storage of Probiotic-enriched Almond Milk: Probiotic Survival and Physicochemical Properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Myagmardorj, B.; Purev, M.E.; Batdorj, B. Functional Properties of Fermented Soymilk by Lactobacillus fermentum BM-325. Mong. J. Chem. 2018, 19, 32–37. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; Chiralt, A.; Moisés Laparra, J.; González-Martínez, C. Almond Milk Fermented with Different Potentially Probiotic Bacteria Improves Iron Uptake by Intestinal Epithelial (Caco-2) Cells. Int. J. Food Stud. 2015, 4, 49–60. [Google Scholar] [CrossRef]
- Mårtensson, O.; Dueñas-Chasco, M.; Irastorza, A.; Öste, R.; Holst, O. Comparison of Growth Characteristics and Exopolysaccharide Formation of Two Lactic Acid Bacteria Strains, Pediococcus damnosus 2.6 and Lactobacillus brevis g-77, in an Oat-based, Nondairy Medium. LWT Food Sci. Technol. 2003, 36, 353–357. [Google Scholar] [CrossRef]
- Mårtensson, O.; Öste, R.; Holst, O. Lactic Acid Bacteria in an Oat-based Non-dairy Milk Substitute: Fermentation Characteristics and Exopolysaccharide Formation. LWT Food Sci. Technol. 2000, 33, 525–530. [Google Scholar] [CrossRef]
- Atalar, I. Functional Kefir Production from High Pressure Homogenized Hazelnut Milk. LWT 2019, 107, 256–263. [Google Scholar] [CrossRef]
- Aysu, Ş.; Akıl, F.; Çevik, E.; Kılıç, M.E.; İlyasoğlu, H. Development of Homemade Hazelnut Milk-based Beverage. J. Culin. Sci. Technol. 2020, 20, 421–429. [Google Scholar] [CrossRef]
- Pieroni, A.; Vandebroek, I.; Prakofjewa, J.; Bussmann, R.W.; Paniagua-Zambrana, N.Y.; Maroyi, A.; Torri, L.; Zocchi, D.M.; Dam, A.T.K.; Khan, S.M.; et al. Taming the Pandemic? The Importance of Homemade Plant-based Foods and Beverages as Community Responses to COVID-19. J. Ethnobiol. Ethnomed. 2020, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.E.C.; Vinderola, G.; Xavier-Santos, D.; Sivieri, K. Potential Contribution of Beneficial Microbes to Face the COVID-19 Pandemic. Food Res. Int. 2020, 136, 109577. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients 2020, 12, 2633. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Determination of Moisture, Ash, Protein and Fat. Official Method of Analysis of the Association of Analytical Chemists, 18th ed.; AOAC: Washington DC, USA, 2005. [Google Scholar]
- Łopusiewicz, Ł.; Drozłowska, E.; Trocer, P.; Kwiatkowski, P.; Bartkowiak, A.; Gefrom, A.; Sienkiewicz, M. The Effect of Fermentation with Kefir Grains on the Physicochemical and Antioxidant Properties of Beverages from Blue Lupin (Lupinus angustifolius L.) Seeds. Molecules 2020, 25, 5791. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Goa, J. A Micro Biuret Method for Protein Determination Determination of Total Protein in Cerebrospinal Fluid. Scand. J. Clin. Lab. Investig. 1953, 5, 218–222. [Google Scholar] [CrossRef]
- El-Batawy, O.I.; Mahdy, S.M.; Gohari, S.T. Development of Functional Fermented Oat Milk by Using Probiotic Strains and Whey Protein. Int. J. Dairy Sci. 2019, 14, 21–28. [Google Scholar] [CrossRef]
- Garro, M.S.; De Valdez, G.F.; Oliver, G.; De Giori, G.S. Growth Characteristics and Fermentation Products of Streptococcus salivarius subsp. thermophilus, Lactobacillus casei and L. fermentum in Soymilk. Eur. Food Res. Technol. 1998, 206, 72–75. [Google Scholar] [CrossRef]
- Drozłowska, E.; Łopusiewicz, Ł.; Mężyńska, M.; Bartkowiak, A. The Effect of Native and Denaturated Flaxseed Meal Extract on Physiochemical Properties of Low Fat Mayonnaises. J. Food Meas. Charact. 2020, 14, 1135–1145. [Google Scholar] [CrossRef]
- Picone, C.S.F.; Cunha, R.L. Influence of pH on Formation and Properties of Gellan Gels. Carbohydr. Polym. 2011, 84, 662–668. [Google Scholar] [CrossRef]
- Mennah-Govela, Y.A.; Cai, H.; Chu, J.; Kim, K.; Maborang, M.K.; Sun, W.; Bornhorst, G.M. Buffering Capacity of Commercially Available Foods is Influenced by Composition and Initial Properties in the Context of Gastric Digestion. Food Funct. 2020, 11, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Rui, X.; Zhang, Q.; Huang, J.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Does Lactic Fermentation Influence Soy Yogurt Protein Digestibility: A Comparative Study Between Soymilk and Soy Yogurt at Different pH. J. Sci. Food Agric. 2019, 99, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.W.; Yu, R.C.; Chou, C.C. Changes in Some Components of Soymilk During Fermentation with Bifidobacteria. Food Res. Int. 2000, 33, 393–397. [Google Scholar] [CrossRef]
- Liu, J.-R.; Chen, M.-J.; Lin, C.-W. Antimutagenic and Antioxidant Properties of Milk−Kefir and Soymilk−Kefir. J. Agric. Food Chem. 2005, 53, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Barac, M.; Vucic, T.; Zilic, S.; Pesic, M.; Sokovic, M.; Petrovic, J.; Kostic, A.; Ignjatovic, I.S.; Milincic, D. The Effect of In Vitro Digestion on Antioxidant, ACE-inhibitory and Antimicrobial Potentials of Traditional Serbian White-brined Cheeses. Foods 2019, 8, 94. [Google Scholar] [CrossRef]
- Gupta, M.; Bajaj, B.K. Development of Fermented Oat Flour Beverage as a Potential Probiotic Vehicle. Food Biosci. 2017, 20, 104–109. [Google Scholar] [CrossRef]
Sample | |
---|---|
TSC (%) | |
A-HM | 14.43 ± 0.17 aA |
A-C | 2.59 ± 0.08 bF |
O-HM | 9.98 ± 0.10 aB |
O-C | 5.63 ± 0.03 bE |
S-HM | 8.08 ± 0.04 aC |
S-C | 7.35 ± 0.09 bD |
Sample * | ||||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 24 | |
RP 700 nm | ||||||
A-HM | 0.032 ± 0.003 Ab | 0.086 ± 0.002 Bb | 0.175 ± 0.001 Cb | 0.188 ± 0.000 Db | 0.214 ± 0.002 Ea | 0.286 ± 0.000 Fa |
A-C | 0.057 ± 0.001 Aa | 0.089 ± 0.002 Ba | 0.183 ± 0.000 Ca | 0.198 ± 0.003 Da | 0.212 ± 0.001 Ea | 0.273 ± 0.001 Fb |
O-HM | 0.017 ± 0.002 Aa | 0.070 ± 0.003 Ba | 0.121 ± 0.000 Ca | 0.139 ± 0.002 Db | 0.260 ± 0.001 Ea | 0.387 ± 0.002 Fa |
O-C | 0.010 ± 0.004 Ab | 0.027 ± 0.000 Bb | 0.039 ± 0.002 Cb | 0.168 ± 0.001 Da | 0.252 ± 0.002 Eb | 0.297 ± 0.001 Fb |
S-HM | 0.039 ± 0.005 Ab | 0.075 ± 0.003 Bb | 0.181 ± 0.001 Ca | 0.195 ± 0.002 Da | 0.229 ± 0.000 Eb | 0.273 ± 0.002 Fa |
S-C | 0.077 ± 0.001 Aa | 0.117 ± 0.002 Ba | 0.168 ± 0.001 Cb | 0.186 ± 0.001 Db | 0.256 ± 0.001 Da | 0.260 ± 0.002 Eb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łopusiewicz, Ł. Comparison of Homemade and Commercial Plant-Based Drinks (Almond, Oat, Soy) Fermented with Yogurt Starter Culture for Fresh Consumption. Fermentation 2024, 10, 35. https://doi.org/10.3390/fermentation10010035
Łopusiewicz Ł. Comparison of Homemade and Commercial Plant-Based Drinks (Almond, Oat, Soy) Fermented with Yogurt Starter Culture for Fresh Consumption. Fermentation. 2024; 10(1):35. https://doi.org/10.3390/fermentation10010035
Chicago/Turabian StyleŁopusiewicz, Łukasz. 2024. "Comparison of Homemade and Commercial Plant-Based Drinks (Almond, Oat, Soy) Fermented with Yogurt Starter Culture for Fresh Consumption" Fermentation 10, no. 1: 35. https://doi.org/10.3390/fermentation10010035