Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbagiovanni, E.G.; Lockwood, D.J.; Simpson, P.J.; Goncharova, L.V. Quantum confinement in Si and Ge nanostructures: Theory and experiment. Appl. Phys. Rev. 2014, 1, 011302. [Google Scholar] [CrossRef] [Green Version]
- Gautier, G.; Leduc, P. Porous silicon for electrical isolation in radio frequency devices: A review. Appl. Phys. Rev. 2014, 1, 011101. [Google Scholar] [CrossRef]
- Yang, D. Handbook of Photovoltaic Silicon; Springer: Berlin/Heidelberg, Germany, 2019; p. 967. ISBN 978-3-662-56473-8. [Google Scholar]
- Van Stryland, E.W.; Wu, Y.Y.; Hagan, D.J.; Soileau, M.J.; Mansour, K. Optical limiting with semiconductors. J. Opt. Soc. Am. B 1988, 5, 1980–1988. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, A.; Saleem, K.; Parveen, L.; Ishan, G.; Suresh, K. Electrical properties of electrodeposited zinc selenide (ZnSe) nanowires. J. Mater. Sci. Mater. Electron. 2014, 25, 4150–4155. [Google Scholar] [CrossRef]
- Xu, S.; Qi, X.; Xu, X.; Wang, X.; Yang, Z.; Zhang, S.; Lin, T.; He, P. Effects of electroless nickel plating method for low temperature joining ZnS ceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 15236–15249. [Google Scholar] [CrossRef]
- Pushkin, A.V.; Migal, E.A.; Tokita, S.; Korostelin, Y.V.; Potemkin, F.V. Femtosecond graphene mode-locked Fe: ZnSe laser at 4.4 μm. Opt. Lett. 2020, 45, 738–741. [Google Scholar] [CrossRef]
- Chan, L.; DeCuir, E.A.; Fu, R.; Morse, D.E.; Gordon, M.J. Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity. J. Opt. 2017, 19, 114007. [Google Scholar] [CrossRef]
- Dmitruk, I.; Berezovska, N.; Degoda, V.; Hrabovskyi, Y.; Kolodka, R.; Podust, G.; Stanovyi, O.; Blonskyi, I. Luminescence of Femtosecond Laser-Processed ZnSe Crystal. J. Nanomater. 2021, 2021, 6683040. [Google Scholar] [CrossRef]
- Cao, J.; Jiang, Z.J. Thickness-dependent Shell Homogeneity of ZnSe/CdSe Core/Shell Nanocrystals and Their Spectroscopic and Electron- and Hole-transfer Dynamics Properties. J. Phys. Chem. C 2020, 124, 12049–12064. [Google Scholar] [CrossRef]
- Kushwaha, K.K.; Kumari, S.; Mahobia, S.K.; Tiwary, S.K.; Sinha, B.K.; Ramrakhiani, M. Synthesis and Characterization of ZnSe/CdSe/ZnS Nano-particles Embedded in Polymer Matrix: A Review. Int. J. Compos. Const. Mater. 2018, 4, 28–33. [Google Scholar]
- Xiao, Y.; Deng, G.; Feng, G.; Ning, S.; Wang, S.; Chen, X.; Yang, H.; Zhou, S. Femtosecond laser induced nano-meter size surface structures on ZnSe film. AIP Adv. 2019, 9, 015106. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.Q.; Wang, G.G.; Li, L.H.; Wang, H.; Li, L.H.; Wang, H.; Tian, J.L.; Zhang, H.Y.; Han, J.C. Preparation and protection of ZnS surface sub-wavelength structure for infrared window. Appl. Surf. Sci. 2019, 470, 395–404. [Google Scholar] [CrossRef]
- Igweoko, A.E.; Augustine, C.; Idenyi, N.E.; Okorie, B.A.; Anyaegbunam, F.N.C. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film. Mater. Res. Express 2018, 5, 036413. [Google Scholar] [CrossRef]
- Nabesaka, K.; Ishikawa, Y.; Hosokawa, Y.; Uraoka, Y. Photomechanical modification of ZnS microcrystal to enhance electroluminescence by ultrashort-pulse laser processing. Appl. Phys. Express 2017, 10, 021201. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Liu, H.; Guo, Y. Fabrication of an Anti-Reflective Microstructure on ZnS by Femtosecond Laser Bessel Beams. Molecules 2021, 26, 4278. [Google Scholar] [CrossRef]
- Kamanina, N.V. Using the operator Laplace method to estimate the response time of space-time light modulators. Tech. Phys. 1994, 39, 83–85. [Google Scholar]
- Kamanina, N.V.; Vasilenko, N.A. Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 1997, 29, 1–9. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Wang, C.; Zhao, Y.; Duan, J. Direct femtosecond laser writing of inverted array for broadband antireflection in the far-infrared. Opt. Lasers Eng. 2020, 129, 106062. [Google Scholar] [CrossRef]
- Mensah, N.G.; Nkrumah, G.; Mensah, S.Y.; Allotey, F.K.A. Temperature dependence of the thermal conductivity in chiral carbon nanotubes. Phys. Lett. A 2004, 329, 369–378. [Google Scholar] [CrossRef]
- Robertson, J. Realistic applications of CNTs. Mater. Today 2004, 7, 46–52. [Google Scholar] [CrossRef]
- Namilae, S.; Chandra, N.; Shet, C. Mechanical behavior of functionalized nanotubes. Chem. Phys. Lett. 2004, 387, 247–252. [Google Scholar] [CrossRef]
- Fa, W.; Yang, X.; Chen, J.; Dong, J. Optical properties of the semiconductor carbon nanotube intramolecular junctions. Phys. Lett. 2004, A323, 122–131. [Google Scholar] [CrossRef]
- Taherpour, A.A.; Aghagolnezhad-Gerdroudbari, A.; Rafiei, S. Theoretical and quantitative structural relationship studies of reorganization energies of [SWCNT(5,5)-Armchair-CnH20] (n=20–310) nanostructures by neural network CFFBP method. Int. J. Electrochem. Sci. 2012, 7, 2468–2486. [Google Scholar]
- Kamanina, N.V.; Likhomanova, S.V.; Kuzhakov, P.V. Advantages of the Surface Structuration of KBr Materials for Spectrometry and Sensors. Sensors 2018, 18, 3013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamanina, N.; Kuzhakov, P.; Kvashnin, D. Novel Perspective Coatings for the Optoelectronic Elements: Features of the Carbon Nanotubes to Modify the Surface Relief of BaF2 Materials. Coatings 2020, 10, 7066. [Google Scholar] [CrossRef]
- Kamanina, N.; Borodianskiy, K.; Kvashnin, D. Surface Heterostructure of Aluminum with Carbon Nanotubes Obtained by Laser-Oriented Deposition. Coatings 2021, 11, 674. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilyev, P.Y. Optical Coatings Based on CNTs for the Optical Devises and Nanoelectronics. R.U. Patent 2 355 001 C2, 10 May 2009. [Google Scholar]
- Kamanina, N.V.; Vasilyev, P.Y.; Studeonov, V.I. Optical Coating Based on Oriented in the Electric Field CNTs for the Optical Devises, Micro- and Nanoelectronics under the Conditions When the Interface: Solid Substrate-Coating Can Be Eliminated. R.U. Patent 2 405 177 C2, 27 November 2010. [Google Scholar]
- Kamanina, N.V.; Kuzhakov, P.V.; Vasilyev, P.Y. Protective Coating for Hygroscopic Optical Materials Based on Laser-Deposited Carbon Nanotubes for the Purpose of Optoelectronics and Medical Equipment. R.U. Patent 2013118962 A, 27 October 2014. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Tersoff, J. New Empirical Approach for the Structure and Energy of Covalent Systems. Phys. Rev. B 1988, 37, 6991–7000. [Google Scholar] [CrossRef]
- Benkabou, F.; Aourag, H.; Certier, M. Atomistic Study of Zinc-Blende CdS, CdSe, ZnS, and ZnSe from Molecular Dynamics. Mater. Chem. Phys. 2000, 66, 10–16. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shima, H. Buckling of Carbon Nanotubes: A State of the Art Review. Materials 2011, 5, 47–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozova, N.K.; Kuznetsov, V.A.; Ryzhikov, V.D.; Galstyan, V.G. Zinc Selenide: Preparation and Optical Properties; Fok, M.V., Ed.; Russian Academy of Sciences, A.V. Shubnikov Institute of Crystallography: St. Petersburg, Russia, 1992; 95p. [Google Scholar]
- Bovina, L.A.; Brodin, M.S.; Valakh, M.Y. Physics of Compounds AIIBVI; Georgobiani, A.N., Sheinkman, M.K., Eds.; Phys. Mat. Lit.: Nauka, Russia, 1986; 320p. [Google Scholar]
Material Studied | Middle Value of the Microhardness, Pa × 109 |
---|---|
Pure ZnSe | 0.1118 |
ZnSe structured with CNTs | 0.1175 |
Pure ZnS | 0.8589 |
ZnS structured with CNTs | 0.91675 |
Material Studied | The Number of Revolutions on the Abrasion Surface before the Appearance of a Distinct Ring |
---|---|
Pure ZnS | 100–120 |
ZnS structured with CNTs | 200–220 |
Pure ZnSe | 420 |
ZneS structured with CNTs | 600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N.; Toikka, A.; Valeev, B.; Kvashnin, D. Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique. C 2021, 7, 84. https://doi.org/10.3390/c7040084
Kamanina N, Toikka A, Valeev B, Kvashnin D. Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique. C. 2021; 7(4):84. https://doi.org/10.3390/c7040084
Chicago/Turabian StyleKamanina, Natalia, Andrey Toikka, Bulat Valeev, and Dmitry Kvashnin. 2021. "Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique" C 7, no. 4: 84. https://doi.org/10.3390/c7040084
APA StyleKamanina, N., Toikka, A., Valeev, B., & Kvashnin, D. (2021). Carbon Nanotubes Use for the Semiconductors ZnSe and ZnS Material Surface Modification via the Laser-Oriented Deposition Technique. C, 7(4), 84. https://doi.org/10.3390/c7040084