Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alvarez, N.T.; Miller, P.; Haase, M.; Kienzle, N.; Zhang, L.; Schulz, M.J.; Shanov, V. Carbon Nanotube Assembly at Near-Industrial Natural-Fiber Spinning Rates. Carbon 2015, 86, 350–357. [Google Scholar] [CrossRef]
- Alvarez, N.T.; Miller, P.; Haase, M.R.; Lobo, R.; Malik, R.; Shanov, V. Tailoring Physical Properties of Carbon Nanotube Threads during Assembly. Carbon 2019, 144, 55–62. [Google Scholar] [CrossRef]
- Amama, P.B.; Pint, C.L.; Kim, S.M.; Eyink, K.G.; Stach, E.A.; Hauge, R.H.; Maruyama, B. Evolution, Activity, and Lifetime of Alumina-Supported Fe Catalyst during Super Growth of Single-Walled Carbon Nanotube Carpets: Influence of the Type of Alumina. Mater. Res. Soc. Symp. Proc. 2010, 1258, 217–222. [Google Scholar] [CrossRef]
- Modekwe, H.U.; Mamo, M.A.; Moothi, K.; Daramola, M.O. Effect of Different Catalyst Supports on the Quality, Yield and Morphology of Carbon Nanotubes Produced from Waste Polypropylene Plastics. Catalysts 2021, 11, 692. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Y.; Li, L.J.; Chen, Y. Effect of Different Catalyst Supports on the (n,m) Selective Growth of Single-Walled Carbon Nanotube from Co-Mo Catalyst. J. Mater. Sci. 2009, 44, 3285–3295. [Google Scholar] [CrossRef]
- Christen, H.M.; Puretzky, A.A.; Cui, H.; Belay, K.; Fleming, P.H.; Geohegan, D.B.; Lowndes, D.H. Rapid Growth of Long, Vertically Aligned Carbon Nanotubes through Efficient Catalyst Optimization Using Metal Film Gradients. Nano Lett. 2004, 4, 1939–1942. [Google Scholar] [CrossRef]
- Guzmán De Villoria, R.; Figueredo, S.L.; Hart, A.J.; Steiner, S.A.; Slocum, A.H.; Wardle, B.L. High-Yield Growth of Vertically Aligned Carbon Nanotubes on a Continuously Moving Substrate. Nanotechnology 2009, 20, 1–8. [Google Scholar] [CrossRef]
- Pint, C.L.; Kim, S.M.; Stach, E.A.; Hauge, R.H. Rapid and Scalable Reduction of Dense Surface-Supported Metal-Oxide Catalyst with Hydrazine Vapor. ACS Nano 2009, 3, 1897–1905. [Google Scholar] [CrossRef]
- Cheung, C.L.; Kurtz, A.; Park, H.; Lieber, C.M. Diameter-Controlled Synthesis of Carbon Nanotubes. J. Phys. Chem. B 2002, 106, 2429–2433. [Google Scholar] [CrossRef]
- Kukovitsky, E.F.; L’vov, S.G.; Sainov, N.A.; Shustov, V.A.; Chernozatonskii, L.A. Correlation between Metal Catalyst Particle Size and Carbon Nanotube Growth. Chem. Phys. Lett. 2002, 355, 497–503. [Google Scholar] [CrossRef]
- Sinnott, S.B.; Andrews, R.; Qian, D.; Rao, A.M.; Mao, Z.; Dickey, E.C.; Derbyshire, F. Model of Carbon Nanotube Growth through Chemical Vapor Deposition. Chem. Phys. Lett. 1999, 315, 25–30. [Google Scholar] [CrossRef]
- Alvarez, N.T.; Li, F.; Pint, C.L.; Mayo, J.T.; Fisher, E.Z.; Tour, J.M.; Colvin, V.L.; Hauge, R.H. Uniform Large Diameter Carbon Nanotubes in Vertical Arrays from Premade Near-Monodisperse Nanoparticles. Chem. Mater. 2011, 23, 3466–3475. [Google Scholar] [CrossRef]
- Schäffel, F.; Kramberger, C.; Rümmeli, M.H.; Grimm, D.; Mohn, E.; Gemming, T.; Pichler, T.; Rellinghaus, B.; Büchner, B.; Schultz, L. Nanoengineered Catalyst Particles as a Key for Tailor-Made Carbon Nanotubes. Chem. Mater. 2007, 19, 5006–5009. [Google Scholar] [CrossRef]
- Alvarez, N.T.; Orbaek, A.; Barron, A.R.; Tour, J.M.; Hauge, R.H. Dendrimer-Assisted Self-Assembled Monolayer of Iron Nanoparticles for Vertical Array Carbon Nanotube Growth. ACS Appl. Mater. Interfaces 2010, 2, 15–18. [Google Scholar] [CrossRef]
- Alvarez, N.T.; Hamilton, C.E.; Pint, C.L.; Orbaek, A.; Yao, J.; Frosinini, A.L.; Barron, A.R.; Tour, J.M.; Hauge, R.H. Wet Catalyst-Support Films for Production of Vertically Aligned Carbon Nanotubes. ACS Appl. Mater. Interfaces 2010, 2, 1851–1856. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Li, L.; Chen, W. Research Progress on Large-Area Perovskite Thin Fi Lms and Solar Modules. J. Mater. 2017, 3, 231–244. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Zhang, L.; Huang, S. Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate. Nano-Micro Lett. 2015, 7, 353–359. [Google Scholar] [CrossRef][Green Version]
- Pauly, M.; Pichon, B.P.; Albouy, P.A.; Fleutot, S.; Leuvrey, C.; Trassin, M.; Gallani, J.L.; Begin-Colin, S. Monolayer and Multilayer Assemblies of Spherically and Cubic-Shaped Iron Oxide Nanoparticles. J. Mater. Chem. 2011, 21, 16018–16027. [Google Scholar] [CrossRef]
- Amama, P.B.; Pint, C.L.; McJilton, L.; Kim, S.M.; Stach, E.A.; Murray, P.T.; Hauge, R.H.; Maruyama, B. Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets. Nano Lett. 2009, 9, 44–49. [Google Scholar] [CrossRef]
- Hasnan, N.S.N.; Timmiati, S.N.; Lim, K.L.; Yaakob, Z.; Kamaruddin, N.H.N.; Teh, L.P. Recent Developments in Methane Decomposition over Heterogeneous Catalysts: An Overview. Mater. Renew. Sustain. Energy 2020, 9, 1–18. [Google Scholar] [CrossRef]
- Yildirim, O.; Gang, T.; Kinge, S.; Reinhoudt, D.N.; Blank, D.H.A.; van der Wiel, W.G.; Rijnders, G.; Huskens, J. Monolayer-Directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide. Int. J. Mol. Sci. 2010, 11, 1162–1179. [Google Scholar] [CrossRef] [PubMed]
- Andryszewski, T.; Iwan, M.; Hołdyński, M.; Fiałkowski, M. Synthesis of a Free-Standing Monolayer of Covalently Bonded Gold Nanoparticles. Chem. Mater. 2016, 28, 5304–5313. [Google Scholar] [CrossRef]
- Feichtenschlager, B.; Lomoschitz, C.J.; Kickelbick, G. Tuning the Self-Assembled Monolayer Formation on Nanoparticle Surfaces with Different Curvatures: Investigations on Spherical Silica Particles and Plane-Crystal-Shaped Zirconia Particles. J. Colloid Interface Sci. 2011, 360, 15–25. [Google Scholar] [CrossRef]
- Tizazu, G. A Simple Method for Patterning Nanoparticles on Planar Surfaces. J. Nanotechnol. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Karade, V.C.; Sharma, A.; Dhavale, R.P.; Dhavale, R.P.; Shingte, S.R.; Patil, P.S.; Kim, J.H.; Zahn, D.R.T.; Chougale, A.D.; Salvan, G.; et al. APTES Monolayer Coverage on Self-Assembled Magnetic Nanospheres for Controlled Release of Anticancer Drug Nintedanib. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Acres, R.G.; Ellis, A.V.; Alvino, J.; Lenahan, C.E.; Khodakov, D.A.; Metha, G.F.; Andersson, G.G. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. J. Phys. Chem. C 2012, 116, 6289–6297. [Google Scholar] [CrossRef]
- Zhou, M.; Hedlund, J. Assembly of Oriented Iron Oxide and Zeolite Crystals via Biopolymer Films. J. Mater. Chem. 2012, 22, 24877–24881. [Google Scholar] [CrossRef]
- Wah, F.; Mun, L.; Tai, F.; Bee, S.; Hamid, A. Iron Oxide Nanoparticles Decorated Oleic Acid for High Colloidal Stability. Adv. Polym. Technol. 2017, 37, 1712–1721. [Google Scholar] [CrossRef]
- Tamaki, H.; Abe, S.; Yamagata, S.; Yoshida, Y.; Sato, Y. Self-Assembled Monolayer Formation on a Dental Orthodontic Stainless Steel Wire Surface to Suppress Metal Ion Elution. Coatings 2020, 10, 367. [Google Scholar] [CrossRef]
- Yamada, K.; Kaneko, A.; Kato, H.; Homma, Y. Vertically-Aligned Carbon Nanotube Growth Using Closely Packed Iron Oxide Nanoparticles. Mater. Express 2012, 2, 257–260. [Google Scholar] [CrossRef]
- Signore, M.A.; Rizzo, A.; Rossi, R.; Piscopiello, E.; Di Luccio, T.; Capodieci, L.; Dikonimos, T.; Giorgi, R. Role of Iron Catalyst Particles Density in the Growth of Forest-like Carbon Nanotubes. Diam. Relat. Mater. 2008, 17, 1936–1942. [Google Scholar] [CrossRef]
- Lee, D.H.; Condrate, R.A. FTIR Spectral Characterization of Thin Film Coatings of Oleic Acid on Glasses: I. Coatings on Glasses from Ethyl Alcohol. J. Mater. Sci. 1999, 34, 139–146. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Hwang, Y.; Park, J.E.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; Falkner, J.C.; Yavuz, C.T.; Colvin, V.L. Synthesis of Monodisperse Iron Oxide Nanocrystals by Thermal Decomposition of Iron Carboxylate Salts. Chem. Commun. 2004, 2306–2307. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.L.; Schwartz, J.; Nickel, B.; Koch, N.; Danisman, M.F. Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon. J. Am. Chem. Soc. 2003, 125, 16074–16080. [Google Scholar] [CrossRef] [PubMed]
- Panic, S.; Bajac, B.; Rakić, S.; Kukovecz; Kónya, Z.; Srdić, V.; Boskovic, G. Molybdenum Anchoring Effect in Fe–Mo/MgO Catalyst for Multiwalled Carbon Nanotube Synthesis. React. Kinet. Mech. Catal. 2017, 122, 775–791. [Google Scholar] [CrossRef]
- He, M.; Zhang, L.; Jiang, H.; Yang, H.; Fossard, F.; Cui, H.; Sun, Z.; Wagner, J.B.; Kauppinen, E.I.; Loiseau, A. FeTiO Based Catalyst for Large-Chiral-Angle Single-Walled Carbon Nanotube Growth. Carbon 2016, 107, 865–871. [Google Scholar] [CrossRef]
- Harutyunyan, A.R.; Chen, G.; Paronyan, T.M.; Pigos, E.M.; Kuznetsov, O.A.; Hewaparakrama, K.; Kim, S.M.; Zakharov, D.; Stach, E.A.; Sumanasekera, G.U. Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity. Science 2009, 326, 116–120. [Google Scholar] [CrossRef]
- Dubey, M.; Weidner, T.; Gamble, L.J.; Castner, D.G. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100). Langmuir 2010, 26, 14747–14754. [Google Scholar] [CrossRef]
- Mutin, P.H.; Lafond, V.; Popa, A.F.; Granier, M.; Markey, L.; Dereux, A. Selective Surface Modification of SiO2-TiO2 Supports with Phosphonic Acids. Chem. Mater. 2004, 16, 5670–5675. [Google Scholar] [CrossRef]
- Thissen, P.; Valtiner, M.; Grundmeier, G. Stability of Phosphonic Acid Self-Assembled Monolayers on Amorphous and Single-Crystalline Aluminum Oxide Surfaces in Aqueous Solution. Langmuir 2010, 26, 156–164. [Google Scholar] [CrossRef]
- Zhao, R.; Rupper, P.; Gaan, S. Recent Development in Phosphonic Acid-Based Organic Coatings on Aluminum. Coatings 2017, 7, 133. [Google Scholar] [CrossRef]
- Smolensky, E.D.; Park, H.Y.E.; Berquó, T.S.; Pierre, V.C. Surface Functionalization of Magnetic Iron Oxide Nanoparticles for MRI Applications—Effect of Anchoring Group and Ligand Exchange Protocol. Contrast Media Mol. Imaging 2011, 6, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.N.W.; Rochester, C.H. Infrared Study of the Adsorption of Ethyl Isocyanate on Silica Immersed in Carbon Tetrachloride. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1981, 77, 1945–1952. [Google Scholar] [CrossRef]
- Lewis, W.K.; Rosenberger, A.T.; Gord, J.R.; Crouse, C.A.; Harruff, B.A.; Fernando, K.A.S.; Smith, M.J.; Phelps, D.K.; Spowart, J.E.; Guliants, E.A.; et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) Investigation of the Core-Shell Bonding in Sonochemically Prepared Aluminum Nanoparticles Capped with Oleic Acid. J. Phys. Chem. C 2010, 114, 6377–6380. [Google Scholar] [CrossRef]
- Van den Brand, J.; Snijders, P.C.; Sloof, W.G.; Terryn, H.; De Wit, J.H.W. Acid-Base Characterization of Aluminum Oxide Surfaces with XPS. J. Phys. Chem. B 2004, 108, 6017–6024. [Google Scholar] [CrossRef]
- Alexander, M.R.; Thompson, G.E.; Beamson, G. Characterization of the Oxide/Hydroxide Surface of Aluminum Using X-Ray Photoelectron Spectroscopy: A Procedure for Curve Fitting the O 1s Core Level. Surf. Interface Anal. 2000, 29, 468–477. [Google Scholar] [CrossRef]
- Zähr, J.; Oswald, S.; Türpe, M.; Ullrich, H.J.; Füssel, U. Characterisation of Oxide and Hydroxide Layers on Technical Aluminum Materials Using XPS. Vacuum 2012, 86, 1216–1219. [Google Scholar] [CrossRef]
- Do, B.P.H.; Nguyen, B.D.; Nguyen, H.D.; Nguyen, P.T. Synthesis of Magnetic Composite Nanoparticles Enveloped in Copolymers Specified for Scale Inhibition Application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 045016. [Google Scholar] [CrossRef][Green Version]
- Gupta, R.; Pancholi, K.; Sa, R.D.E.; Murray, D.; Huo, D.; Droubi, G.; White, M.; Njuguna, J. Effect of Oleic Acid Coating of Iron Oxide Nanoparticles on Properties of Magnetic Polyamide-6 Nanocomposite. JOM 2019, 71, 3119–3128. [Google Scholar] [CrossRef]
- Okhrimenko, D.V.; Nielsen, C.F.; Lakshtanov, L.Z.; Dalby, K.N.; Johansson, D.B.; Solvang, M.; Deubener, J.; Stipp, S.L.S. Surface Reactivity and Dissolution Properties of Alumina-Silica Glasses and Fibers. ACS Appl. Mater. Interfaces 2020, 12, 36740–36754. [Google Scholar] [CrossRef] [PubMed]
- Hoque, E.; DeRose, J.A.; Bhushan, B.; Mathieu, H.J. Self-Assembled Monolayers on Aluminum and Copper Oxide Surfaces: Surface and Interface Characteristics, Nanotribological Properties, and Chemical Stability. Appl. Scanning Probe Methods IX 2007, 111, 235–281. [Google Scholar] [CrossRef]
- Queffélec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012, 112, 3777–3807. [Google Scholar] [CrossRef] [PubMed]
- Gouzman, I.; Dubey, M.; Carolus, M.D.; Schwartz, J.; Bernasek, S.L. Monolayer vs. Multilayer Self-Assembled Alkylphosphonate Films: X-Ray Photoelectron Spectroscopy Studies. Surf. Sci. 2006, 600, 773–781. [Google Scholar] [CrossRef]
- Hoque, E.; Derose, J.A.; Kulik, G.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B. Alkylphosphonate Modified Aluminum Oxide Surfaces. J. Phys. Chem. B 2006, 110, 10855–10861. [Google Scholar] [CrossRef] [PubMed]
- Bayer, B.C.; Fouquet, M.; Blume, R.; Wirth, C.T.; Weatherup, R.S.; Ogata, K.; Knop-Gericke, A.; Schlögl, R.; Hofmann, S.; Robertson, J. Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. J. Phys. Chem. C 2012, 116, 1107–1113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, A.; Ullah, A.; Guiton, B.S.; Alvarez, N.T. Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes. C 2021, 7, 79. https://doi.org/10.3390/c7040079
Hoque A, Ullah A, Guiton BS, Alvarez NT. Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes. C. 2021; 7(4):79. https://doi.org/10.3390/c7040079
Chicago/Turabian StyleHoque, Abdul, Ahamed Ullah, Beth S. Guiton, and Noe T. Alvarez. 2021. "Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes" C 7, no. 4: 79. https://doi.org/10.3390/c7040079
APA StyleHoque, A., Ullah, A., Guiton, B. S., & Alvarez, N. T. (2021). Premade Nanoparticle Films for the Synthesis of Vertically Aligned Carbon Nanotubes. C, 7(4), 79. https://doi.org/10.3390/c7040079